Residents’ Willingness to Participate in E-Waste Recycling: Evidence by Theory of Reasoned Action
Abstract
1. Introduction
- What factors influence residents’ willingness to participate in e-waste recycling?
- Does attitude mediate the effects of convenience, knowledge, and awareness of benefits on residents’ willingness to participate in e-waste recycling?
- Does the subjective norm mediate the effect of impression management motivation on residents’ willingness to participate in e-waste recycling?
2. Conceptual Framework and Hypotheses
2.1. Theory of Reasoned Action (TRA)
2.2. Convenience
2.3. Knowledge
2.4. Awareness of Benefits
2.5. Impression Management Motivation
3. Research Methodology
3.1. Study Area
3.2. Data Collection
3.3. Data Analysis
4. Results
4.1. Profile of Respondents
4.2. Measurement Model
4.3. Structural Model
4.4. Model Fit Analysis
4.5. One-Way ANOVA
5. Discussion and Policy Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fortune Business Insights. Consumer Electronics Market Size, Share, Trends, Growth, 2032. 2025. Available online: https://www.fortunebusinessinsights.com/consumer-electronics-market-104693 (accessed on 3 June 2025).
- Liang, C.J.; Li, J.Y.; Ma, C.J. Review on Cyanogenic Bacteria for Gold Recovery from E-Waste. Adv. Mater. Res. 2014, 878, 355–367. [Google Scholar] [CrossRef]
- International Telecommunication Union; United Nations Institute for Training and Research. Global E-Waste Monitor 2024: Electronic Waste Rising Five Times Faster than Documented E-waste Recycling. 2024. Available online: https://unitar.org/about/news-stories/press/global-e-waste-monitor-2024-electronic-waste-rising-five-times-faster-documented-e-waste-recycling (accessed on 8 June 2025).
- Song, M.; Luo, C.; Li, F.; Jiang, L.; Wang, Y.; Zhang, D.; Zhang, G. Anaerobic degradation of Polychlorinated Biphenyls (PCBs) and Polychlorinated Biphenyls Ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil. Sci. Total Environ. 2015, 502, 426–433. [Google Scholar] [CrossRef]
- Chakraborty, P.; Selvaraj, S.; Nakamura, M.; Prithiviraj, B.; Cincinelli, A.; Bang, J.J. PCBs and PCDD/Fs in soil from informal e-waste recycling sites and open dumpsites in India: Levels, congener profiles and health risk assessment. Sci. Total Environ. 2018, 621, 930–938. [Google Scholar] [CrossRef]
- Wang, S.; Wang Jing Li, J.; Wang Jinpeng Liang, L. Policy implications for promoting the adoption of electric vehicles: Do consumer’s knowledge, perceived risk and financial incentive policy matter? Transp. Res. Part A Policy Pract. 2018, 117, 58–69. [Google Scholar] [CrossRef]
- Matsukami, H.; Tue, N.M.; Suzuki, G.; Someya, M.; Tuyen, L.H.; Viet, P.H.; Takahashi, S.; Tanabe, S.; Takigami, H. Flame retardant emission from e-waste recycling operation in northern Vietnam: Environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs. Sci. Total Environ. 2015, 514, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E. Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk Hum. health. Environ. Chem. Lett. 2018, 16, 903–917. [Google Scholar] [CrossRef]
- Kahlon, S.K.; Sharma, G.; Julka, J.M.; Kumar, A.; Sharma, S.; Stadler, F.J. Impact of heavy metals and nanoparticles on aquatic biota. Environ. Chem. Lett. 2018, 16, 919–946. [Google Scholar] [CrossRef]
