Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = apple mosaic virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2042 KiB  
Article
Comprehensive Virome Profiling of Apple Mosaic Disease-Affected Trees in Iran Using RT-PCR and Next-Generation Sequencing
by Anahita Hamedi, Farshad Rakhshandehroo, Mohammad Reza Safarnejad, Gholamreza Salehi Jouzani, Amani Ben Slimen and Toufic Elbeaino
Viruses 2025, 17(7), 979; https://doi.org/10.3390/v17070979 - 13 Jul 2025
Viewed by 438
Abstract
Apples (Malus domestica), one of Iran’s oldest cultivated fruit crops, hold considerable economic importance. In this study, 170 apple leaf samples representing various commercial cultivars were collected across the country. RT-PCR screening targeted five common apple-infecting viruses and two viroids: apple [...] Read more.
Apples (Malus domestica), one of Iran’s oldest cultivated fruit crops, hold considerable economic importance. In this study, 170 apple leaf samples representing various commercial cultivars were collected across the country. RT-PCR screening targeted five common apple-infecting viruses and two viroids: apple chlorotic leaf spot virus (ACLSV), apple stem pitting virus (ASPV), apple stem grooving virus (ASGV), apple green crinkle-associated virus (AGCaV), apple mosaic virus (ApMV), apple scar skin viroid (ASSVd), and hop stunt viroid (HSVd). To identify additional or novel agents, 40 RT-PCR-negative samples were pooled into two composite groups and analyzed using next-generation sequencing (NGS). NGS was also performed on individual samples with mixed infections to retrieve full genomes. RT-PCR confirmed the presence of ACLSV, ASPV, ASGV, AGCaV, ApMV, and HSVd. NGS further revealed three additional pathogens: citrus concave gum-associated virus (CCGaV), apple hammerhead viroid (AHVd), and apricot vein clearing-associated virus (AVCaV), which were subsequently detected across the collection by RT-PCR. AGCaV was most prevalent (47.6%), followed by ACLSV (45.8%), HSVd (27.6%), AVCaV (20.5%), ASGV (17%), AHVd (15.2%), ASPV (14.1%), CCGaV (4.7%), and ApMV (3.5%). Mixed infections occurred in 67% of samples. Phylogenetic analysis based on CP genes (ACLSV, ASGV, AGCaV) and full genomes (AVCaV, AHVd) clustered Iranian isolates together, suggesting a common origin. This is the first report in Iran of AGCaV, CCGaV, ApMV, and AVCaV in apple, and notably, the first global report of AVCaV in a non-Prunus host. The findings provide the first comprehensive assessment of the sanitary status of apple trees in Iran. Full article
(This article belongs to the Special Issue Viral Diseases of Major Crops)
Show Figures

Figure 1

15 pages, 10576 KiB  
Article
Mapping the Distribution of Viruses in Wild Apple Populations in the Southeast Region of Kazakhstan
by Nazym Kerimbek, Marina Khusnitdinova, Aisha Taskuzhina, Anastasiya Kapytina, Alexandr Pozharskiy, Abay Sagitov and Dilyara Gritsenko
Forests 2025, 16(7), 1119; https://doi.org/10.3390/f16071119 - 6 Jul 2025
Viewed by 352
Abstract
Kazakhstan is recognized as one of the primary centers of origin of the wild apple Malus sieversii, concentrated mainly in the mountains like Trans-Ile and Zhongar Alatau, as well as parts of the Tarbagatay, Talas Alatau, and Karatau ranges. As the wild [...] Read more.
Kazakhstan is recognized as one of the primary centers of origin of the wild apple Malus sieversii, concentrated mainly in the mountains like Trans-Ile and Zhongar Alatau, as well as parts of the Tarbagatay, Talas Alatau, and Karatau ranges. As the wild progenitor of Malus domestica, M. sieversii harbors a critical genetic diversity essential for apple breeding and conservation efforts. However, its natural populations are increasingly threatened by latent viral infection, which weakens trees, reduces reproduction, and hinders regeneration. In this study, the spread of apple chlorotic leaf spot virus (ACLSV) and apple stem pitting virus (ASPV) was documented in four wild apple populations, with detection rates of 50.2% and 42.2%, respectively. Mixed infections were observed in 28.8% of sampled trees. Apple stem grooving virus (ASGV) was detected exclusively in cultivated orchards, whereas apple mosaic virus (ApMV) and apple necrotic mosaic virus (ApNMV) were not found in either wild forests or cultivated orchards. Using Geographic Information System (GIS) technology, we developed the first spatial distribution maps of these viruses in wild apple forests in the Tian Shan region, revealing site-specific variation and infection rates. These results underscore the importance of monitoring viral infections in wild M. sieversii populations to preserve genetically valuable, virus-free germplasm critical for apple breeding, crop improvement, and sustainable orchard management. Full article
(This article belongs to the Special Issue Forest Pathogens: Detection, Diagnosis, and Control)
Show Figures

