Influence of Organic Mulching Strategies on Apple Tree (Mallus domestica BORKH.) Development, Fruit Quality and Soil Enzyme Dynamics
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Mulching with Sheep Wool and Applying Corn Starch-Based Polymer
2.3. Production and Physico-Chemical Parameters of Fruit Quality
2.3.1. Fruit Production
2.3.2. Fruit Quality Indices
2.3.3. Determination of Bioactive Compounds of Apple Fruits
2.4. Tree Growth Measurements and Determinations
2.5. Soil Enzymatic Analyses
2.6. Statistical and Correlation Analysis
3. Results
3.1. Fruit Yield
3.2. Physical and Chemical Parameters of Fruit Quality
3.3. Measurements and Growth Assessments of the Trees
3.4. Soil Enzymatic Activity Profile
3.5. Correlation Analysis
3.6. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AcP | Soil acid phosphatase |
AlP | Alkaline phosphatase activity |
ANOVA | One-way analysis of variance |
Cat | Catalase activity |
DEH | Dehydrogenase activity |
FLAV | Total flavonoid content |
HSD | Honest Significant Difference |
PC | Principal Component Analysis |
pNP | p-nitrophenol |
SSC | Soluble solid content |
TA | Titratable acidity |
TCSA | Trunk cross-sectional area |
TPh | Total phenol content |
V1 | Control group |
V2 | Application of sheep wool |
V3 | Application of a soil conditioner, corn starch-based polymer |
V4 | A combination of sheep wool and corn starch-based polymer |
References
- Wang, A.; Zhang, W.; Wei, X. A Review on Weed Detection Using Ground-Based Machine Vision and Image Processing Techniques. Comput. Electron. Agric. 2019, 158, 226–240. [Google Scholar] [CrossRef]
- Seelan, S.K.; Laguette, S.; Casady, G.M.; Seielstad, G.A. Remote Sensing Applications for Precision Agriculture: A Learning Community Approach. Remote Sens. Environ. 2003, 88, 157–169. [Google Scholar] [CrossRef]
- Christensen, S.; Søgaard, H.T.; Kudsk, P.; Nørremark, M.; Lund, I.; Nadimi, E.S.; Jørgensen, R. Site-Specific Weed Control Technologies. Weed Res. 2009, 49, 233–241. [Google Scholar] [CrossRef]
- Dara Guccione, G.; Giorgio, S. Technological Innovation, Agricultural Mechanization and the Impact on the Environment: Sod Seeding and Minimum Tillage. New Medit 2001, 12, 29–36. [Google Scholar]
- Ribas, P.P.; Matsumura, A.T.S. A química dos agrotóxicos: Impacto sobre a saúde e meio ambiente. Rev. Lib. 2009, 10, 149–158. [Google Scholar] [CrossRef]
- Peng, H.; Lei, T.; Jiang, Z.; Horton, R. A Method for Estimating Maximum Static Rainfall Retention in Pebble Mulches Used for Soil Moisture Conservation. J. Hydrol. 2016, 537, 346–355. [Google Scholar] [CrossRef]