- Amoabeng Nti, A.A.; Arko-Mensah, J.; Botwe, P.K.; Dwomoh, D.; Kwarteng, L.; Takyi, S.A.; Acquah, A.A.; Tettey, P.; Basu, N.; Batterman, S.; et al. Effect of Particulate Matter Exposure on Respiratory Health of e-Waste Workers at Agbogbloshie, Accra, Ghana. Int. J. Environ. Res. Public Health 2020, 17, 3042. [Google Scholar] [CrossRef]
- Cong, X.; Xu, X.; Xu, L.; Li, M.; Xu, C.; Qin, Q.; Huo, X. Elevated biomarkers of sympatho-adrenomedullary activity linked to e-waste air pollutant exposure in preschool children. Environ. Int. 2018, 115, 117–126. [Google Scholar] [CrossRef]
- Davis, J.-M.; Garb, Y. Astrong spatial association between e-waste burn sites childhood lymphoma in the West Bank Palestine: Astrong spatial association between e-waste burn sites childhood lymphoma in the West Bank Palestine. Int. J. Cancer 2019, 144, 470–475. [Google Scholar] [CrossRef]
- Huo, X.; Dai, Y.; Yang, T.; Zhang, Y.; Li, M.; Xu, X. Decreased erythrocyte CD44 and CD58 expression link e-waste Pb toxicity to changes in erythrocyte immunity in preschool children. Sci. Total Environ. 2019, 664, 690–697. [Google Scholar] [CrossRef]
- Seith, R.; Arain, A.L.; Nambunmee, K.; Adar, S.D.; Neitzel, R.L. Self-Reported Health and Metal Body Burden in an Electronic Waste Recycling Community in Northeastern Thailand. J. Occup. Environ. Med. 2019, 61, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Soetrisno, F.N.; Delgado-Saborit, J.M. Chronic exposure to heavy metals from informal e-waste recycling plants and children’s attention, executive function and academic performance. Sci. Total Environ. 2020, 717, 137099. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Huo, X.; Liu, Y.; Zhang, Y.; Qin, Q.; Xu, X. Hearing loss risk and DNA methylation signatures in preschool children following lead and cadmium exposure from an electronic waste recycling area. Chemosphere 2020, 246, 125829. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lu, Y.; Dai, Y.; Wu, H.; Ma, Z. In-situ 4D CT analysis of microcrack evolution in carbonated fiber-reinforced recycled aggregate concrete. Cem. Concr. Compos. 2025, 163, 106161. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, Y.; Fang, K.; Zhang, Y.; Wang, C. Developing fully recycled alkali-activated mortar made with waste concrete fines as a substitute for both binder and sand: Multi-properties evaluation. Constr. Build. Mater. 2025, 477, 141323. [Google Scholar] [CrossRef]
- Zeng, X.; Ali, S.H.; Tian, J.; Li, J. Mapping anthropogenic mineral generation in China and its implications for a circular economy. Nat. Commun. 2020, 11, 1544. [Google Scholar] [CrossRef]
- Li, W.; Achal, V. Environmental and health impacts due to e-waste disposal in China—A review. Sci. Total Environ. 2020, 737, 139745. [Google Scholar] [CrossRef]
- Zeng, X.; Gong, R.; Chen, W.-Q.; Li, J. Uncovering the Recycling Potential of “New” WEEE in China. Environ. Sci. Technol. 2016, 50, 1347–1358. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, H.; Zhang, A.; Jiang, G. E-waste Recycling in China: A Challenging Field. Environ. Sci. Technol. 2018, 52, 6727–6728. [Google Scholar] [CrossRef]
- Liu, G.; Xu, Y.; Tian, T.; Wang, T.; Liu, Y. The impacts of China’s fund policy on waste electrical and electronic equipment utilization. J. Clean. Prod. 2020, 251, 119582. [Google Scholar] [CrossRef]
- Sethurajan, M.; van Hullebusch, E.D.; Nancharaiah, Y.V. Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances. J. Environ. Manag. 2018, 211, 138–153. [Google Scholar] [CrossRef]
- Sanito, R.C.; You, S.-J.; Wang, Y.-F. Application of plasma technology for treating e-waste: A review. J. Environ. Manag. 2021, 288, 112380. [Google Scholar] [CrossRef] [PubMed]