Figure 1

13 pages, 2520 KiB  
Article
Transcriptome Analysis of Apple Leaves with Apple Necrotic Mosaic Virus-Associated Mosaic Symptoms
by Dehang Gao, Fei Xing, Qin Yan, Zhixiang Zhang, Binhui Zhan, Meiguang Lu, Yunlong Ma, Hongqing Wang, Shifang Li and Jipeng Xie
Plants 2025, 14(12), 1787; https://doi.org/10.3390/plants14121787 - 11 Jun 2025
Viewed by 499
Abstract
Apple mosaic disease (AMD) is a widespread viral disease affecting apple-growing regions around the world. Recent studies have identified a novel ilarvirus, apple necrotic mosaic virus (ApNMV), as the major causal agent of AMD in China. However, the molecular mechanisms underlying AMD pathogenesis [...] Read more.
Apple mosaic disease (AMD) is a widespread viral disease affecting apple-growing regions around the world. Recent studies have identified a novel ilarvirus, apple necrotic mosaic virus (ApNMV), as the major causal agent of AMD in China. However, the molecular mechanisms underlying AMD pathogenesis and the global gene expression changes during mosaic symptom development remain largely unknown. In this study, we performed transcriptome analysis to investigate apple gene responses to AMD. A total of 815 differentially expressed genes (DEGs) were identified in mosaic leaves compared to healthy controls, while 1050 DEGs were found between symptomless leaves (infected with ApNMV) and mosaic leaves. Functional enrichment analysis revealed that these DEGs were predominantly involved in carbohydrate metabolism, oxidation-reduction processes, secondary metabolite biosynthesis, and plant hormone signal transduction. Further biological assays demonstrated that the manifestation of mosaic symptoms in apple leaves was associated with reactive oxygen species (ROS) accumulation and downregulation of ROS-scavenging genes. Collectively, our findings provide new insights into the molecular basis of ApNMV-induced mosaic symptom development in apple and offer potential targets for the management of AMD. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

14 pages, 540 KiB  
Article
Application of In Vitro Techniques for Elimination of Plum Pox Virus (PPV) and Apple Chlorotic Leaf Spot Virus (ACLSV) in Stone Fruits
by Balnur Kabylbekova, Toigul Nurseitova, Zarina Yussupova, Timur Turdiyev, Irina Kovalchuk, Svetlana Dolgikh, Sagi Soltanbekov, Aigerim Seisenova and Aigul Madenova
Horticulturae 2025, 11(6), 633; https://doi.org/10.3390/horticulturae11060633 - 5 Jun 2025
Viewed by 592
Abstract
Viral infections in stone fruit crops cause substantial economic losses across all sectors of production. Despite their significance, viruses affecting stone fruits remain under-investigated in Kazakhstan. Among these, plum pox virus (PPV, genus Potyvirus, family Potyviridae), commonly known as Sharka, is [...] Read more.
Viral infections in stone fruit crops cause substantial economic losses across all sectors of production. Despite their significance, viruses affecting stone fruits remain under-investigated in Kazakhstan. Among these, plum pox virus (PPV, genus Potyvirus, family Potyviridae), commonly known as Sharka, is the most critical viral pathogen worldwide, severely threatening the sustainable cultivation of stone fruits and posing risks to food security. This study aimed to evaluate virus management strategies in stone fruit crops to facilitate the production of healthy planting material from valuable genotypes. Field surveys were conducted in plum and apricot orchards located in the Almaty region (Southeast Kazakhstan) and the Saryagash region (Southern Kazakhstan). Plant samples were tested for the presence of the following viruses: apple chlorotic leaf spot virus (ACLSV), apple mosaic virus (ApMV), PPV, prune dwarf virus (PDV), prunus necrotic ringspot virus (PNRSV), cherry green ring mottle virus (CGRMV), and myrobalan latent ringspot virus (MLRSV). Real-time RT-PCR diagnostics confirmed the presence of PPV in the ‘Stanley’ and ‘Ansar’ cultivars and Prunus armeniaca genotypes, while both PPV and ACLSV were detected in the ‘Ayana’ variety. Chemotherapy (Ribavirin), thermotherapy, cryotherapy, and shoot apical meristem (SAM) culture, both individually and in combination, were used to eliminate viruses and regenerate virus-free plants. Successful virus eradication was achieved for PPV and ACLSV. However, the ‘Stanley’ and ‘Ansar’ cultivars did not survive the treatment process, likely due to high thermo- or cryo-sensitivity. As a result of this research, an in vitro collection of virus-free plants was established, comprising eight rootstocks, six plum cultivars, and three apricot genotypes. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