- Mohamed, H.I.; Akladious, S.A.; Ashry, N.A. Evaluation of Water Stress Tolerance of Soybean Using Physiological Parameters and Retrotransposon-Based Markers. Gesunde Pflanz. 2018, 70, 205–215. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Ahmad, I.; Basit, A.; Abd El-Lateef, H.M.; Yasir, M.; Tanveer Shah, S.; Ullah, I.; Elsayed Mohamed Mohamed, M.; Ali, I.; Ali, F.; et al. Effect of Azospirillum and Azotobacter Species on the Performance of Cherry Tomato Under Different Salinity Levels. Gesunde Pflanz. 2022, 74, 487–499. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Mohamed, H.I.; Sofy, M.R. Role of Ascorbic Acid, Glutathione and Proline Applied as Singly or in Sequence Combination in Improving Chickpea Plant Through Physiological Change and Antioxidant Defense Under Different Levels of Irrigation Intervals. Molecules 2020, 25, 1702. [Google Scholar] [CrossRef]
- Merwin, I.A. Orchard-Floor Management Systems. In Apples: Botany, Production and Uses; CABI Publishing: Wallingford, UK, 2003; pp. 303–318. ISBN 978-0-85199-592-2. [Google Scholar]
- Guerra, B.; Steenwerth, K. Influence of Floor Management Technique on Grapevine Growth, Disease Pressure, and Juice and Wine Composition: A Review. Am. J. Enol. Vitic. 2012, 63, 149–164. [Google Scholar] [CrossRef]
- Cavender, G.; Liu, M.; Hobbs, D.; Frei, B.; Strik, B.; Zhao, Y. Effects of Different Organic Weed Management Strategies on the Physicochemical, Sensory, and Antioxidant Properties of Machine-Harvested Blackberry Fruits. J. Food Sci. 2014, 79, S2107–S2116. [Google Scholar] [CrossRef]
- Granatstein, D.; Sánchez, E. Research Knowledge and Needs for Orchard Floor Management in Organic Tree Fruit Systems. Int. J. Fruit Sci. 2009, 9, 257–281. [Google Scholar] [CrossRef]
- Granatstein, D.; Wiman, M.; Kirby, E.; Mullinix, K. Sustainability Trade-Offs in Organic Orchard Floor Management. Acta Hortic. 2010, 873, 115–122. [Google Scholar] [CrossRef]
- Neilsen, G.H.; Hogue, E.J.; Forge, T.; Neilsen, D. Mulches and Biosolids Affect Vigor, Yield and Leaf Nutrition of Fertigated High Density Apple. HortScience 2003, 38, 41–45. [Google Scholar] [CrossRef]
- Hammermeister, A.M. Organic Weed Management in Perennial Fruits. Sci. Hortic. 2016, 208, 28–42. [Google Scholar] [CrossRef]
- Gan, Y.; Siddique, K.H.M.; Turner, N.C.; Li, X.-G.; Niu, J.-Y.; Yang, C.; Liu, L.; Chai, Q. Ridge-Furrow Mulching Systems—An Innovative Technique for Boosting Crop Productivity in Semiarid Rain-Fed Environments. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2013; Volume 118, pp. 429–476. ISBN 978-0-12-405942-9. [Google Scholar]
- Zhou, J.; Wang, C.; Zhang, H.; Dong, F.; Zheng, X.; Gale, W.; Li, S. Effect of Water Saving Management Practices and Nitrogen Fertilizer Rate on Crop Yield and Water Use Efficiency in a Winter Wheat–Summer Maize Cropping System. Field Crops Res. 2011, 122, 157–163. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Ullah, I.; Sajid, M.; Basit, A.; Shehata, W.F.; Shah, S.T.; Alturki, S.M.; Ullah, A.; Aziz, I.; Ali, F. Influence of Maturity Stages on Postharvest Physico-Chemical Properties of Grapefruit (Citrus Paradisi Var. ‘Shamber Tarnab’) Under Different Storage Durations. Not. Bot. Horti Agrobot. 2022, 50, 12620. [Google Scholar] [CrossRef]
- Chalker-Scott, L. Impact of Mulches on Landscape Plants and the Environment—A Review. J. Environ. Hortic. 2007, 25, 239–249. [Google Scholar] [CrossRef]