- Pant, D.; Joshi, D.; Upreti, M.K.; Kotnala, R.K. Chemical and biological extraction of metals present in E waste: A hybrid technology. Waste Manag. 2012, 32, 979–990. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.J.; Rarotra, S.; Krikstolaityte, V.; Zhuoran, K.W.; Cindy, Y.D.; Tan, X.Y.; Carboni, M.; Meyer, D.; Yan, Q.; Srinivasan, M. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability. Adv. Mater. 2022, 34, 2103346. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, S.H.; Badami, M.G. Extended producer responsibility for E-waste management: Policy drivers and challenges. J. Clean. Prod. 2020, 251, 119657. [Google Scholar] [CrossRef]
- Yu, J.; Williams, E.; Ju, M.; Shao, C. Managing e-waste in China: Policies, pilot projects and alternative approaches. Resour. Conserv. Recycl. 2010, 54, 991–999. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, Y.; Liu, B.; Pan, D.; Chang, C.; Volinsky, A.A. Challenges in legislation, recycling system and technical system of waste electrical and electronic equipment in China. Waste Manag. 2015, 45, 361–373. [Google Scholar] [CrossRef]
- Han, H.; Hwang, J.; Lee, S. Cognitive, affective, normative, and moral triggers of sustainable intentions among convention-goers. J. Environ. Psychol. 2017, 51, 1–13. [Google Scholar] [CrossRef]
- Dhir, A.; Koshta, N.; Goyal, R.K.; Sakashita, M.; Almotairi, M. Behavioral reasoning theory (BRT) perspectives on E-waste recycling and management. J. Clean. Prod. 2021, 280, 124269. [Google Scholar] [CrossRef]
- Delcea, C.; Crăciun, L.; Ioanăș, C.; Ferruzzi, G.; Cotfas, L.-A. Determinants of Individuals’ E-Waste Recycling Decision: A Case Study from Romania. Sustainability 2020, 12, 2753. [Google Scholar] [CrossRef]
- Dwivedy, M.; Mittal, R.K. Willingness of residents to participate in e-waste recycling in India. Environ. Dev. 2013, 6, 48–68. [Google Scholar] [CrossRef]
- Aboelmaged, M. E-waste recycling behaviour: An integration of recycling habits into the theory of planned behaviour. J. Clean. Prod. 2021, 278, 124182. [Google Scholar] [CrossRef]
- Arain, A.L.; Pummill, R.; Adu-Brimpong, J.; Becker, S.; Green, M.; Ilardi, M.; Van Dam, E.; Neitzel, R.L. Analysis of e-waste recycling behavior based on survey at a Midwestern US University. Waste Manag. 2020, 105, 119–127. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Yin, J.; Zhang, X. Willingness and behavior towards e-waste recycling for residents in Beijing city, China. J. Clean. Prod. 2011, 19, 977–984. [Google Scholar] [CrossRef]
- Cai, K.; Song, Q.; Peng, S.; Yuan, W.; Liang, Y.; Li, J. Uncovering residents’ behaviors, attitudes, and WTP for recycling e-waste: A case study of Zhuhai city, China. Environ. Sci. Pollut. Res. 2020, 27, 2386–2399. [Google Scholar] [CrossRef]
- Wang, Y.; Hazen, B.T. Consumer product knowledge and intention to purchase remanufactured products. Int. J. Prod. Econ. 2016, 181, 460–469. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Liang, J.; Qiang, Y.; Fang, S.; Gao, M.; Fan, X.; Yang, G.; Zhang, B.; Feng, Y. Analysis of the environmental behavior of farmers for non-point source pollution control and management in a water source protection area in China. Sci. Total Environ. 2018, 633, 1126–1135. [Google Scholar] [CrossRef]
- Hill, R.J.; Fishbein, M.; Ajzen, I. Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Contemp. Sociol. 1977, 6, 244. [Google Scholar] [CrossRef]