19 pages, 7608 KiB  
Article
Virome Analysis of Aconitum carmichaelii Reveals Infection by Eleven Viruses, including Two Potentially New Species
by Jie Yang, Ping-Xiu Lan, Yun Wang, Jin-Ming Li, Ruhui Li, Steve Wylie, Xiao-Jiao Chen, Gen-Hua Yang, Hong Cai and Fan Li
Int. J. Mol. Sci. 2023, 24(21), 15558; https://doi.org/10.3390/ijms242115558 - 25 Oct 2023
Cited by 1 | Viewed by 2022
Abstract
Aconitum carmichaelii is a herbaceous herb indigenous to China that has been cultivated for traditional medicine for centuries. Virus-like symptoms of A. carmichaelii plants were observed on leaves in some A. carmichaelii plantations in Zhanyi and Wuding Counties, Yunnan Province, southwest China. High-throughput [...] Read more.
Aconitum carmichaelii is a herbaceous herb indigenous to China that has been cultivated for traditional medicine for centuries. Virus-like symptoms of A. carmichaelii plants were observed on leaves in some A. carmichaelii plantations in Zhanyi and Wuding Counties, Yunnan Province, southwest China. High-throughput sequencing (HTS) was performed on 28 symptomatic plants, and the results revealed infection with 11 viruses, including 2 novel viruses and 9 previously described viruses: Aconitum amalgavirus 1 (AcoAV-1), aconite virus A (AcVA), cucumber mosaic virus (CMV), currant latent virus (CuLV), apple stem grooving virus (ASGV), chilli veinal mottle virus (ChiVMV), tomato spotted wilt orthotospovirus (TSWV), tobacco vein distorting virus (TVDV), and potato leafroll virus (PLRV). Two novel viruses tentatively named Aconitum potyvirus 1 and Aconitum betapartitivirus 1, were supported by sequence and phylogenetic analysis results of their genomes. We proposed the names Potyvirus aconiti and Betapartitivirus aconiti. RT-PCR assays of 142 plants revealed the predominance and widespread distribution of CMV, AcVA, and AcoPV-1 in plantations. The detection of isolates of CuLV, ASGV, ChiVMV, TSWV, TVDV, and PLRV infections for the first time in A. carmichaelii expands their known host ranges. Full article
(This article belongs to the Collection Feature Papers in Molecular Plant Sciences)
Show Figures

