Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,166)

Search Parameters:
Keywords = antioxidative therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1209 KiB  
Review
Doxorubicin Toxicity and Recent Approaches to Alleviating Its Adverse Effects with Focus on Oxidative Stress
by Lyubomira Radeva and Krassimira Yoncheva
Molecules 2025, 30(15), 3311; https://doi.org/10.3390/molecules30153311 (registering DOI) - 7 Aug 2025
Abstract
Despite the significant antitumor potential of doxorubicin and its widespread use in the treatment of various oncological diseases, its application is associated with side effects, among which the most common are cardiotoxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, and gonadotoxicity. In contemporary times, innovative strategies to [...] Read more.
Despite the significant antitumor potential of doxorubicin and its widespread use in the treatment of various oncological diseases, its application is associated with side effects, among which the most common are cardiotoxicity, hepatotoxicity, nephrotoxicity, neurotoxicity, and gonadotoxicity. In contemporary times, innovative strategies to overcome the toxicity of doxorubicin and improve the effectiveness of therapies are intensively researched. The aim of this review is to discuss different approaches to alleviate the common toxic effects of doxorubicin, with an emphasis on oxidative stress. In particular, the review analyzes the significance of pharmaceutical nanotechnology for reducing doxorubicin toxicity while maintaining its antitumor effect (e.g., encapsulation of doxorubicin in passively and/or actively targeted nanoparticles to tumor tissue and cells). Other strategies commented in the review are the simultaneous delivery of doxorubicin with antioxidants and the administration of its derivatives with lower toxicity. Full article
(This article belongs to the Special Issue The Anticancer Drugs: A New Perspective)
Show Figures

Figure 1

15 pages, 3724 KiB  
Article
Exploring the Association Between Multidimensional Dietary Patterns and Non-Scarring Hair Loss Using Mendelian Randomization
by Lingfeng Pan, Philipp Moog, Caihong Li, Leonard Steinbacher, Samuel Knoedler, Haydar Kükrek, Ulf Dornseifer, Hans-Günther Machens and Jun Jiang
Nutrients 2025, 17(15), 2569; https://doi.org/10.3390/nu17152569 - 7 Aug 2025
Abstract
Background: Androgenetic alopecia (AGA) and alopecia areata (AA) impose significant psychosocial burdens. While pharmacological and surgical treatments exist, the role of dietary factors remains underexplored due to methodological limitations in observational studies. This Mendelian randomization (MR) study investigates causal relationships between 187 dietary [...] Read more.
Background: Androgenetic alopecia (AGA) and alopecia areata (AA) impose significant psychosocial burdens. While pharmacological and surgical treatments exist, the role of dietary factors remains underexplored due to methodological limitations in observational studies. This Mendelian randomization (MR) study investigates causal relationships between 187 dietary exposures and hair loss, leveraging genetic variants to address confounding biases. Methods: Genome-wide association study (GWAS) data from 161,625 UK Biobank participants were analyzed, focusing on food preferences and intake patterns. Genetic instruments for each of the 187 dietary exposures were selected at a genome-wide significance threshold (p < 5 × 10−8), with rigorous sensitivity analyses (MR-Egger, MR-PRESSO) to validate causality. Outcomes included AA and AGA datasets from the FinnGen consortium. Results: MR analysis identified 18 specific dietary exposures significantly associated with non-scarring hair loss (FDR < 0.05). Protective effects emerged for antioxidant-rich dietary exposures, represented by higher preferences for melon, onions, and tea. Elevated risks were observed for certain exposures, including croissants, goat cheese, and whole milk. Alcohol consumption exhibited the strongest risk associations. Our extensive analysis of alcohol intake, combining data from multiple studies, consistently identified it as a significant risk factor for both alopecia areata and androgenetic alopecia. Conclusions: These findings imply modifiable dietary patterns in hair loss pathophysiology. A dual strategy is proposed: prioritizing polyphenol-rich plant foods while minimizing pro-inflammatory triggers like processed carbohydrates and alcohol. Clinically, tailored dietary adjustments—reducing ultra-processed foods and alcohol—may complement existing therapies for hair loss management. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