- Untaru, E.-N.; Ispas, A.; Candrea, A.N.; Luca, M.; Epuran, G. Predictors of individuals’ intention to conserve water in a lodging context: The application of an extended Theory of Reasoned Action. Int. J. Hosp. Manag. 2016, 59, 50–59. [Google Scholar] [CrossRef]
- Yadav, R.; Pathak, G.S. Determinants of Consumers’ Green Purchase Behavior in a Developing Nation: Applying and Extending the Theory of Planned Behavior. Ecol. Econ. 2017, 134, 114–122. [Google Scholar] [CrossRef]
- Cudjoe, D.; Han, M.S. Economic feasibility and environmental impact analysis of landfill gas to energy technology in African urban areas. J. Clean. Prod. 2021, 284, 125437. [Google Scholar] [CrossRef]
- Cudjoe, D.; Han, M.S.; Nandiwardhana, A.P. Electricity generation using biogas from organic fraction of municipal solid waste generated in provinces of China: Techno-economic and environmental impact analysis. Fuel Process. Technol. 2020, 203, 106381. [Google Scholar] [CrossRef]
- Taufique, K.M.d.R.; Vaithianathan, S. A fresh look at understanding Green consumer behavior among young urban Indian consumers through the lens of Theory of Planned Behavior. J. Clean. Prod. 2018, 183, 46–55. [Google Scholar] [CrossRef]
- Kalkbrenner, B.J.; Roosen, J. Citizens’ willingness to participate in local renewable energy projects: The role of community and trust in Germany. Energy Res. Soc. Sci. 2016, 13, 60–70. [Google Scholar] [CrossRef]
- Joung, H.-M.; Park-Poaps, H. Factors motivating and influencing clothing disposal behaviours: Clothing disposal behaviours. Int. J. Consum. Stud. 2013, 37, 105–111. [Google Scholar] [CrossRef]
- Jebarajakirthy, C.; Shankar, A. Impact of online convenience on mobile banking adoption intention: A moderated mediation approach. J. Retail. Consum. Serv. 2021, 58, 102323. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yan, C.-F.; Tseng, J.-S. Perceived convenience in an extended technology acceptance model: Mobile technology and English learning for college students. Australas. J. Educ. Technol. 2012, 28, 809–826. [Google Scholar] [CrossRef]
- Kaura, V.; Durga Prasad, C.h.S.; Sharma, S. Service quality, service convenience, price and fairness, customer loyalty, and the mediating role of customer satisfaction. Int. J. Bank Mark. 2015, 33, 404–422. [Google Scholar] [CrossRef]
- Raman, P. Understanding female consumers’ intention to shop online: The role of trust, convenience and customer service. Asia Pac. J. Mark. Logist. 2019, 31, 1138–1160. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, D.; Wang, X. Determinants of residents’ e-waste recycling behaviour intentions: Evidence from China. J. Clean. Prod. 2016, 137, 850–860. [Google Scholar] [CrossRef]
- Paço, A.; Lavrador, T. Environmental knowledge and attitudes and behaviours towards energy consumption. J. Environ. Manag. 2017, 197, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Guo, D.; Wang, X.; Zhang, B.; Wang, B. How does information publicity influence residents’ behaviour intentions around e-waste recycling? Resour. Conserv. Recycl. 2018, 133, 1–9. [Google Scholar] [CrossRef]
- Wang, F.; Scycle, U.-I.; Kuehr, R.; Scycle, U.-I.; Ahlquist, D.; Scycle, U.-I.; Li, J. E-Waste in China: A Country Report; United Nations University: Bonn, Germany, 2013. [Google Scholar]
- Debora Indriani, I.A.; Rahayu, M.; Hadiwidjojo, D. The Influence of Environmental Knowledge on Green Purchase Intention the Role of Attitude as Mediating Variable. Int. J. Multicult. Multireligious Underst. 2019, 6, 627. [Google Scholar] [CrossRef]
