Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,372)

Search Parameters:
Keywords = apple production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1187 KiB  
Article
An Attention-Enhanced Bottleneck Network for Apple Segmentation in Orchard Environments
by Imran Md Jelas, Nur Alia Sofia Maluazi and Mohd Asyraf Zulkifley
Agriculture 2025, 15(17), 1802; https://doi.org/10.3390/agriculture15171802 (registering DOI) - 23 Aug 2025
Abstract
As global food demand continues to rise, conventional agricultural practices face increasing difficulty in sustainably meeting production requirements. In response, deep learning-driven automated systems have emerged as promising solutions for enhancing precision farming. Nevertheless, accurate fruit segmentation remains a significant challenge in orchard [...] Read more.
As global food demand continues to rise, conventional agricultural practices face increasing difficulty in sustainably meeting production requirements. In response, deep learning-driven automated systems have emerged as promising solutions for enhancing precision farming. Nevertheless, accurate fruit segmentation remains a significant challenge in orchard environments due to factors such as occlusion, background clutter, and varying lighting conditions. This study proposes the Depthwise Asymmetric Bottleneck with Attention Mechanism Network (DABAMNet), an advanced convolutional neural network (CNN) architecture composed of multiple Depthwise Asymmetric Bottleneck Units (DABou), specifically designed to improve apple segmentation in RGB imagery. The model incorporates the Convolutional Block Attention Module (CBAM), a dual attention mechanism that enhances channel and spatial feature discrimination by adaptively emphasizing salient information while suppressing irrelevant content. Furthermore, the CBAM attention module employs multiple global pooling strategies to enrich feature representation across varying spatial resolutions. Through comprehensive ablation studies, the optimal configuration was identified as early CBAM placement after DABou unit 5, using a reduction ratio of 2 and combined global max-min pooling, which significantly improved segmentation accuracy. DABAMNet achieved an accuracy of 0.9813 and an Intersection over Union (IoU) of 0.7291, outperforming four state-of-the-art CNN benchmarks. These results demonstrate the model’s robustness in complex agricultural scenes and its potential for real-time deployment in fruit detection and harvesting systems. Overall, these findings underscore the value of attention-based architectures for agricultural image segmentation and pave the way for broader applications in sustainable crop monitoring systems. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
22 pages, 2402 KiB  
Article
Influence of Organic Mulching Strategies on Apple Tree (Mallus domestica BORKH.) Development, Fruit Quality and Soil Enzyme Dynamics
by Ioana Maria Borza, Cristina Adriana Rosan, Daniela Gitea, Manuel Alexandru Gitea, Alina Dora Samuel, Carmen Violeta Iancu, Ioana Larisa Bene, Daniela Padilla-Contreras, Cristian Gabriel Domuta and Simona Ioana Vicas
Agronomy 2025, 15(9), 2021; https://doi.org/10.3390/agronomy15092021 - 22 Aug 2025
Abstract
Mulching is a sustainable agronomic practice that can improve soil quality and fruit characteristics in crops. This study investigated the influence of sheep wool mulch and a soil conditioner on growth, the accumulation of bioactive compounds, and soil enzymatic activity in apple orchards. [...] Read more.
Mulching is a sustainable agronomic practice that can improve soil quality and fruit characteristics in crops. This study investigated the influence of sheep wool mulch and a soil conditioner on growth, the accumulation of bioactive compounds, and soil enzymatic activity in apple orchards. A two-year field experiment (2023–2024) was conducted using three experimental methods: mulching with sheep wool (V2), application of a soil conditioner, corn starch-based polymer (V3), and a combination of sheep wool and corn starch-based polymer (V4) along with a control (V1). Tree growth parameters, fruit physicochemical properties, total phenolic and flavonoid content, and soil enzyme activities (dehydrogenase, catalase, phosphatase) were assessed. Data were analyzed using Principal Component Analysis (PCA) and Pearson’s correlation. PCA showed that the combined variant (V4) improved fruit size, weight, and bioactive compound content, while wool mulch alone (V2) was associated with higher fruit yield and better vegetative growth. Catalase activity correlated positively and consistently with bioactive compounds in both years, while phosphatase activity showed an intensified positive relationship in 2024. Dehydrogenase activity was negatively correlated with phenolic content in both seasons. Organic and integrated mulching practices can beneficially modulate both aboveground and belowground plant–soil interactions. The combined variant proved to be the most effective strategy, enhancing fruit nutritional quality and supporting sustainable apple orchard management. Full article
Show Figures