Figure 1

9 pages, 1263 KiB  
Article
Sanitation of Apple Cultivars from AP Phytoplasma and ApMV and ACLSV Viruses Using In Vitro Culture and Cryo-Knife Therapy in Liquid Nitrogen
by Jiří Sedlák, Matěj Semerák and Martina Rejlová
Appl. Sci. 2023, 13(13), 7527; https://doi.org/10.3390/app13137527 - 26 Jun 2023
Cited by 4 | Viewed by 1483
Abstract
Systemic infections with phytoplasmas and viruses threaten the production of healthy plant material under the fruit species certification system. We tested the possibility of sanitation using in vitro culture and cryotherapy. The starting material of the cultivars Golden Delicious (clones A and B), [...] Read more.
Systemic infections with phytoplasmas and viruses threaten the production of healthy plant material under the fruit species certification system. We tested the possibility of sanitation using in vitro culture and cryotherapy. The starting material of the cultivars Golden Delicious (clones A and B), Virginia Crab, and Panenské zlepšené was taken from in vivo plants that tested positive for apple proliferation phytoplasma. The Táborita cultivar was obtained from already established in vitro cultures that had tested positive for apple proliferation phytoplasma, apple mosaic virus, and apple chlorotic leaf spot virus. Cultivars Golden Delicious A, Virginia Crab, and Panenské zlepšené were sanitated from the phytoplasma in the first step, i.e., by sterilization and a subsequent transfer to in vitro conditions. Golden Delicious B remained infected with the phytoplasma, and both viruses, after the in vitro culture phase and together with Táborita, were subjected to cryotherapy by vitrification. In Golden Delicious B, three out of thirteen initial shoot tips regenerated after a liquid nitrogen treatment. Four mericlones were regenerated from 10 initial cryopreserved shoot tips of Táborita. None of the three pathogens were detected by PCR in the regenerated Golden Delicious B mericlones. On the contrary, in the case of Táborita, infection with all the pathogens was detected after regeneration. The results obtained indicate the potential applicability of in vitro cultivation techniques or, if necessary, subsequent cryopreservation as a method for sanitizing against systemic microbial contamination. However, further research on the relationship between pathogens and specific genotypes is needed. Full article
(This article belongs to the Special Issue Biotechnology of Plants and Pathogens)
Show Figures

Figure 1

14 pages, 3916 KiB  
Article
The Virome of Babaco (Vasconcellea × heilbornii) Expands to Include New Members of the Rhabdoviridae and Bromoviridae
by Edison G. Reyes-Proaño, Maria G. Cañada-Bautista, Juan F. Cornejo-Franco, Robert A. Alvarez-Quinto, Dimitre Mollov, Eduardo Sanchez-Timm and Diego F. Quito-Avila
Viruses 2023, 15(6), 1380; https://doi.org/10.3390/v15061380 - 16 Jun 2023
Cited by 3 | Viewed by 2380
Abstract
Babaco (Vasconcellea × heilbornii) is a subtropical species in the Caricaceae family. The plant is native to Ecuador and represents an important crop for hundreds of families. The objective of this study was to characterize, at the genomic level, two new [...] Read more.
Babaco (Vasconcellea × heilbornii) is a subtropical species in the Caricaceae family. The plant is native to Ecuador and represents an important crop for hundreds of families. The objective of this study was to characterize, at the genomic level, two new babaco viruses identified by high-throughput sequencing. The viruses, an ilarvirus and a nucleorhabdovirus, were found in a symptomatic babaco plant from a commercial nursery in the Azuay province of Ecuador. The tripartite genome of the new ilarvirus, provisionally named babaco ilarvirus 1 (BabIV-1), is related to subgroup 3 ilarviruses, including apple mosaic virus, apple necrotic mosaic virus, and prunus necrotic ringspot virus as the closest relatives. The genome of the nucleorhabdovirus, provisionally named babaco nucleorhabdovirus 1 (BabRV-1), showed the closest relation with joa yellow blotch-associated virus and potato yellow dwarf nucleorhabdovirus. Molecular-based detection methods found BabIV-1 and BabRV-1 in 21% and 36%, respectively, of plants surveyed in a commercial babaco nursery, highlighting the importance of enforcing virus testing and nursery certification programs for babaco. Full article
(This article belongs to the Special Issue Next-Generation Sequencing in Plant Virology 2.0)
Show Figures