- Chen, M.-F.; Tung, P.-J. The Moderating Effect of Perceived Lack of Facilities on Consumers’ Recycling Intentions. Environ. Behav. 2010, 42, 824–844. [Google Scholar] [CrossRef]
- Ueland, Ø.; Gunnlaugsdottir, H.; Holm, F.; Kalogeras, N.; Leino, O.; Luteijn, J.M.; Magnússon, S.H.; Odekerken, G.; Pohjola, M.V.; Tijhuis, M.J.; et al. State of the art in benefit–risk analysis: Consumer perception. Food Chem. Toxicol. 2012, 50, 67–76. [Google Scholar] [CrossRef]
- Sottile, E.; Meloni, I.; Cherchi, E. A Hybrid Discrete Choice Model to Assess the Effect of Awareness and Attitude towards Environmentally Friendly Travel Modes. Transp. Res. Procedia 2015, 5, 44–55. [Google Scholar] [CrossRef]
- Leary, M.R.; Kowalski, R.M. Impression Management: A Literature Review and Two-Component Model. Psychol. Bull. 1990, 107, 34–47. [Google Scholar] [CrossRef]
- Treadway, D.C.; Ferris, G.R.; Duke, A.B.; Adams, G.L.; Thatcher, J.B. The moderating role of subordinate political skill on supervisors’ impressions of subordinate ingratiation and ratings of subordinate interpersonal facilitation. J. Appl. Psychol. 2007, 92, 848–855. [Google Scholar] [CrossRef]
- White, K.; Peloza, J. Self-Benefit versus Other-Benefit Marketing Appeals: Their Effectiveness in Generating Charitable Support. J. Mark. 2009, 73, 109–124. [Google Scholar] [CrossRef]
- Griskevicius, V.; Tybur, J.M.; Van den Bergh, B. Going green to be seen: Status, reputation, and conspicuous conservation. J. Personal. Soc. Psychol. 2010, 98, 392–404. [Google Scholar] [CrossRef]
- Song, Q.; Wang, Z.; Li, J.; Zeng, X. The life cycle assessment of an e-waste treatment enterprise in China. J. Mater. Cycles Waste Manag. 2013, 15, 469–475. [Google Scholar] [CrossRef]
- Wu, C.; Chen, B.; Huang, X.; Dennis Wei, Y.H. Effect of land-use change and optimization on the ecosystem service values of Jiangsu province, China. Ecol. Indic. 2020, 117, 106507. [Google Scholar] [CrossRef]
- Zhu, M.; Hu, X.; Lin, Z.; Li, J.; Wang, S.; Wang, C. Intention to adopt bicycle-sharing in China: Introducing environmental concern into the theory of planned behavior model. Environ. Sci. Pollut. Res. 2020, 27, 41740–41750. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.K.; Chandra, B.; Kumar, S. Values and ascribed responsibility to predict consumers’ attitude and concern towards green hotel visit intention. J. Bus. Res. 2019, 96, 206–216. [Google Scholar] [CrossRef]
- Gao, L.; Wang, S.; Li, J.; Li, H. Application of the extended theory of planned behavior to understand individual’s energy saving behavior in workplaces. Resour. Conserv. Recycl. 2017, 127, 107–113. [Google Scholar] [CrossRef]
- Darby, L.; Obara, L. Household recycling behaviour and attitudes towards the disposal of small electrical and electronic equipment. Resour. Conserv. Recycl. 2005, 44, 17–35. [Google Scholar] [CrossRef]
- Jenkins, R.R.; Martinez, S.A.; Palmer, K.; Podolsky, M.J. The determinants of household recycling: A material-specific analysis of recycling program features and unit pricing. J. Environ. Econ. Manag. 2003, 45, 294–318. [Google Scholar] [CrossRef]
- Bagheri, A.; Bondori, A.; Allahyari, M.S.; Damalas, C.A. Modeling farmers’ intention to use pesticides: An expanded version of the theory of planned behavior. J. Environ. Manag. 2019, 248, 109291. [Google Scholar] [CrossRef]