18 pages, 2516 KiB  
Article
Joint Metabolomics and Transcriptomics Reveal Rewired Glycerophospholipid and Arginine Metabolism as Components of BRCA1-Induced Metabolic Reprogramming in Breast Cancer Cells
by Thomas Lucaora and Daniel Morvan
Metabolites 2025, 15(8), 534; https://doi.org/10.3390/metabo15080534 - 7 Aug 2025
Abstract
Background/Objectives: The breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene whose mutations are associated with increased susceptibility to develop breast or ovarian cancer. BRCA1 mainly exerts its protective effects through DNA double-strand break repair. Although not itself [...] Read more.
Background/Objectives: The breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene whose mutations are associated with increased susceptibility to develop breast or ovarian cancer. BRCA1 mainly exerts its protective effects through DNA double-strand break repair. Although not itself a transcriptional factor, BRCA1, through its multiple protein interaction domains, exerts transcriptional coregulation. In addition, BRCA1 expression alters cellular metabolism including inhibition of de novo fatty acid synthesis, changes in cellular bioenergetics, and activation of antioxidant defenses. Some of these actions may contribute to its global oncosuppressive effects. However, the breadth of metabolic pathways reprogrammed by BRCA1 is not fully elucidated. Methods: Breast cancer cells expressing BRCA1 were investigated by multiplatform metabolomics, metabolism-related transcriptomics, and joint metabolomics/transcriptomics data processing techniques, namely two-way orthogonal partial least squares and pathway analysis. Results: Joint analyses revealed the most important metabolites, genes, and pathways of metabolic reprogramming in BRCA1-expressing breast cancer cells. The breadth of metabolic reprogramming included fatty acid synthesis, bioenergetics, HIF-1 signaling pathway, antioxidation, nucleic acid synthesis, and other pathways. Among them, rewiring of glycerophospholipid (including phosphatidylcholine, -serine and -inositol) metabolism and increased arginine metabolism have not been reported yet. Conclusions: Rewired glycerophospholipid and arginine metabolism were identified as components of BRCA1-induced metabolic reprogramming in breast cancer cells. The study helps to identify metabolites that are candidate biomarkers of the BRCA1 genotype and metabolic pathways that can be exploited in targeted therapies. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

55 pages, 2103 KiB  
Review
Reactive Oxygen Species: A Double-Edged Sword in the Modulation of Cancer Signaling Pathway Dynamics
by Manisha Nigam, Bajrang Punia, Deen Bandhu Dimri, Abhay Prakash Mishra, Andrei-Flavius Radu and Gabriela Bungau
Cells 2025, 14(15), 1207; https://doi.org/10.3390/cells14151207 - 6 Aug 2025
Abstract
Reactive oxygen species (ROS) are often seen solely as harmful byproducts of oxidative metabolism, yet evidence reveals their paradoxical roles in both promoting and inhibiting cancer progression. Despite advances, precise context-dependent mechanisms by which ROS modulate oncogenic signaling, therapeutic response, and tumor microenvironment [...] Read more.
Reactive oxygen species (ROS) are often seen solely as harmful byproducts of oxidative metabolism, yet evidence reveals their paradoxical roles in both promoting and inhibiting cancer progression. Despite advances, precise context-dependent mechanisms by which ROS modulate oncogenic signaling, therapeutic response, and tumor microenvironment dynamics remain unclear. Specifically, the spatial and temporal aspects of ROS regulation (i.e., the distinct effects of mitochondrial versus cytosolic ROS on the PI3K/Akt and NF-κB pathways, and the differential cellular outcomes driven by acute versus chronic ROS exposure) have been underexplored. Additionally, the specific contributions of ROS-generating enzymes, like NOX isoforms and xanthine oxidase, to tumor microenvironment remodeling and immune modulation remain poorly understood. This review synthesizes current findings with a focus on these critical gaps, offering novel mechanistic insights into the dualistic nature of ROS in cancer biology. By systematically integrating data on ROS source-specific functions and redox-sensitive signaling pathways, the complex interplay between ROS concentration, localization, and persistence is elucidated, revealing how these factors dictate the paradoxical support of tumor progression or induction of cancer cell death. Particular attention is given to antioxidant mechanisms, including NRF2-mediated responses, that may undermine the efficacy of ROS-targeted therapies. Recent breakthroughs in redox biosensors (i.e., redox-sensitive fluorescent proteins, HyPer variants, and peroxiredoxin–FRET constructs) enable precise, real-time ROS imaging across subcellular compartments. Translational advances, including redox-modulating drugs and synthetic lethality strategies targeting glutathione or NADPH dependencies, further highlight actionable vulnerabilities. This refined understanding advances the field by highlighting context-specific vulnerabilities in tumor redox biology and guiding more precise therapeutic strategies. Continued research on redox-regulated signaling and its interplay with inflammation and therapy resistance is essential to unravel ROS dynamics in tumors and develop targeted, context-specific interventions harnessing their dual roles. Full article
Show Figures