Figure 1

25 pages, 1559 KiB  
Article
Influence of Information Sources on Technology Adoption in Apple Production in China
by Linjia Yao, Gang Zhao, Changqing Yan, Amit Kumar Srivastava, Qi Tian, Ning Jin, Junjie Qu, Ling Yin, Ning Yao, Heidi Webber, Eike Luedeling and Qiang Yu
Agriculture 2025, 15(16), 1785; https://doi.org/10.3390/agriculture15161785 - 21 Aug 2025
Viewed by 141
Abstract
China holds the largest apple cultivation area globally, yet yields per hectare remain relatively low. Despite substantial government investment in modern orchard technologies, adoption remains limited among farmers. This study investigates the economic and sociological drivers of technology uptake, focusing on how information [...] Read more.
China holds the largest apple cultivation area globally, yet yields per hectare remain relatively low. Despite substantial government investment in modern orchard technologies, adoption remains limited among farmers. This study investigates the economic and sociological drivers of technology uptake, focusing on how information sources shape adoption behavior. Based on 382 farmer surveys across major apple-producing provinces, the study examines (1) farmers’ preferences for agricultural information sources, (2) the influence of demographic characteristics on those preferences, and (3) the differential effects of specific sources on the adoption of key technologies, including dwarf rootstocks and virus-free seedlings. Results show that agri-chemical dealers (ACDs) and farmer peers (FPs) are the most commonly used information channels. Access to advice from local experts (EXPs) significantly increases the likelihood of adopting dwarf rootstocks, while information from ACDs promotes the use of virus-free seedlings. In contrast, reliance on personal farming experience is negatively associated with technology uptake. These findings highlight the need to strengthen formal information dissemination systems and better integrate trusted local actors like ACDs and EXPs into agricultural extension. Targeted information delivery can improve adoption efficiency, promote evidence-based decision-making, and support the modernization and sustainability of China’s apple sector. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

15 pages, 1415 KiB  
Article
Cloud Point Extraction as a Green Method for the Extraction of Antioxidant Compounds from the Juice of Second-Grade Apples
by Maria-Ioanna Togantzi, Martha Mantiniotou, Dimitrios Kalompatsios, Vassilis Athanasiadis, Ioannis Giovanoudis and Stavros I. Lalas
Biomass 2025, 5(3), 48; https://doi.org/10.3390/biomass5030048 - 19 Aug 2025
Viewed by 114
Abstract
Every year, a substantial amount of food is discarded globally. A significant portion of this waste is composed of fruit by-products or fruits that do not meet consumer standards. Apples rank as the third most extensively produced fruit crop globally, generating substantial waste. [...] Read more.
Every year, a substantial amount of food is discarded globally. A significant portion of this waste is composed of fruit by-products or fruits that do not meet consumer standards. Apples rank as the third most extensively produced fruit crop globally, generating substantial waste. This study examined apples that did not meet food industry standards and were destined for disposal. The objective was to recover bioactive compounds from their juice using Cloud Point Extraction (CPE). Like other extraction methods, CPE isolates target compounds from the sample, enhancing recovery yield. A primary advantage of CPE is that it operates without requiring specialized equipment or hazardous reagents. Additional benefits include efficacy, simplicity, safety, and speed. Furthermore, a food-grade surfactant, lecithin, was used to encapsulate bioactive compounds, ensuring non-toxicity for both humans and the environment. After three CPE steps, we recovered 95.95% of the total polyphenols from second-grade apple juice (initial TPC: 540.36 mg GAE/L). The findings highlight CPE’s effectiveness for polyphenol extraction and for producing antioxidant-rich extracts. These extracts may be utilized as nutritional supplements, feed additives, and for nutraceutical or medicinal applications. Full article
Show Figures