Figure 1

14 pages, 4492 KiB  
Article
Global Population Structure of Apple Mosaic Virus (ApMV, Genus Ilarvirus)
by Ali Çelik, Ali Ferhan Morca, Sevgi Coşkan and Adyatma Irawan Santosa
Viruses 2023, 15(6), 1221; https://doi.org/10.3390/v15061221 - 23 May 2023
Cited by 7 | Viewed by 2401
Abstract
The gene sequence data for apple mosaic virus (ApMV) in NCBI GenBank were analyzed to determine the phylogeny and population structure of the virus at a global level. The phylogenies of the movement protein (MP) and coat protein (CP) genes, encoded by RNA3, [...] Read more.
The gene sequence data for apple mosaic virus (ApMV) in NCBI GenBank were analyzed to determine the phylogeny and population structure of the virus at a global level. The phylogenies of the movement protein (MP) and coat protein (CP) genes, encoded by RNA3, were shown to be identical and consisted of three lineages but did not closely correlate with those of P1 and P2, suggesting the presence of recombinant isolates. Recombination Detection Program (RDP v.4.56) detected significant recombination signal in the P1 region of K75R1 (KY883318) and Apple (HE574162) and the P2 region of Apple (HE574163) and CITH GD (MN822138). Observation on several diversity parameters suggested that the isolates in group 3 had higher divergence among them, compared to isolates in groups 1 and 2. The neutrality tests assigned positive values to P1, indicating that only this region experiencing balanced or contracting selection. Comparisons of the three phylogroups demonstrated high Fixation index (FST) values and confirmed genetic separation and the lack of gene flow among them. Additionally, ±500 bp of partial MP + ‘intergenic region’ + partial CP coding regions of two Turkish isolates from apple and seven from hazelnut were sequenced and determined that their phylogenetic positions fell within group 1 and 3, respectively. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

19 pages, 14731 KiB  
Article
Quantitative Assessment of Apple Mosaic Disease Severity Based on Hyperspectral Images and Chlorophyll Content
by Yanfu Liu, Yu Zhang, Danyao Jiang, Zijuan Zhang and Qingrui Chang
Remote Sens. 2023, 15(8), 2202; https://doi.org/10.3390/rs15082202 - 21 Apr 2023
Cited by 26 | Viewed by 3965
Abstract
The infection of Apple mosaic virus (ApMV) can severely damage the cellular structure of apple leaves, leading to a decrease in leaf chlorophyll content (LCC) and reduced fruit yield. In this study, we propose a novel method that utilizes hyperspectral imaging (HSI) technology [...] Read more.
The infection of Apple mosaic virus (ApMV) can severely damage the cellular structure of apple leaves, leading to a decrease in leaf chlorophyll content (LCC) and reduced fruit yield. In this study, we propose a novel method that utilizes hyperspectral imaging (HSI) technology to non-destructively monitor ApMV-infected apple leaves and predict LCC as a quantitative indicator of disease severity. LCC data were collected from 360 ApMV-infected leaves, and optimal wavelengths were selected using competitive adaptive reweighted sampling algorithms. A high-precision LCC inversion model was constructed based on Boosting and Stacking strategies, with a validation set Rv2 of 0.9644, outperforming traditional ensemble learning models. The model was used to invert the LCC distribution image and calculate the average and coefficient of variation (CV) of LCC for each leaf. Our findings indicate that the average and CV of LCC were highly correlated with disease severity, and their combination with sensitive wavelengths enabled the accurate identification of disease severity (validation set overall accuracy = 98.89%). Our approach considers the role of plant chemical composition and provides a comprehensive evaluation of disease severity at the leaf scale. Overall, our study presents an effective way to monitor and evaluate the health status of apple leaves, offering a quantifiable index of disease severity that can aid in disease prevention and control. Full article
(This article belongs to the Special Issue Application of Hyperspectral Imagery in Precision Agriculture)
Show Figures