- Nguyen, T.T.P.; Zhu, D.; Le, N.P. Factors influencing waste separation intention of residential households in a developing country: Evidence from Hanoi, Vietnam. Habitat Int. 2015, 48, 169–176. [Google Scholar] [CrossRef]
- Wan, C.; Cheung, R.; Qiping Shen, G. Recycling attitude and behaviour in university campus: A case study in Hong Kong. Facilities 2012, 30, 630–646. [Google Scholar] [CrossRef]
- Allen, T.D.; Rush, M.C. The effects of organizational citizenship behavior on performance judgments: A field study and a laboratory experiment. J. Appl. Psychol. 1998, 83, 247–260. [Google Scholar] [CrossRef]
- Ayodele, T.R.; Ogunjuyigbe, A.S.O.; Ajayi, O.D.; Yusuff, A.A.; Mosetlhe, T.C. Willingness to pay for green electricity derived from renewable energy sources in Nigeria. Renew. Sustain. Energy Rev. 2021, 148, 111279. [Google Scholar] [CrossRef]
- Shi, J.; Xu, K.; Si, H.; Song, L.; Duan, K. Investigating intention and behaviour towards sorting household waste in Chinese rural and urban–rural integration areas. J. Clean. Prod. 2021, 298, 126827. [Google Scholar] [CrossRef]
- Zhang, W. Deciphering the causes for the post-1990 slow output recoveries. Econ. Lett. 2019, 176, 28–34. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M. Rethinking some of the rethinking of partial least squares. Eur. J. Mark. 2019, 53, 566–584. [Google Scholar] [CrossRef]
- Dijkstra, T.K.; Henseler, J. Consistent Partial Least Squares Path Modeling. MIS Q. 2015, 39, 297–316. [Google Scholar] [CrossRef]
- Kock, N. Common Method Bias in PLS-SEM: A Full Collinearity Assessment Approach. Int. J. E-Collab. 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Rasoolimanesh, S.M.; Roldán, J.L.; Jaafar, M.; Ramayah, T. Factors Influencing Residents’ Perceptions toward Tourism Development: Differences across Rural and Urban World Heritage Sites. J. Travel Res. 2017, 56, 760–775. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. In Advances in International Marketing; Sinkovics, R.R., Ghauri, P.N., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2009; pp. 277–319. [Google Scholar] [CrossRef]
- Bernstad, A. Household food waste separation behavior and the importance of convenience. Waste Manag. 2014, 34, 1317–1323. [Google Scholar] [CrossRef]
- Farshadfar, Z.; Khajavi, S.H.; Mucha, T.; Tanskanen, K. Machine learning-based automated waste sorting in the construction industry: A comparative competitiveness case study. Waste Manag. 2025, 194, 77–87. [Google Scholar] [CrossRef]
- Lakhouit, A. Revolutionizing urban solid waste management with AI and IoT: A review of smart solutions for waste collection, sorting, and recycling. Results Eng. 2025, 25, 104018. [Google Scholar] [CrossRef]
Demographics | Frequency | Percentage (%) | |
---|---|---|---|
Gender | Male | 167 | 41.75 |
Female | 233 | 58.25 | |
Age (Years) | Under 20 | 16 | 4 |
20–30 | 154 | 38.5 | |
31–40 | 152 | 38 | |
41–50 | 53 | 13.25 | |
Above 50 | 25 | 6.25 | |
Educational Level | High School and Below | 66 | 16.5 |
Junior College | 135 | 33.75 | |
Bachelor | 156 | 39 | |
Postgraduate | 43 | 10.75 | |
Income Level | Below RMB 3000 | 71 | 17.75 |
RMB 3000–6500 | 134 | 33.5 | |
RMB 6500–10,000 | 150 | 37.5 | |
Above RMB 10,000 | 45 | 11.25 | |
Type of community | Urban | 279 | 69.75 |
Suburban or Rural | 121 | 30.25 |
Variable | Measurement Item | Factor Loadings | Rho A | CR | AVE | VIF | |
---|---|---|---|---|---|---|---|