Figure 1

19 pages, 4384 KiB  
Article
Dynamic Temperature-Responsive MW Pulsing for Uniform and Energy-Efficient Plant-Based Food Drying
by Mohammad U. H. Joardder and Azharul Karim
Energies 2025, 18(16), 4391; https://doi.org/10.3390/en18164391 - 18 Aug 2025
Viewed by 190
Abstract
This study conducts a simulation-based approach to improve microwave (MW) convective drying using a temperature-responsive pulse ratio (TRPR) method. Traditional fixed-time pulse ratio (TimePR) techniques often result in uneven heating and reduced product quality due to uncontrolled temperature spikes. To address this, a [...] Read more.
This study conducts a simulation-based approach to improve microwave (MW) convective drying using a temperature-responsive pulse ratio (TRPR) method. Traditional fixed-time pulse ratio (TimePR) techniques often result in uneven heating and reduced product quality due to uncontrolled temperature spikes. To address this, a physics-based model was developed using COMSOL Multiphysics 6.3, executed on a high-performance computing (HPC) platform. The TRPR algorithm dynamically adjusts MW ON/OFF cycles based on internal temperature feedback, maintaining the maximum point temperature below a critical threshold of 75 °C. The model geometry, food materials (apple) properties, and boundary conditions were defined to reflect realistic drying scenarios. Simulation results show that TRPR significantly improves temperature and moisture uniformity across the sample. The TRPR method showed superior thermal stability over time-based regulation, maintaining a lower maximum COV of 0.026 compared to 0.045. These values are also well below the COV range of 0.05–0.26 reported in recent studies. Moreover, the TRPR system maintained a constant microwave energy efficiency of 40.7% across all power levels, outperforming the time-based system, which showed lower and slightly declining efficiency from 36.18% to 36.29%, along with higher energy consumption without proportional thermal or moisture removal benefits. These findings highlight the potential of the temperature-responsive pulse ratio (TRPR) method to enhance drying performance, reduce energy consumption, and improve product quality in microwave-assisted food processing. This approach presents a scalable and adaptable solution for future integration into intelligent drying systems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

22 pages, 2293 KiB  
Article
Effect of the Combined Application of Aqueous Cabbage Seed Extract and Chitosan Solutions on the Shelf Life of Fresh-Cut Apple Cubes
by Despina Alexaki, Athanasios Gerasopoulos and Dimitrios Gerasopoulos
Horticulturae 2025, 11(8), 953; https://doi.org/10.3390/horticulturae11080953 - 12 Aug 2025
Viewed by 791
Abstract
Enzymatic browning is the negative color effect of polyphenol oxidase activity in cut fresh fruit products, which reduces their quality, shelf life, and marketability. To preserve the color after cutting, apple cubes were treated with aqueous cabbage seed extracts (ACEs) at 5–10% w [...] Read more.
Enzymatic browning is the negative color effect of polyphenol oxidase activity in cut fresh fruit products, which reduces their quality, shelf life, and marketability. To preserve the color after cutting, apple cubes were treated with aqueous cabbage seed extracts (ACEs) at 5–10% w:v seed–water ratios, adjusted to pH 4.0 and 6.0 and 1% chitosan added to the ACE before preservation at 7 °C for 0–10 days. Chromatometric readings (L*, a*, and b*) and visual color score were used for shelf life calculation. The ACE total phenolics and glucosinolate levels showed differences among the 5–10% and control groups. Based on color score, uncoated or coated (chitosan or ACE combined with chitosan) apple cubes reached marketing limit levels (score > 3/5) on day one, but apple cubes treated with 5 or 10% ACE alone did so on day four, which was considered the effective shelf life. These findings were further supported by FT-IR analysis. ACE modification to pH 6.0 was more effective at keeping the natural cut apple color than pH 4.0. ACE treatment (at 5 or 10%) without coating is regarded as a very promising natural agent for extending the shelf life of fresh-cut apples, which is a key attribute in their marketing. Full article
Show Figures