Figure 1

14 pages, 2788 KiB  
Article
Tissue and Time Optimization for Real-Time Detection of Apple Mosaic Virus and Apple Necrotic Mosaic Virus Associated with Mosaic Disease of Apple (Malus domestica)
by Sajad Un Nabi, Javid Iqbal Mir, Salwee Yasmin, Ambreena Din, Wasim H. Raja, G. S. Madhu, Shugufta Parveen, Sheikh Mansoor, Yong Suk Chung, Om Chand Sharma, Muneer Ahmad Sheikh, Fahad A. Al-Misned and Hamed A. El-Serehy
Viruses 2023, 15(3), 795; https://doi.org/10.3390/v15030795 - 21 Mar 2023
Cited by 10 | Viewed by 3152
Abstract
Besides apple mosaic virus (ApMV), apple necrotic mosaic virus (ApNMV) has also been found to be associated with apple mosaic disease. Both viruses are unevenly distributed throughout the plant and their titer decreases variably with high temperatures, hence requiring proper tissue and time [...] Read more.
Besides apple mosaic virus (ApMV), apple necrotic mosaic virus (ApNMV) has also been found to be associated with apple mosaic disease. Both viruses are unevenly distributed throughout the plant and their titer decreases variably with high temperatures, hence requiring proper tissue and time for early and real-time detection within plants. The present study was carried out to understand the distribution and titer of ApMV and ApNMV in apple trees from different plant parts (spatial) during different seasons (temporal) for the optimization of tissue and time for their timely detection. The Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR) was carried out to detect and quantify both viruses in the various plant parts of apple trees during different seasons. Depending on the availability of tissue, both ApMV and ApNMV were detected in all the plant parts during the spring season using RT-PCR. During the summer, both viruses were detected only in seeds and fruits, whereas they were detected in leaves and pedicel during the autumn season. The RT-qPCR results showed that during the spring, the ApMV and ApNMV expression was higher in leaves, whereas in the summer and autumn, the titer was mostly detected in seeds and leaves, respectively. The leaves in the spring and autumn seasons and the seeds in the summer season can be used as detection tissues through RT-PCR for early and rapid detection of ApMV and ApNMV. This study was validated on 7 cultivars of apples infected with both viruses. This will help to accurately sample and index the planting material well ahead of time, which will aid in the production of virus-free, quality planting material. Full article
(This article belongs to the Special Issue Plant Virus Epidemiology and Control 2022)
Show Figures

Figure 1

17 pages, 1277 KiB  
Review
Melatonin as a Possible Natural Anti-Viral Compound in Plant Biocontrol
by Josefa Hernández-Ruiz, Manuela Giraldo-Acosta, Amina El Mihyaoui, Antonio Cano and Marino B. Arnao
Plants 2023, 12(4), 781; https://doi.org/10.3390/plants12040781 - 9 Feb 2023
Cited by 25 | Viewed by 4822
Abstract
Melatonin is a multifunctional and ubiquitous molecule. In animals, melatonin is a hormone that is involved in a wide range of physiological activities and is also an excellent antioxidant. In plants, it has been considered a master regulator of multiple physiological processes as [...] Read more.
Melatonin is a multifunctional and ubiquitous molecule. In animals, melatonin is a hormone that is involved in a wide range of physiological activities and is also an excellent antioxidant. In plants, it has been considered a master regulator of multiple physiological processes as well as of hormonal homeostasis. Likewise, it is known for its role as a protective biomolecule and activator of tolerance and resistance against biotic and abiotic stress in plants. Since infections by pathogens such as bacteria, fungi and viruses in crops result in large economic losses, interest has been aroused in determining whether melatonin plays a relevant role in plant defense systems against pathogens in general, and against viruses in particular. Currently, several strategies have been applied to combat infection by pathogens, one of them is the use of eco-friendly chemical compounds that induce systemic resistance. Few studies have addressed the use of melatonin as a biocontrol agent for plant diseases caused by viruses. Exogenous melatonin treatments have been used to reduce the incidence of several virus diseases, reducing symptoms, virus titer, and even eradicating the proliferation of viruses such as Tobacco Mosaic Virus, Apple Stem Grooving Virus, Rice Stripe Virus and Alfalfa Mosaic Virus in tomato, apple, rice and eggplant, respectively. The possibilities of using melatonin as a possible natural virus biocontrol agent are discussed. Full article
(This article belongs to the Special Issue Plant Virus Disease Control)
Show Figures