Figure 1

16 pages, 912 KiB  
Review
Connecting the Dots: Beetroot and Asthma
by Madiha Ajaz, Indu Singh, Lada Vugic, Rati Jani, Shashya Diyapaththugama and Natalie Shilton
J. Respir. 2025, 5(3), 12; https://doi.org/10.3390/jor5030012 - 5 Aug 2025
Abstract
Asthma is a persistent ailment that impacts the respiratory system and stands as a formidable public health challenge globally. Inhaled corticosteroids and bronchodilators, while effective in asthma management, are accompanied by side effects and high costs. Recently, nutraceuticals have gained significant attention as [...] Read more.
Asthma is a persistent ailment that impacts the respiratory system and stands as a formidable public health challenge globally. Inhaled corticosteroids and bronchodilators, while effective in asthma management, are accompanied by side effects and high costs. Recently, nutraceuticals have gained significant attention as adjuvant therapy due to their promising outcomes. Given the antioxidant properties, nutrient richness, and an array of health benefits, beetroot and its bioactive compounds have been tested as an adjuvant therapy for asthma management. Although its main bioactive compound, betalains (betanin), has demonstrated promising results in mouse studies, beetroot juice has been found to worsen asthma. This review investigated the full spectrum of active compounds associated with beetroots to understand the underlying factors contributing to the conflicting findings. The finding suggests that individual bioactive compounds, such as phenolic compounds, flavonoids, nitrates, betalains, saponins, vitamins, fiber, and carotenoids, possess asthma-managing properties. However, the consumption of juice may exacerbate the condition. This discrepancy may be attributed to the presence of sugars and oxalates in the juice, which could counteract the beneficial effects of the bioactive compounds. Full article
Show Figures

Graphical abstract

35 pages, 1115 KiB  
Review
Resveratrol as a Novel Therapeutic Approach for Diabetic Retinopathy: Molecular Mechanisms, Clinical Potential, and Future Challenges
by Snježana Kaštelan, Suzana Konjevoda, Ana Sarić, Iris Urlić, Ivana Lovrić, Samir Čanović, Tomislav Matejić and Ana Šešelja Perišin
Molecules 2025, 30(15), 3262; https://doi.org/10.3390/molecules30153262 - 4 Aug 2025
Viewed by 133
Abstract
Diabetic retinopathy (DR) is a progressive, multifactorial complication of diabetes and one of the major global causes of visual impairment. Its pathogenesis involves chronic hyperglycaemia-induced oxidative stress, inflammation, mitochondrial dysfunction, neurodegeneration, and pathological angiogenesis, as well as emerging systemic contributors such as gut [...] Read more.
Diabetic retinopathy (DR) is a progressive, multifactorial complication of diabetes and one of the major global causes of visual impairment. Its pathogenesis involves chronic hyperglycaemia-induced oxidative stress, inflammation, mitochondrial dysfunction, neurodegeneration, and pathological angiogenesis, as well as emerging systemic contributors such as gut microbiota dysregulation. While current treatments, including anti-vascular endothelial growth factor (anti-VEGF) agents, corticosteroids, and laser photocoagulation, have shown clinical efficacy, they are largely limited to advanced stages of DR, require repeated invasive procedures, and do not adequately address early neurovascular and metabolic abnormalities. Resveratrol (RSV), a naturally occurring polyphenol, has emerged as a promising candidate due to its potent antioxidant, anti-inflammatory, neuroprotective, and anti-angiogenic properties. This review provides a comprehensive analysis of the molecular mechanisms by which RSV exerts protective effects in DR, including modulation of oxidative stress pathways, suppression of inflammatory cytokines, enhancement of mitochondrial function, promotion of autophagy, and inhibition of pathological neovascularisation. Despite its promising pharmacological profile, the clinical application of RSV is limited by poor aqueous solubility, rapid systemic metabolism, and low ocular bioavailability. Various routes of administration, including intravitreal injection, topical instillation, and oral and sublingual delivery, have been investigated to enhance its therapeutic potential. Recent advances in drug delivery systems, including nanoformulations, liposomal carriers, and sustained-release intravitreal implants, offer potential strategies to address these challenges. This review also explores RSV’s role in combination therapies, its potential as a disease-modifying agent in early-stage DR, and the relevance of personalised medicine approaches guided by metabolic and genetic factors. Overall, the review highlights the therapeutic potential and the key translational challenges in positioning RSV as a multi-targeted treatment strategy for DR. Full article
Show Figures