Graphical abstract

17 pages, 7998 KiB  
Article
The Effect of Apple and Pear Cultivars on In Vitro Fermentation with Human Faecal Microbiota
by Anna M. E. Hoogeveen, Christine A. Butts, Caroline C. Kim, Carel M. H. Jobsis, Shanthi G. Parkar, Halina M. Stoklosinski, Kevin H. Sutton, Patricia Davis, Duncan I. Hedderley, Jason Johnston and Pramod K. Gopal
Microorganisms 2025, 13(8), 1870; https://doi.org/10.3390/microorganisms13081870 - 11 Aug 2025
Viewed by 335
Abstract
Apples and pears are among the most popular and frequently consumed fruits worldwide. The polyphenol and dietary fibre components of these fruits are known to influence the gut microbiota and the subsequent human health outcomes. This study investigated the effects of New Zealand [...] Read more.
Apples and pears are among the most popular and frequently consumed fruits worldwide. The polyphenol and dietary fibre components of these fruits are known to influence the gut microbiota and the subsequent human health outcomes. This study investigated the effects of New Zealand grown apples and pears with differing polyphenol contents on the structure and function of the human gut microbiota. Five apple and two pear cultivars underwent in vitro human digestion and microbial fermentation. Samples taken at 0 and 18 h were analysed for changes in pH, microbial composition, and organic acid production. The change in pH after faecal fermentation was influenced by the type of fruit (apple or pear), with lower pH being observed in the apples. Significant apple or pear cultivar effects were observed for the gut microbiome and organic acid production. The apple cultivar ‘Golden Hornet’ produced the least butyrate and the greatest microbial alpha diversity, while the pear ‘PremP009’ showed greater butyrate production with increases in a butyrogenic species (Acidaminococcus intestini). Further studies are needed to investigate the effect of cultivar and type of fruit on nutrient absorption and microbial fermentation and the impact of these on human health. Full article
(This article belongs to the Collection Feature Papers in Gut Microbiota Research)
Show Figures

Figure 1

15 pages, 3935 KiB  
Article
Spatiotemporal Evolution of Soil Quality Under Long-Term Apple Cultivation in the Taihang Mountains, China
by Yang Liu, Xingrui Zhang, Zhuo Li, Xiaoyi Liang, Meidan Chi and Feng Ge
Agronomy 2025, 15(8), 1922; https://doi.org/10.3390/agronomy15081922 - 9 Aug 2025
Viewed by 274
Abstract
The present study aims to investigate the impact of long-term apple production and orchard management practices on soil quality in gneiss mountainous regions. The microbial community (as measured by phospholipid fatty acid analysis) and soil physicochemical properties (bulk density, organic matter, nitrogen, phosphorus, [...] Read more.
The present study aims to investigate the impact of long-term apple production and orchard management practices on soil quality in gneiss mountainous regions. The microbial community (as measured by phospholipid fatty acid analysis) and soil physicochemical properties (bulk density, organic matter, nitrogen, phosphorus, and potassium) were determined in soil samples collected from apple plantations of various ages (0-, 8-, 22-, 29-, and 36-year) in Gangdi Village, Xingtai, China. The soil samples were collected from depths of 0–20, 20–40, and 40–60 cm. The findings of the present study demonstrate that with increasing duration of apple cultivation, the soil bulk density and porosity decreased and increased, respectively. Initially, the content of soil nutrients such as organic matter, nitrogen, and phosphorus increased, eventually stabilizing, accompanied by a decline in pH. The soil microbial biomass significantly increased, accompanied by discernible alterations in the composition of the microbial community. Organic matter was found to be the primary factor influencing the structure and diversity of microbial communities. It is evident from forward analysis that the soil Gram-negative and actinomycete communities were predominantly influenced by soil pH, bulk density, and total phosphorus. In contrast, the Gram-positive and eukaryote communities were less affected by soil environmental factors. Notably, the soil bacterial community presented a greater degree of sensitivity to the duration of apple cultivation than did the fungal community. A marked vertical difference in the soil quality indicators was evident, with the increase in surface soil quality exceeding that of deeper soil depths. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