- Saleh, S.; Abdrabbo, M.A.A.; Hashem, F.A. Eggplant Production Under Deficit Irrigation and Polyethylene Mulch. Egypt. J. Appl. Sci. 2017, 32, 148–161. [Google Scholar]
- Yu, Y.-Y.; Turner, N.C.; Gong, Y.-H.; Li, F.-M.; Fang, C.; Ge, L.-J.; Ye, J.-S. Benefits and Limitations to Straw- and Plastic-Film Mulch on Maize Yield and Water Use Efficiency: A Meta-Analysis Across Hydrothermal Gradients. Eur. J. Agron. 2018, 99, 138–147. [Google Scholar] [CrossRef]
- Bhardwaj, R.L. Effect of Mulching on Crop Production Under Rainfed Condition—A Review. Agric. Revolut. 2013, 34, 188–197. [Google Scholar] [CrossRef]
- Jan, B.; Bhat, T.A.; Sheikh, T.A.; Wani, O.A.; Bhat, M.A.; Nazir, A.; Fayaz, S.; Mushtaq, T.; Farooq, A.; Wani, S.; et al. Agronomic Bio-Fortification of Rice and Maize with Iron and Zinc: A Review. IRJPAC 2020, 21, 28–37. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.R.; Shalaby, T.A.; Ramadan, K.M.A.; Alkhateeb, A.A.; Ghazzawy, H.S. Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Wang, S.; Tian, X.; Liu, T.; Lu, X.; You, D.; Li, S. Irrigation, Straw, and Nitrogen Management Benefits Wheat Yield and Soil Properties in a Dryland Agro-Ecosystem. Agron. J. 2014, 106, 2193–2201. [Google Scholar] [CrossRef]
- Kun, Á.; Simon, B.; Zalai, M.; Kolozsvári, I.; Bozán, C.; Jancsó, M.; Körösparti, J.T.; Kovács, G.P.; Gyuricza, C.; Bakti, B. Effect of Mulching on Soil Quality in an Agroforestry System Irrigated with Reused Water. Agronomy 2023, 13, 1622. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Popescu, C.; Stanescu, M.D. Eco-Friendly Processing of Wool and Sustainable Valorization of This Natural Bioresource. Sustainability 2024, 16, 4661. [Google Scholar] [CrossRef]
- Camilli, F.; Focacci, M.; Dal Prà, A.; Bortolu, S.; Ugolini, F.; Vagnoni, E.; Duce, P. Turning Waste Wool into a Circular Resource: A Review of Eco-Innovative Applications in Agriculture. Agronomy 2025, 15, 446. [Google Scholar] [CrossRef]
- Dannehl, D.; Suhl, J.; Ulrichs, C.; Schmidt, U. Evaluation of Substitutes for Rock Wool as Growing Substrate for Hydroponic Tomato Production. J. Appl. Bot. Food Qual. 2015, 88, 68–77. [Google Scholar] [CrossRef]
- Ferby, V.; Kopta, T.; Komorowska, M.; Fidurski, M. Evaluation of Alternative Substrates for Hydroponics Based on Biological Parameters of Leaf Lettuce (Lactuca sativa L.) and Its Stress Response. Folia Hortic. 2023, 35, 77–90. [Google Scholar] [CrossRef]
- Gorecki, R.S.; Gorecki, M.T. Utilization of Waste Wool as Substrate Amendment in Pot Cultivation of Tomato, Sweet Pepper, and Eggplant. Pol. J. Environ. Stud. 2010, 19, 1083–1087. [Google Scholar]
- Butcaru, A.C.; Stanica, F. Cultivation Technology of Organic Roses for Petal Production. Available online: https://horticulturejournal.usamv.ro/index.php/scientific-papers/issues (accessed on 11 August 2025).