Attitude | ATT1: I think the idea of recycling e-waste is incredibly positive. | 0.843 | 0.906 | 0.906 | 0.930 | 0.726 | 2.306 |
ATT2: For me, recycling e-waste is favorable. | 0.872 | 2.706 | |||||
ATT3: For me, recycling e-waste is rewarding. | 0.847 | 2.365 | |||||
ATT4: I think recycling e-waste is useful in solving environmental problems like soil pollution. | 0.845 | 2.310 | |||||
ATT5: I think recycling e-waste is extremely important. | 0.854 | 2.413 | |||||
Subjective Norms | SBN1: Most people who are vital to me think I should be involved in recycling e-waste. | 0.856 | 0.892 | 0.893 | 0.925 | 0.756 | 2.230 |
SBN2: My friends or peers expect me to be involved in recycling e-waste. | 0.870 | 2.390 | |||||
SBN3: Friends and relatives around me will affect my participation in recycling e-waste. | 0.888 | 2.648 | |||||
SBN4: The sense of social responsibility will influence my participation in recycling e-waste. | 0.864 | 2.369 | |||||
Convenience | CNV1: The e-waste recycling site is very close to me. | 0.862 | 0.839 | 0.840 | 0.903 | 0.757 | 1.912 |
CNV2: It is easy for me to find information on e-waste recycling. | 0.864 | 1.944 | |||||
CNV3: For me, e-waste recycling is not complicated. | 0.884 | 2.094 | |||||
Knowledge | KNG1: I know e-waste contains a large number of heavy metals, which will pollute the environment if discarded carelessly. | 0.853 | 0.877 | 0.878 | 0.916 | 0.731 | 2.167 |
KNG2: I am aware that e-waste recycling reduces environmental pollution. | 0.866 | 2.281 | |||||
KNG3: I know the importance of e-waste recycling. | 0.855 | 2.188 | |||||
KNG4: I have sufficient knowledge of e-waste recycling. | 0.846 | 2.089 | |||||
Awareness of benefits | AOB1: Recycling e-waste can bring me financial benefits. | 0.863 | 0.898 | 0.899 | 0.929 | 0.766 | 2.313 |
AOB2: Recycling e-waste can reduce my risk of developing certain diseases. | 0.888 | 2.684 | |||||
AOB3: Recycling e-waste can protect the environment. | 0.882 | 2.594 | |||||
AOB4: Recycling e-waste can save resources. | 0.869 | 2.455 | |||||
Impression management motivation | IMM1: I care what other people think of me. | 0.867 | 0.888 | 0.889 | 0.923 | 0.749 | 2.409 |
IMM2: I want to present myself to others in a positive way. | 0.877 | 2.466 | |||||
IMM3: I want to make a positive impression on others. | 0.853 | 2.187 | |||||
IMM4: I want to look good to others. | 0.864 | 2.298 | |||||
Willingness to participate in e-waste recycling | WTP1: I am willing to participate in e-waste recycling. | 0.858 | 0.840 | 0.842 | 0.904 | 0.758 | 1.926 |
WTP2: I intend to participate in e-waste recycling in the near future. | 0.893 | 2.215 | |||||
WTP3: I will participate in e-waste recycling more frequently. | 0.861 | 1.909 |
AOB | ATT | CNV | IMM | KNG | SBN | WTP | |
---|---|---|---|---|---|---|---|
AOB | 0.875 | ||||||
ATT | 0.504 | 0.852 | |||||
CNV | 0.314 | 0.291 | 0.870 | ||||
IMM | 0.487 | 0.371 | 0.596 | 0.865 | |||
KNG | 0.676 | 0.522 | 0.447 | 0.563 | 0.855 | ||
SBN | 0.430 | 0.505 | 0.619 | 0.313 | 0.567 | 0.870 | |
WTP | 0.504 | 0.574 | 0.475 | 0.667 | 0.647 | 0.659 | 0.871 |
Hypotheses | Items | Path Co-Efficient | T Statistics | Confidence Interval | p Values | Significance | |
---|---|---|---|---|---|---|---|
2.5% | 97.5% | ||||||
H1 | ATT -> WTP | 0.293 | 5.860 | 0.195 | 0.389 | 0.000 | Supported |
H2 | SBN -> WTP | 0.164 | 2.958 | 0.057 | 0.273 | 0.003 | Supported |
H3 | CNV-> WTP | 0.127 | 2.634 | 0.033 | 0.224 | 0.008 | Supported |
H3.1 | CNV -> ATT | 0.259 | 5.268 | 0.159 | 0.352 | 0.000 | Supported |