15 pages, 1541 KiB  
Communication
Effect of Non-Thermal Treatments of Clear Apple Juice on Exogenous Pectinases
by Alberto Zavarise, Alema Puzović, Andres Felipe Moreno Barreto, Dario Pavon Vargas, Manfred Goessinger, Maja Mikulič Petkovšek, Massimiliano Rinaldi, Christian Haselmair-Gosch, Luca Cattani and Heidi Halbwirth
Beverages 2025, 11(4), 113; https://doi.org/10.3390/beverages11040113 - 6 Aug 2025
Viewed by 351
Abstract
Pulsed electric field (PEF) and high-pressure processing (HPP) are non-thermal treatments, developed to ensure preservation of food products whilst maintaining taste and valuable nutrients. In this study, we investigated their potential for the inactivation of 3 commercial exogenous pectinases (polygalacturonase, pectin transeliminase, pectin [...] Read more.
Pulsed electric field (PEF) and high-pressure processing (HPP) are non-thermal treatments, developed to ensure preservation of food products whilst maintaining taste and valuable nutrients. In this study, we investigated their potential for the inactivation of 3 commercial exogenous pectinases (polygalacturonase, pectin transeliminase, pectin esterase) commonly used in juice processing for clarification of juices. The inactivation of these enzymes after processing is mandatory by European law. Clear apple juice was treated with both non-thermal processing methods, as well as with thermal pasteurization as the standard method. For HPP, 3 pressures (250, 450, and 600 MPa) and different holding times (from 2 to 12 min) were tested. For PEF, 3 electric field intensities (10, 13, and 15 kV/cm) and different specific energy values (from 121 to 417 kJ/kg). Standard thermal pasteurization resulted in a complete inactivation of all tested pectinases. HPP treatment only showed marginal effects on polygalacturonase and pectin transeliminase at the highest pressure and holding times, which are beyond levels used in industrial settings. For PEF, dependence upon high electric field strength and specific energy values was evident; however, here too, the effect was only moderate at the levels attainable within the scope of this study. Assuming a continued linear relationship, usable results could be achieved in an industrial setting, albeit under more extreme conditions. Full article
(This article belongs to the Section Beverage Technology Fermentation and Microbiology)
Show Figures

Graphical abstract

14 pages, 263 KiB  
Essay
The TV Series Severance as Speculative Organizational Critique: Control, Consent, and Identity at Work
by Dag Øivind Madsen and Marisa Alise Madsen
Adm. Sci. 2025, 15(8), 305; https://doi.org/10.3390/admsci15080305 - 5 Aug 2025
Viewed by 609
Abstract
The Apple TV+ series Severance (2022–present) offers a dystopian portrayal of workplace life that intensifies real-world dynamics of control, boundary management, and identity regulation. This paper analyzes Severance as a speculative case study in organizational theory, treating the show’s fictional world as a [...] Read more.
The Apple TV+ series Severance (2022–present) offers a dystopian portrayal of workplace life that intensifies real-world dynamics of control, boundary management, and identity regulation. This paper analyzes Severance as a speculative case study in organizational theory, treating the show’s fictional world as a site for conceptual reflection. Drawing on critical management studies and labor process theory, we examine how mechanisms of control, the regulation of work–life boundaries, and the fragmentation of autonomy and subjectivity are depicted in extreme form. We argue that fiction—particularly speculative satire—can serve as a tool of theoretical production, not merely illustration. Rather than restating familiar critiques, Severance allows us to see workplace norms with renewed clarity, surfacing the moral and psychological consequences of surveillance, coercion, and instrumentalized consent. A methodological note outlines our interpretive approach to narrative fiction, and a discussion of implications situates the analysis within broader debates about organizational ethics, resilience, and critique. Full article
27 pages, 3470 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022
by Dejun Tan, Juanjuan Cheng, Jin Yu, Qian Wang and Xiaonan Chen
Agriculture 2025, 15(15), 1680; https://doi.org/10.3390/agriculture15151680 - 2 Aug 2025
Viewed by 427
Abstract
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, [...] Read more.
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, and a panel Tobit model to evaluate the carbon footprint, APCEE, and its determinants in China’s two major production regions from 2003 to 2022. The results reveal that: (1) Producing one ton of apples in China results in 0.842 t CO2e emissions. Land carbon intensity and total carbon emissions peaked in 2010 (28.69 t CO2e/ha) and 2014 (6.52 × 107 t CO2e), respectively, exhibiting inverted U-shaped trends. Carbon emissions from various production areas show significant differences, with higher pressure on carbon emission reduction in the Loess Plateau region, especially in Gansu Province. (2) The APCEE in China exhibits a W-shaped trend (mean: 0.645), with overall low efficiency loss. The Bohai Bay region outperforms the Loess Plateau and national averages. (3) The structure of the apple industry, degree of agricultural mechanization, and green innovation positively influence APCEE, while the structure of apple cultivation, education level, and agricultural subsidies negatively impact it. Notably, green innovation and agricultural subsidies display lagged effects. Moreover, the drivers of APCEE differ significantly between the two major production regions. These findings provide actionable pathways for the green and low-carbon transformation of China’s apple industry, emphasizing the importance of spatially tailored green policies and technology-driven decarbonization strategies. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