- Duppong, L.M.; Delate, K.; Liebman, M.; Horton, R.; Romero, F.; Kraus, G.; Petrich, J.; Chowdbury, P.K. The Effect of Natural Mulches on Crop Performance, Weed Suppression and Biochemical Constituents of Catnip and St. John’s Wort. Crop Sci. 2004, 44, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Zheljazkov, V.D. Assessment of Wool Waste and Hair Waste as Soil Amendment and Nutrient Source. J. Environ. Qual. 2005, 34, 2310–2317. [Google Scholar] [CrossRef] [PubMed]
- Palla, M.; Turrini, A.; Cristani, C.; Bonora, L.; Pellegrini, D.; Primicerio, J.; Grassi, A.; Hilaj, F.; Giovannetti, M.; Agnolucci, M. Impact of Sheep Wool Residues as Soil Amendments on Olive Beneficial Symbionts and Bacterial Diversity. Bioresour. Bioprocess. 2022, 9, 45. [Google Scholar] [CrossRef]
- Gitea, M.A.; Borza, I.M.; Domuta, C.G.; Gitea, D.; Rosan, C.A.; Vicas, S.I.; Pasca, M.B. A Sustainable Approach Based on Sheep Wool Mulch and Soil Conditioner for Prunus Domestica (Stanley Variety) Trees Aimed at Increasing Fruit Quality and Productivity in Drought Conditions. Sustainability 2024, 16, 7287. [Google Scholar] [CrossRef]
- Balawejder, M.; Matłok, N.; Piechowiak, T.; Szostek, M.; Kapusta, I.; Niemiec, M.; Komorowska, M.; Wróbel, M.; Mudryk, K.; Szeląg-Sikora, A.; et al. The Modification of Substrate in the Soilless Cultivation of Raspberries (Rubus Idaeus L.) as a Factor Stimulating the Biosynthesis of Selected Bioactive Compounds in Fruits. Molecules 2022, 28, 118. [Google Scholar] [CrossRef]
- Mubarak, A.R.; Ragab, O.E.; Ali, A.A.; Hamed, N.E. Short-Term Studies on Use of Organic Amendments for Amelioration of a Sandy Soil. Afr. J. Soil Sci. 2009, 4, 621–627. [Google Scholar]
- Girotto, O.S.; Furlan, O.O.; Moretti Junior, R.C.; Goulart, R.D.A.; Baldi Junior, E.; Barbalho-Lamas, C.; Fornari Laurindo, L.; Barbalho, S.M. Effects of Apples (Malus Domestica) and Their Derivatives on Metabolic Conditions Related to Inflammation and Oxidative Stress and an Overview of by-Products Use in Food Processing. Crit. Rev. Food Sci. Nutr. 2025, 65, 3785–3816. [Google Scholar] [CrossRef]
- Berchez, O. Soils of Romania. Cernisols; University of Oradea: Oradea, Romania, 2017; ISBN 978-606-10-1880-2. [Google Scholar]
- Mattiello, S.; Guzzini, A.; Del Giudice, A.; Santulli, C.; Antonini, M.; Lupidi, G.; Gunnella, R. Physico-Chemical Characterization of Keratin from Wool and Chicken Feathers Extracted Using Refined Chemical Methods. Polymers 2022, 15, 181. [Google Scholar] [CrossRef]
- Sharma, S.C.; Sahoo, A.; Chand, R. Potential Use of Waste Wool in Agriculture: An Overview. Indian J. Small Rumin. 2019, 25, 1. [Google Scholar] [CrossRef]
- Zoccola, M.; Montarsolo, A.; Mossotti, R.; Patrucco, A.; Tonin, C. Green Hydrolysis as an Emerging Technology to Turn Wool Waste into Organic Nitrogen Fertilizer. Waste Biomass Valorization 2015, 6, 891–897. [Google Scholar] [CrossRef]
- The European Commission. Commission Delegated Regulation (EU) 2023/2429 of 17 August 2023. Off. J. Eur. Union 2023, 1–77. Available online: http://data.europa.eu/eli/reg_del/2023/2429/oj (accessed on 20 August 2025).