Figure 1

42 pages, 1407 KiB  
Review
Antioxidants and Reactive Oxygen Species: Shaping Human Health and Disease Outcomes
by Charles F. Manful, Eric Fordjour, Dasinaa Subramaniam, Albert A. Sey, Lord Abbey and Raymond Thomas
Int. J. Mol. Sci. 2025, 26(15), 7520; https://doi.org/10.3390/ijms26157520 - 4 Aug 2025
Viewed by 264
Abstract
Reactive molecules, including oxygen and nitrogen species, serve dual roles in human physiology. While they function as essential signaling molecules under normal physiological conditions, they contribute to cellular dysfunction and damage when produced in excess by normal metabolism or in response to stressors. [...] Read more.
Reactive molecules, including oxygen and nitrogen species, serve dual roles in human physiology. While they function as essential signaling molecules under normal physiological conditions, they contribute to cellular dysfunction and damage when produced in excess by normal metabolism or in response to stressors. Oxidative/nitrosative stress is a pathological state, resulting from the overproduction of reactive species exceeding the antioxidant capacity of the body, which is implicated in several chronic human diseases. Antioxidant therapies aimed at restoring redox balance and preventing oxidative/nitrosative stress have demonstrated efficacy in preclinical models. However, their clinical applications have met with inconsistent success owing to efficacy, safety, and bioavailability concerns. This summative review analyzes the role of reactive species in human pathophysiology, the mechanisms of action of antioxidant protection, and the challenges that hinder their translation into effective clinical therapies in order to evaluate potential emerging strategies such as targeted delivery systems, precision medicine, and synergistic therapeutic approaches, among others, to overcome current limitations. By integrating recent advances, this review highlights the value of targeting reactive species in the prevention and management of chronic diseases. Full article
Show Figures

Figure 1

16 pages, 1991 KiB  
Article
Antihypertensive Effects of Lotus Seed (Nelumbo nucifera Gaertn.) Extract via eNOS Upregulation and Oxidative Stress Reduction in L-NAME-Induced Hypertensive Rats
by Anjaree Inchan, Tippaporn Bualeong, Worasak Kaewkong, Nitra Nuengchamnong, Phapada Apaikawee, Pakaporn Sa-Nguanpong, Wiriyaporn Sumsakul, Natthawut Charoenphon, Usana Chatturong, Watcharakorn Deetud and Krongkarn Chootip
Pharmaceuticals 2025, 18(8), 1156; https://doi.org/10.3390/ph18081156 - 4 Aug 2025
Viewed by 192
Abstract
Background/Objectives: Nelumbo nucifera Gaertn. (lotus) seeds have traditionally been used to treat hypertension, though their mechanisms remain unclear. This study investigated the antihypertensive effects of lotus seed extract (LSE) and its mechanisms in rats with Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. [...] Read more.
Background/Objectives: Nelumbo nucifera Gaertn. (lotus) seeds have traditionally been used to treat hypertension, though their mechanisms remain unclear. This study investigated the antihypertensive effects of lotus seed extract (LSE) and its mechanisms in rats with Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Methods: Male Sprague Dawley rats received L-NAME (40 mg/kg/day) in drinking water and were treated orally with LSE (5, 10, or 100 mg/kg/day), captopril (5 mg/kg/day), or a combination of LSE and captopril (2.5 mg/kg/day each) for 5 weeks. Hemodynamic parameters and histological changes in the left ventricle and aorta were assessed. Mechanistic studies included measurements of plasma nitric oxide (NO) metabolites, malondialdehyde (MDA), superoxide dismutase (SOD) activity, angiotensin II (Ang II), angiotensin-converting enzyme (ACE) activity, and protein expression via western blot. Results: L-NAME elevated systolic blood pressure and induced cardiovascular remodeling, oxidative stress, and renin-angiotensin system activation. LSE treatment reduced blood pressure, improved antioxidant status, increased NO bioavailability, and downregulated gp91phox and AT1R expression. The combination of low-dose LSE and captopril produced stronger effects than LSE alone, with efficacy comparable to captopril. Conclusions: These findings suggest that LSE exerts antihypertensive effects via antioxidant activity and inhibition of the renin-angiotensin system, supporting its potential as an adjunct therapy for hypertension. Full article
Show Figures