21 pages, 2982 KiB  
Article
Antioxidant Activity of Annurca Apple By-Products at Different Ripening Stages: A Sustainable Valorization Approach
by Pasquale Perrone, Sara Palmieri, Marina Piscopo, Gennaro Lettieri, Fabiola Eugelio, Federico Fanti and Stefania D’Angelo
Antioxidants 2025, 14(8), 941; https://doi.org/10.3390/antiox14080941 - 30 Jul 2025
Cited by 1 | Viewed by 440
Abstract
This study explores the sustainable valorization of Annurca apple by-products by examining the polyphenolic content and antioxidant activity of peel, flesh, and core at two ripening stages. Ripening significantly enhanced the concentration of bioactive compounds, particularly in the peel, where total polyphenols increased [...] Read more.
This study explores the sustainable valorization of Annurca apple by-products by examining the polyphenolic content and antioxidant activity of peel, flesh, and core at two ripening stages. Ripening significantly enhanced the concentration of bioactive compounds, particularly in the peel, where total polyphenols increased from 124.4 to 423.3 mg of CAE/100 g FW, flavonoids from 18.2 to 51.3 mg of quercetin equivalents, and ortho-diphenols from 11.9 to 36.1 mg of CAE. The flesh and core showed more moderate increases. Antioxidant activity, assessed using five in vitro assays (DPPH, ABTS, FRAP, TAC, and H2O2), was consistently highest in the peel, especially in the ABTS assay. Although the flesh had fewer phenolics, it showed a 1.5-fold increase during ripening, accompanied by improved antioxidant performance. The core also proved notable antioxidant potential, particularly in ripe samples. UHPLC-MS/MS analysis identified 11 phenolic compounds, showing tissue- and ripening-specific distribution. SDS-PAGE revealed a ripening-related increase in Thaumatin-like Protein 1a (TLP1a), especially in the core and flesh. Its association with tissues showing high antioxidant ability suggests a possible role in enhancing the bioactivity of polyphenol-rich extracts. From an agri-food waste valorization perspective, the peel and core represent promising sources of bioactive compounds for developing functional foods and nutraceuticals. Full article
Show Figures

Graphical abstract

16 pages, 1196 KiB  
Article
Sustainable Bioconversion of Cashew Apple Bagasse Hemicellulosic Hydrolysate into Xylose Reductase and Xylitol by Candida tropicalis ATCC 750: Impact of Aeration and Fluid Dynamics
by Juliana de França Serpa, Franciandro Dantas dos Santos, Carlos Eduardo Alves Soares, Benevides Costa Pessela and Maria Valderez Ponte Rocha
Appl. Microbiol. 2025, 5(3), 75; https://doi.org/10.3390/applmicrobiol5030075 - 30 Jul 2025
Viewed by 288
Abstract
This study aimed to evaluate the production of xylose reductase (XR), an enzyme responsible for converting xylose into xylitol, by Candida tropicalis ATCC 750 using hemicellulosic hydrolysate from cashew apple bagasse (CABHM) as a low-cost carbon source. The effects of temperature, aeration, and [...] Read more.
This study aimed to evaluate the production of xylose reductase (XR), an enzyme responsible for converting xylose into xylitol, by Candida tropicalis ATCC 750 using hemicellulosic hydrolysate from cashew apple bagasse (CABHM) as a low-cost carbon source. The effects of temperature, aeration, and fluid dynamics on XR biosynthesis were also investigated. The highest XR production (1.53 U mL−1) was achieved at 30 °C, with 8.3 g·L−1 of xylitol produced by the yeast under microaerobic conditions, demonstrating that aeration and fluid dynamics are important factors in this process. Cellular metabolism and enzyme production decreased at temperatures above 35 °C. The maximum enzymatic activity was observed at pH 7.0 and 50 °C. XR is a heterodimeric protein with a molecular mass of approximately 30 kDa. These results indicate that CABHM is a promising substrate for XR production by C. tropicalis, contributing to the development of enzymatic bioprocesses for xylitol production from lignocellulosic biomass. This study also demonstrates the potential of agro-industrial residues as sustainable feedstocks in biorefineries, aligning with the principles of a circular bioeconomy. Full article
Show Figures