- Cetin, B.E.; Saraçoğlu, O. Effects of Different Maturity Stages and Fruit Parts on Quality Traits of Plum (Prunus Domestica) Fruits. Erwerbs-Obstbau 2023, 65, 1069–1077. [Google Scholar] [CrossRef]
- Smanalieva, J.; Iskakova, J.; Oskonbaeva, Z.; Wichern, F.; Darr, D. Determination of Physicochemical Parameters, Phenolic Content, and Antioxidant Capacity of Wild Cherry Plum (Prunus divaricata Ledeb.) from the Walnut-Fruit Forests of Kyrgyzstan. Eur. Food Res. Technol. 2019, 245, 2293–2301. [Google Scholar] [CrossRef]
- Ilhan, G. Sensory Evaluation, Biochemical, Bioactive and Antioxidant Properties in Fruits of Wild Blackthorn (Prunus Spinosa L.) Genotypes from Northeastern Türkiye. Horticulturae 2023, 9, 1052. [Google Scholar] [CrossRef]
- Hajiesmaeili, E.; Danaee, E. Evaluation of the Effect of Postharvest Salicylic Acid and Calcium Chloride Treatment on the Quality and Storage Life of Nectarine Fruit (Prunus persica L. Batsch). Appl. Fruit Sci. 2024, 66, 495–503. [Google Scholar] [CrossRef]
- Zezulová, E.; Ondrášek, I.; Kiss, T.; Nečas, T. Qualitative and Nutritional Characteristics of Plum Cultivars Grown on Different Rootstocks. Horticulturae 2022, 8, 1123. [Google Scholar] [CrossRef]
- Narandžić, T.; Ljubojević, M. Autochthonous Cherry Rootstock Germplasm in the Context of Sustainable Sweet Cherry Production. Horticulturae 2022, 9, 37. [Google Scholar] [CrossRef]
- Mestre, L.; Reig, G.; Betrán, J.A.; Pinochet, J.; Moreno, M.Á. Influence of Peach–Almond Hybrids and Plum-Based Rootstocks on Mineral Nutrition and Yield Characteristics of ‘Big Top’ Nectarine in Replant and Heavy-Calcareous Soil Conditions. Sci. Hortic. 2015, 192, 475–481. [Google Scholar] [CrossRef]
- Wojewódzki, P.; Lemanowicz, J.; Debska, B.; Haddad, S.A. Soil Enzyme Activity Response Under the Amendment of Different Types of Biochar. Agronomy 2022, 12, 569. [Google Scholar] [CrossRef]
- Casida, L.E.; Klein, D.A.; Santoro, T. Soil Dehydrogenase Activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Johnson, J.L.; Temple, K.L. Some Variables Affecting the Measurement of “Catalase Activity” in Soil. Soil Sci. Soc. Am. J. 1964, 28, 207–209. [Google Scholar] [CrossRef]
- Samuel, A.; Domuţa, C.; Şandor, M.; Vuşcan, A.; Brejea, R. Long Term Effects of Agricultural Systems on Soil Phosphatase Activities. Rom. Agric. Res. 2011, 28, 157–163. [Google Scholar]
- Butkeviciute, A.; Viskelis, J.; Viskelis, P.; Liaudanskas, M.; Janulis, V. Changes in the Biochemical Composition and Physicochemical Properties of Apples Stored in Controlled Atmosphere Conditions. Appl. Sci. 2021, 11, 6215. [Google Scholar] [CrossRef]
- Muñoz, K.; Thiele-Bruhn, S.; Kenngott, K.G.J.; Meyer, M.; Diehl, D.; Steinmetz, Z.; Schaumann, G.E. Effects of Plastic Versus Straw Mulching Systems on Soil Microbial Community Structure and Enzymes in Strawberry Cultivation. Soil Syst. 2022, 6, 21. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, H.; Liang, M.; Wu, Y.; Zhao, Z.; Li, Y.; Liu, G.; Xue, S. Kinetic Parameters of Soil Enzymes and Temperature Sensitivity Under Different Mulching Practices in Apple Orchards. Agronomy 2025, 15, 617. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Q.; Liu, C.; Ding, Y.; Liu, L.; Tian, Y.; Wu, X.; Li, H.; Awasthi, M.K.; Zhao, Z. Mulching Practices Alter Soil Microbial Functional Diversity and Benefit to Soil Quality in Orchards on the Loess Plateau. J. Environ. Manag. 2020, 271, 110985. [Google Scholar] [CrossRef]