Figure 1

15 pages, 1922 KiB  
Article
Rose Virome Analysis and Identification of a Novel Ilarvirus in Taiwan
by Tsung-Chi Chen, Yu-Chieh Lin, Chian-Chi Lin, Yi-Xian Lin and Yuh-Kun Chen
Viruses 2022, 14(11), 2537; https://doi.org/10.3390/v14112537 - 16 Nov 2022
Cited by 7 | Viewed by 4031
Abstract
Rose (Rosa spp.), especially R. hybrida, is one of the most popular ornamental plants in the world and the third largest cut flower crop in Taiwan. Rose mosaic disease (RMD), showing mosaic, line patterns and ringspots on leaves, is a common [...] Read more.
Rose (Rosa spp.), especially R. hybrida, is one of the most popular ornamental plants in the world and the third largest cut flower crop in Taiwan. Rose mosaic disease (RMD), showing mosaic, line patterns and ringspots on leaves, is a common rose disease caused by the complex infection of various viruses. Due to pests and diseases, the rose planting area in Taiwan has been decreasing since 2008; however, no rose virus disease has been reported in the past five decades. In the spring of 2020, rose samples showing RMD-like symptoms were observed at an organic farm in Chiayi, central Taiwan. The virome in the farm was analyzed by RNA-seq. Rose genomic sequences were filtered from the obtained reads. The remaining reads were de novo assembled to generate 294 contigs, 50 of which were annotated as viral sequences corresponding to 10 viruses. Through reverse transcription-polymerase chain reaction validation, a total of seven viruses were detected, including six known rose viruses, namely apple mosaic virus, prunus necrotic ringspot virus, rose partitivirus, apple stem grooving virus, rose spring dwarf-associated virus and rose cryptic virus 1, and a novel ilarvirus. After completing the whole genome sequencing and sequence analysis, the unknown ilarvirus was demonstrated as a putative new species, tentatively named rose ilarvirus 2. This is the first report of the rose virus disease in Taiwan. Full article
(This article belongs to the Special Issue Virology Research in Taiwan)
Show Figures

Figure 1

15 pages, 1803 KiB  
Article
Occurrence and Distribution Patterns of Plum Tree Viruses and Genetic Diversity of Sharka Isolates in Bosnia and Herzegovina
by Arnela Okić, Thierry Wetzel, Shaheen Nourinejhad Zarghani, Sébastien Massart, Jasmin Grahić, Fuad Gaši, Almira Konjić and Darko Vončina
Horticulturae 2022, 8(9), 783; https://doi.org/10.3390/horticulturae8090783 - 28 Aug 2022
Cited by 3 | Viewed by 2972
Abstract
In order to fill in a decade-long information gap regarding the biological, serological and molecular data for plum tree viruses in Bosnia and Herzegovina, a three-phase study combining symptom evaluation, and serological and molecular assays with high-throughput sequencing (HTS) technology was conducted. The [...] Read more.
In order to fill in a decade-long information gap regarding the biological, serological and molecular data for plum tree viruses in Bosnia and Herzegovina, a three-phase study combining symptom evaluation, and serological and molecular assays with high-throughput sequencing (HTS) technology was conducted. The most frequently observed symptoms were discolorations in the form of ring patterns, bands and irregular shapes, as well as vein banding. Sharka-associated symptoms in the form of ring patterns and semicircles were prevalent. A total of 468 plum tree samples were tested by ELISA for the presence of PPV, ApMV, PDV, PNRSV, PBNSPaV, ACLSV and MLRSV. An overall infection incidence of 51.9% was detected, with PPV being the most prevalent (48.7%), followed by PDV (2.99%), PNRSV (0.21%) and mixed infections of PPV+PDV (1.71%). RT-PCR-assisted strain typing in 45 samples revealed PPV-D as the most common strain (22.22%), followed by PPV-REC (6.66%). Mixed infections of PPV-D+PPV-REC were detected (6.66%). HTS enabled the recovery of a 9743 nts long sequence of PPV-D (PPV_O7/80, MW412433), which shared the highest nucleotide and amino acid identities with isolates S13 (LC375131) from Serbia, SVN1 (LC375132) from Slovenia and N9 (LC375129) from Bulgaria. The phylogenetic analysis of the whole genome placed the isolate of the D strain in a distinctive group with the Slovenian isolate SVN1 (LC375132). In addition, the (Cter)NIb/(Nter)CP fragment of a PPV-REC isolate (MW412434) obtained in this survey formed a separate group with previously known isolates from Bosnia and Herzegovina (BOS64Pl and BOS257Pl). Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