Graphical abstract

17 pages, 1857 KiB  
Systematic Review
Effects of Pomegranate Juice on Androgen Levels, Inflammation and Lipid Profile in Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis
by Vitória Silveira, Pamela Braz, Antonio Jose Grande, Tamy Colonetti, Maria Laura Rodrigues Uggioni, Gabriele da Silveira Prestes, Leonardo Roever, Valdemira Santina Dagostin and Maria Inês da Rosa
J. Clin. Med. 2025, 14(15), 5458; https://doi.org/10.3390/jcm14155458 - 3 Aug 2025
Viewed by 171
Abstract
Background/Objectives: Polycystic ovary syndrome (PCOS) is a multifactorial endocrine disorder frequently associated with metabolic and inflammatory disturbances. Due to its antioxidant and anti-inflammatory properties, pomegranate juice has been proposed as a potential adjunctive therapy in managing PCOS. To evaluate the effects of pomegranate [...] Read more.
Background/Objectives: Polycystic ovary syndrome (PCOS) is a multifactorial endocrine disorder frequently associated with metabolic and inflammatory disturbances. Due to its antioxidant and anti-inflammatory properties, pomegranate juice has been proposed as a potential adjunctive therapy in managing PCOS. To evaluate the effects of pomegranate juice on hormonal, inflammatory, and lipid parameters and body mass index (BMI) in women with PCOS. Methods: A systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted following PRISMA guidelines. Comprehensive searches were performed in electronic databases including Medline, Scopus, Web of Science, Cochrane CENTRAL, and Embase from inception to July 2025, using keywords and MeSH terms related to “polycystic ovary syndrome” and “pomegranate juice” without language restrictions. The primary outcomes were changes in serum testosterone, luteinizing hormone (LH), high-sensitivity C-reactive protein (hs-CRP), lipid profile parameters (HDL, LDL, triglycerides, and total cholesterol), and body mass index (BMI). Results: Four RCTs published between 2020 and 2023, encompassing 128 women with PCOS, were included. The meta-analysis revealed significant reductions in testosterone (MD: −0.05; 95% CI: −0.07 to −0.03; p < 0.0001; I2 = 0%, two studies, 85 participants) and hs-CRP (SMD: −0.85; 95% CI: −1.35 to −0.35; p = 0.0009; I2 = 20%, two studies, 85 participants), along with increases in HDL (MD: 6.21; 95% CI: 2.43 to 10.00; p = 0.001; I2 = 0%, two studies, 85 participants) and reductions in triglycerides (MD: −23.30; 95% CI: −45.19 to −1.42; p = 0.04; I2 = 0%, two studies, 85 participants). No significant changes were observed in LH, LDL, total cholesterol, or BMI. Conclusions: Pomegranate juice demonstrates promising effects as an adjunctive intervention in women with PCOS, improving androgen levels, inflammatory markers, and certain lipid parameters. Further long-term studies are needed to confirm these findings. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