H4 | KNG-> WTP | 0.150 | 2.722 | 0.043 | 0.258 | 0.007 | Supported |
H4.1 | KNG -> ATT | 0.331 | 6.716 | 0.232 | 0.429 | 0.000 | Supported |
H5 | AOB-> WTP | 0.054 | 2.226 | 0.012 | 0.181 | 0.023 | Supported |
H5.1 | AOB -> ATT | 0.358 | 6.596 | 0.253 | 0.468 | 0.000 | Supported |
H6 | IMM-> WTP | 0.178 | 3.549 | 0.079 | 0.276 | 0.000 | Supported |
H6.1 | IMM -> SBN | 0.313 | 7.575 | 0.230 | 0.393 | 0.000 | Supported |
Path | Indirect Effect | T-Value | Confidence Intervals | p-Value | Significance | |
2.5% | 97.5% | |||||
KNG -> ATT -> WTP | 0.097 | 4.474 | 0.057 | 0.142 | 0.000 | Supported |
IMM-> SBN -> WTP | 0.143 | 2.955 | 0.051 | 0.239 | 0.003 | Supported |
AOB -> ATT -> WTP | 0.105 | 4.265 | 0.061 | 0.156 | 0.000 | Supported |
CNV -> ATT -> WTP | 0.076 | 3.914 | 0.040 | 0.117 | 0.000 | Supported |
Fit Index | Value | Threshold | Interpretation |
---|---|---|---|
Standardized Root Mean Square Residual (SRMR) | 0.034 | <0.08 | Good model fit |
Normative Fit Index (NFI) | 0.901 | >0.80 (acceptable), >0.90 (good) | Indicates good fit |
R2 (Willingness to Participate) | 0.829 | >0.75 (substantial) | Strong explanatory power |
R2 (Attitude) | Not explicitly reported | >0.50 (moderate) | Should be reported for clarity |
R2 (Subjective Norms) | Not explicitly reported | >0.50 (moderate) | Should be reported for clarity |
Composite Reliability (CR) | 0.903–0.930 | >0.70 | High internal consistency across constructs |
Average Variance Extracted (AVE) | 0.726–0.766 | >0.50 | Strong convergent validity |
Cronbach’s Alpha | 0.839–0.906 | >0.70 | High scale reliability |
Variance Inflation Factor (VIF) | 1.909–2.706 | <3.3 | No multicollinearity issue |
Fornell–Larcker Criterion | Satisfied | AVE > inter-construct correlations | Good discriminant validity |
Demographics | Items | Mean | F-Value | p-Value | Significance |
---|---|---|---|---|---|
Gender | Male | 3.754 | 1.299 | 0.222 | Not Supported |
Female | 3.824 | ||||
Age (Years) | Under 20 | 3.729 | 5.898 | 0.000 | Supported |
20–30 | 3.883 | ||||
31–40 | 3.908 | ||||
41–50 | 3.522 | ||||
Above 50 | 3.187 | ||||
Educational Level | High School and Below | 3.510 | 4.461 | 0.002 | Supported |
Junior College | 3.795 | ||||
Bachelor | 3.812 | ||||
Postgraduate | 4.171 | ||||
Income Level | Below RMB 3000 | 3.606 | 3.812 | 0.005 | Supported |
RMB 3000–6500 | 3.706 | ||||
RMB 6500–10,000 | 3.869 | ||||
Above RMB 10,000 | 4.111 | ||||
Type of community | Urban | 3.993 | 4.858 | 0.000 | Supported |
Suburban or Rural | 3.339 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Dai, P.; Zheng, C.; Song, H. Residents’ Willingness to Participate in E-Waste Recycling: Evidence by Theory of Reasoned Action. Sustainability 2025, 17, 6953. https://doi.org/10.3390/su17156953
Zhao Z, Dai P, Zheng C, Song H. Residents’ Willingness to Participate in E-Waste Recycling: Evidence by Theory of Reasoned Action. Sustainability. 2025; 17(15):6953. https://doi.org/10.3390/su17156953
Chicago/Turabian StyleZhao, Ziyi, Pengyu Dai, Chaoqun Zheng, and Huaming Song. 2025. "Residents’ Willingness to Participate in E-Waste Recycling: Evidence by Theory of Reasoned Action" Sustainability 17, no. 15: 6953. https://doi.org/10.3390/su17156953
APA StyleZhao, Z., Dai, P., Zheng, C., & Song, H. (2025). Residents’ Willingness to Participate in E-Waste Recycling: Evidence by Theory of Reasoned Action. Sustainability, 17(15), 6953. https://doi.org/10.3390/su17156953