- Góngora, C.E.; Tapias, J.; Jaramillo, J.; Medina, R.; González, S.; Restrepo, T.; Casanova, H.; Benavides, P. A Novel Caffeine Oleate Formulation as an Insecticide to Control Coffee Berry Borer, Hypothenemus Hampei, and Other Coffee Pests. Agronomy 2023, 13, 1554. [Google Scholar] [CrossRef]
Horizon | Ap | AB | Bt | CB | Cg |
---|---|---|---|---|---|
Depth (cm) | 0–29 | 29–45 | 45–68 | 68–110 | 110–151 |
Coarse sand (2–0.2 mm) | 0.8 | 0.2 | 0.2 | 0.1 | 0.4 |
Fine sand (0.2–0.02 mm) | 53.2 | 54.1 | 50.8 | 53.8 | 55.2 |
Silt (0.02–0.002 mm) | 18.7 | 2.0 | 22.0 | 20.2 | 24.8 |
Clay (<0.002 mm) | 23.7 | 24.7 | 26.9 | 25.9 | 19.6 |
Texture | LL | LL | LL | LL | SF |
pH | 7.2 | 7.4 | 7.6 | 8.2 | 8.6 |
Humus | 3.1 | 2.8 | 1.6 | 0.4 | - |
Carbonates | 1.2 | 1.4 | 4.8 | 5.6 | 13.1 |
Phosphorus pentoxide (ppm) | 105 | 96 | - | - | - |
Potassium oxide (ppm) | 350 | 310 | 302 | 287 | 116 |
Bulk density (g/cm3) | 1.22 | 1.23 | 1.34 | 1.38 | 1.42 |
Total porosity (%) | 54.1 | 54.3 | 49.6 | 48.1 | 46.8 |
Samples | Fruit Production kg/Tree | Fruit Production tons/ha | Quality I % | Quality II % |
---|---|---|---|---|
2023 | ||||
V1 | 24.24 ± 0.71 a | 30.30 ± 0.90 a | 87.64 | 12.36 |
V2 | 34.16 ± 0.66 c | 42.70 ± 0.76 c | 92.12 | 7.88 |
V3 | 26.41 ± 0.45 b | 33.01 ± 0.56 b | 89.43 | 10.57 |
V4 | 37.42 ± 0.66 d | 46.77 ± 0.82 d | 94.17 | 5.83 |
2024 | ||||
V1 | 25.44 ± 0.4 a | 31.80 ± 1 a | 86.12 | 13.88 |
V2 | 36.25 ± 0.3 c | 45.31 ± 0.5 c | 94.16 | 5.84 |
V3 | 30.56 ± 0.6 b,* | 38.20 ± 0.1 b,* | 90.27 | 9.73 |
V4 | 41.89 ± 1.3 d,* | 52.36 ± 0.8 d,* | 95.30 | 4.70 |
Samples | Size (mm) | Weight (g) |
---|---|---|
2023 | ||
V1 | 69.54 ± 0.43 a,* | 169.20 ± 1.9 a |
V2 | 77.54 ± 1.04 b | 223.20 ± 1.6 c |
V3 | 73.15 ± 0.80 a | 188.40 ± 1.5 b |
V4 | 83.79 ± 0.75 c | 267.20 ± 2.0 d |
2024 | ||
V1 | 68.15 ± 0.16 a | 166.70 ± 0.1 a |
V2 | 78.11 ± 0.60 b | 226.90 ± 0.3 c |
V3 | 73.85 ± 0.52 b | 186.70 ± 0.5 b |
V4 | 85.92 ± 0.34 c | 272.80 ± 0.6 d |
Samples | Total Sugar % | Soluble Solids Content % | Titratable Acidity % Acid Malic | TSS/TA |
---|---|---|---|---|
2023 | ||||
V1 | 13.14 ± 0.06 a | 13.50 ± 0.09 a | 0.38 ± 0.1 b | 35.53 ± 0.17 b |
V2 | 14.30 ± 0.16 b | 14.40 ± 0.24 c | 0.36 ± 0.2 a | 40 ± 0.2 c |
V3 | 13.83 ± 0.12 b | 13.90 ± 0.03 b | 0.35 ± 0.1 a | 39.71 ± 0.25 c |
V4 | 13.04 ± 0.06 a | 13.50 ± 0.09 a | 0.51 ± 0.2 c | 26.47 ± 0.3 a |
2024 | ||||
V1 | 13.12 ± 0.06 a | 13.40 ± 0.09 a | 0.36 ± 0.1 a,* | 37.22 ± 0.17 b |
V2 | 14.26 ± 0.1 a | 14.30 ± 0.2 b | 0.39 ± 0.2 b,* | 36.67 ± 0.2 b,* |
V3 | 13.88 ± 0.11 a | 13.95 ± 0.1 b | 0.35 ± 0.1 b | 39.86 ± 0.25 c |