Figure 1

12 pages, 659 KiB  
Article
Classification of Apples (Malus × domestica borkh.) According to Geographical Origin, Variety and Production Method Using Liquid Chromatography Mass Spectrometry and Random Forest
by Jule Hansen, Iris Fransson, Robbin Schrieck, Christof Kunert and Stephan Seifert
Foods 2025, 14(15), 2655; https://doi.org/10.3390/foods14152655 - 29 Jul 2025
Viewed by 447
Abstract
Apples are one of the most popular fruits in Germany, valued for their regional availability and health benefits. When deciding which apple to buy, several characteristics are important to consumers, including the taxonomic variety, organic cultivation and regional production. To verify that these [...] Read more.
Apples are one of the most popular fruits in Germany, valued for their regional availability and health benefits. When deciding which apple to buy, several characteristics are important to consumers, including the taxonomic variety, organic cultivation and regional production. To verify that these characteristics are correctly declared, powerful analytical methods are required. In this study, ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-ToF-MS) is applied in combination with random forest to 193 apple samples for the analysis of various authentication issues. Accuracies of 93.3, 85.5, 85.6 and 90% were achieved for distinguishing between German and non-German, North and South German, organic and conventional apples and for six different taxonomic varieties. Since the classification models largely use different parts of the data, which is shown by variable selection, this method is very well suited to answer different authentication issues with one analytical approach. Full article
Show Figures

Figure 1

24 pages, 18761 KiB  
Article
The Influence of Recipe Modification and the Technological Method on the Properties of Multigrain Snack Bars
by Hanna Kowalska, Ewelina Masiarz, Elżbieta Hać-Szymańczuk, Anna Żbikowska, Agata Marzec, Agnieszka Salamon, Mariola Kozłowska, Anna Ignaczak, Małgorzata Chobot, Wioletta Sobocińska and Jolanta Kowalska
Molecules 2025, 30(15), 3160; https://doi.org/10.3390/molecules30153160 - 29 Jul 2025
Viewed by 509
Abstract
This study aimed to assess the use of selected raw materials, such as whole-grain oat flakes, pumpkin seeds, sunflower seeds, and flaxseeds, to obtain bars using baking and drying methods. Modifying the bars’ composition involved selecting the fibre preparation, replacing water with NFC [...] Read more.
This study aimed to assess the use of selected raw materials, such as whole-grain oat flakes, pumpkin seeds, sunflower seeds, and flaxseeds, to obtain bars using baking and drying methods. Modifying the bars’ composition involved selecting the fibre preparation, replacing water with NFC juice, and using fresh apple juice and apple pomace. The Psyllium fibre preparation, also in the form of a mixture with apple fibre, was the most useful in dough cohesion and the quality of the bars. Baked bars were characterised by higher sensory quality than those obtained by drying. Microwave–convection drying was a good alternative to baking, primarily due to the lower temperature resulting in a lower acrylamide content and comparable product quality. The basic grain ingredients and fibre preparations mainly shaped the nutritional and energy value and the sensory and microbiological quality. Modifying the recipe using NFC or fresh juice and apple pomace allowed the bars to develop new properties and quality characteristics. The use of NFC juices resulted in a reduction in the pH of the bars, which is associated with a higher microbiological quality of the bars. All bars had low acrylamide content, significantly lower than the permissible level. Using fresh pomace or fibre preparations made from by-products is a possibility to increase the fibre content in the bars and a method of managing by-products. Full article
Show Figures

Figure 1

Back to TopTop