21 pages, 2258 KiB  
Review
Viral Infection Control in the Essential Oil-Bearing Rose Nursery: Collection Maintenance and Monitoring
by Sevilia Seitadzhieva, Alexander A. Gulevich, Natalya Yegorova, Natalya Nevkrytaya, Suleiman Abdurashytov, Lyudmila Radchenko, Vladimir Pashtetskiy and Ekaterina N. Baranova
Horticulturae 2022, 8(7), 629; https://doi.org/10.3390/horticulturae8070629 - 12 Jul 2022
Cited by 4 | Viewed by 3174
Abstract
Viral diseases affecting the essential oil rose, which is a valuable object of agricultural production, may have a significant negative impact on the economic value of this crop. Hence, the study and control of potentially dangerous viruses is essential to improving the quality [...] Read more.
Viral diseases affecting the essential oil rose, which is a valuable object of agricultural production, may have a significant negative impact on the economic value of this crop. Hence, the study and control of potentially dangerous viruses is essential to improving the quality of cultivars of this raw plant material, to enable production of valuable derivatives. The diversity of viruses affecting Rosa L. plants manifests itself in their conditional division into those that are specific to this crop, and those that are hosted by other plants. Representatives of both groups are found in different countries, however, a low number of viruses identified have been thoroughly studied through the use of experimental methods. In particular, with regard to many viruses, the issue of their spread remains open. The viruses infecting Rosa L. plants along with other crops are described in the literature in detail, as the range of hosts they affect is rather wide and well-studied. It is also possible to single out the three most significant viruses affecting this host—Prunus necrotic ringspot virus, Apple mosaic virus and Arabis mosaic virus which individually, or collectively, cause viral diseases that manifest themselves in mosaic symptoms. The most likely mechanisms for the spread of the Rosa L. species viruses are vegetative propagation procedures and transmission by various pests. These presumptions underlie viral infection control methods, including a well-thought-out planting scheme and provision of accurate plant care, which considers plant disinfection, disease monitoring associated with diagnostics and obtaining virus-free material through biotechnology techniques. Full article
(This article belongs to the Special Issue Horticultural Crop Physiology under Biotic and Abiotic Stresses)
Show Figures

Figure 1

12 pages, 3444 KiB  
Brief Report
A Reduced Starch Level in Plants at Early Stages of Infection by Viruses Can Be Considered a Broad-Range Indicator of Virus Presence
by Wanying Zhao, Li Wang, Meizi Liu, Dong Zhang, Ida Bagus Andika, Ying Zhu and Liying Sun
Viruses 2022, 14(6), 1176; https://doi.org/10.3390/v14061176 - 28 May 2022
Cited by 9 | Viewed by 2985
Abstract
The diagnosis of virus infection can facilitate the effective control of plant viral diseases. To date, serological and molecular methods for the detection of virus infection have been widely used, but these methods have disadvantages if applied for broad-range and large-scale detection. Here, [...] Read more.
The diagnosis of virus infection can facilitate the effective control of plant viral diseases. To date, serological and molecular methods for the detection of virus infection have been widely used, but these methods have disadvantages if applied for broad-range and large-scale detection. Here, we investigated the effect of infection of several different plant RNA and DNA viruses such as cucumber mosaic virus (CMV), tobacco mosaic virus (TMV), potato virus X (PVX), potato virus Y (PVY) and apple geminivirus on starch content in leaves of Nicotiana benthamiana. Analysis showed that virus infection at an early stage was generally associated with a reduction in starch accumulation. Notably, a reduction in starch accumulation was readily apparent even with a very low virus accumulation detected by RT-PCR. Furthermore, we also observed that the infection of three latent viruses in propagative apple materials was associated with a reduction in starch accumulation levels. Analysis of transcriptional expression showed that some genes encoding enzymes involved in starch biosynthesis were downregulated at the early stage of CMV, TMV, PVX and PVY infections, suggesting that virus infection interferes with starch biosynthesis in plants. Our findings suggest that assessing starch accumulation levels potentially serve as a broad-range indicator for the presence of virus infection. Full article
(This article belongs to the Special Issue Applications of Plant Virus in Biotechnology)
Show Figures

Figure 1

Back to TopTop