V4 | 13.20 ± 0.06 a | 13.45 ± 0.2 a | 0.45 ± 0.2 a,* | 29.89 ± 0.25 a,* |
Samples | The Number of Annual Grown Branches | The Length of the Annual Branch Growths (cm) | Chlorophylls SPAD | TCSA (cm2) |
---|---|---|---|---|
2023 | ||||
V1 | 126.81 ± 31.23 a | 96.20 ± 24.18 a | 69.60 ± 2.44 a | 55 ± 0.25 a |
V2 | 142.86 ± 26.93 b | 118.80 ± 22.52 b | 86.20 ± 2.47 c | 61.9 ± 0.25 c |
V3 | 125.81 ± 31.13 a | 98.40 ± 18.53 a | 73.40 ± 0.90 b | 57.61 ± 0.42 b |
V4 | 151.45 ± 24.80 b | 135.80 ± 27.83 c | 93.80 ± 1.51 d | 64.50 ± 0.1 d |
2024 | ||||
V1 | 140.49 ± 36.50 a | 90.40 ± 16.35 a,* | 63.06 ± 1.06 a | 53.91 ± 1.42 a |
V2 | 167.23 ± 33.23 b,c,* | 105.60 ± 15.34 b,* | 80.58 ± 1.20 c | 62.46 ± 0.45 c |
V3 | 153.92 ± 37.61 a,b | 95 ± 20.02 a,* | 70.14 ± 4.42 b | 57.32 ± 0.74 b,* |
V4 | 178.20 ± 18.23 c,* | 113 ± 16.12 c,* | 87.18 ± 1.82 d | 65.08 ± 0.47 c |
Plot | Dehydrogenase Activity (mg TPF/g Soil/24 h) | Catalase Activity (mg H2O2/g Soil/24 h) | Phosphatase Activity (mg Phenol/g Soil/24 h) |
---|---|---|---|
2023 | |||
V1 | 8.45 ± 0.21 b | 6.93 ± 0.18 a | 1.96 ± 0.03 c |
V2 | 9.33 ± 0.21 c | 8.52 ± 0.16 b | 2.69 ± 0.02 c |
V3 | 6.00 ± 0.14 a | 8.48 ± 0.16 c | 2.11 ± 0.01 b |
V4 | 8.64 ± 0.15 b | 9.57 ± 0.13 c | 2.65 ± 0.02 a |
2024 | |||
V1 | 8.36 ± 0.12 b | 6.90 ± 0.12 a | 2.02 ± 0.01 a |
V2 | 9.75 ± 0.15 c | 8.60 ± 0.15 b | 2.85 ± 0.02 b,* |
V3 | 5.86 ± 0.11 a | 8.34 ± 0.11 b | 2.12 ± 0.01 c,* |
V4 | 8.93 ± 0.12 b,c | 9.93 ± 0.13 c | 2.99 ± 0.02 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borza, I.M.; Rosan, C.A.; Gitea, D.; Gitea, M.A.; Samuel, A.D.; Iancu, C.V.; Bene, I.L.; Padilla-Contreras, D.; Domuta, C.G.; Vicas, S.I. Influence of Organic Mulching Strategies on Apple Tree (Mallus domestica BORKH.) Development, Fruit Quality and Soil Enzyme Dynamics. Agronomy 2025, 15, 2021. https://doi.org/10.3390/agronomy15092021
Borza IM, Rosan CA, Gitea D, Gitea MA, Samuel AD, Iancu CV, Bene IL, Padilla-Contreras D, Domuta CG, Vicas SI. Influence of Organic Mulching Strategies on Apple Tree (Mallus domestica BORKH.) Development, Fruit Quality and Soil Enzyme Dynamics. Agronomy. 2025; 15(9):2021. https://doi.org/10.3390/agronomy15092021
Chicago/Turabian StyleBorza, Ioana Maria, Cristina Adriana Rosan, Daniela Gitea, Manuel Alexandru Gitea, Alina Dora Samuel, Carmen Violeta Iancu, Ioana Larisa Bene, Daniela Padilla-Contreras, Cristian Gabriel Domuta, and Simona Ioana Vicas. 2025. "Influence of Organic Mulching Strategies on Apple Tree (Mallus domestica BORKH.) Development, Fruit Quality and Soil Enzyme Dynamics" Agronomy 15, no. 9: 2021. https://doi.org/10.3390/agronomy15092021
APA StyleBorza, I. M., Rosan, C. A., Gitea, D., Gitea, M. A., Samuel, A. D., Iancu, C. V., Bene, I. L., Padilla-Contreras, D., Domuta, C. G., & Vicas, S. I. (2025). Influence of Organic Mulching Strategies on Apple Tree (Mallus domestica BORKH.) Development, Fruit Quality and Soil Enzyme Dynamics. Agronomy, 15(9), 2021. https://doi.org/10.3390/agronomy15092021