59 pages, 1351 KiB  
Review
The Redox Revolution in Brain Medicine: Targeting Oxidative Stress with AI, Multi-Omics and Mitochondrial Therapies for the Precision Eradication of Neurodegeneration
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7498; https://doi.org/10.3390/ijms26157498 - 3 Aug 2025
Viewed by 173
Abstract
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce [...] Read more.
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce protein misfolding, and promote chronic neuroinflammation, creating a positive feedback loop of neuronal damage and cognitive decline. Despite its centrality in promoting disease progression, attempts to neutralize oxidative stress with monotherapeutic antioxidants have largely failed owing to the multifactorial redox imbalance affecting each patient and their corresponding variation. We are now at the threshold of precision redox medicine, driven by advances in syndromic multi-omics integration, Artificial Intelligence biomarker identification, and the precision of patient-specific therapeutic interventions. This paper will aim to reveal a mechanistically deep assessment of oxidative stress and its contribution to diseases of neurodegeneration, with an emphasis on oxidatively modified proteins (e.g., carbonylated tau, nitrated α-synuclein), lipid peroxidation biomarkers (F2-isoprostanes, 4-HNE), and DNA damage (8-OHdG) as significant biomarkers of disease progression. We will critically examine the majority of clinical trial studies investigating mitochondria-targeted antioxidants (e.g., MitoQ, SS-31), Nrf2 activators (e.g., dimethyl fumarate, sulforaphane), and epigenetic reprogramming schemes aiming to re-establish antioxidant defenses and repair redox damage at the molecular level of biology. Emerging solutions that involve nanoparticles (e.g., antioxidant delivery systems) and CRISPR (e.g., correction of mutations in SOD1 and GPx1) have the potential to transform therapeutic approaches to treatment for these diseases by cutting the time required to realize meaningful impacts and meaningful treatment. This paper will argue that with the connection between molecular biology and progress in clinical hyperbole, dynamic multi-targeted interventions will define the treatment of neurodegenerative diseases in the transition from disease amelioration to disease modification or perhaps reversal. With these innovations at our doorstep, the future offers remarkable possibilities in translating network-based biomarker discovery, AI-powered patient stratification, and adaptive combination therapies into individualized/long-lasting neuroprotection. The question is no longer if we will neutralize oxidative stress; it is how likely we will achieve success in the new frontier of neurodegenerative disease therapies. Full article
Show Figures

Figure 1

18 pages, 2432 KiB  
Article
Alkali Lignin-Based Biopolymer Formulations for Electro-Assisted Drug Delivery of Natural Antioxidants in Breast Cancer Cells—A Preliminary Study
by Severina Semkova, Radina Deneva, Georgi Antov, Donika Ivanova and Biliana Nikolova
Int. J. Mol. Sci. 2025, 26(15), 7481; https://doi.org/10.3390/ijms26157481 - 2 Aug 2025
Viewed by 271
Abstract
Recently, a number of natural biologically active substances have been proven to be attractive alternatives to conventional anticancer medicine or as adjuvants in contemporary combination therapies. Although lignin-based materials were previously accepted as waste materials with limited usefulness, recent studies increasingly report the [...] Read more.
Recently, a number of natural biologically active substances have been proven to be attractive alternatives to conventional anticancer medicine or as adjuvants in contemporary combination therapies. Although lignin-based materials were previously accepted as waste materials with limited usefulness, recent studies increasingly report the possibility of their use for novel applications in various industrial branches, including biomedicine. In this regard, the safety, efficiency, advantages and limitations of lignin compounds for in vitro/in vivo applications remain poorly studied and described. This study was carried out to investigate the possibility of using newly synthesized, alkali lignin-based micro-/nano-biopolymer formulations (Lignin@Formulations/L@F) as carriers for substances with antioxidant and/or anticancer effectiveness. Moreover, we tried to assess the opportunity for using an electro-assisted approach for achieving improved intracellular internalization. An investigation was conducted on an in vitro panel of breast cell lines, namely two breast cancer lines with different metastatic potentials and one non-tumorigenic line as a control. The characterization of all tested formulations was performed via DLS (dynamic light scattering) analysis. We developed an improved separation procedure via size/charge unification for all types of Lignin@Formulations. Moreover, in vitro applications were investigated. The results demonstrate that compared to healthy breast cells, both tested cancer lines exhibited slight sensitivity after treatment with different formulations (empty or loaded with antioxidant substances). This effect was also enhanced after applying electric pulses. L@F loaded with Quercetin was also explored only on the highly metastatic cancer cell line as a model for the breast cancer type most aggressive and non-responsive to traditional treatments. All obtained data suggest that the tested formulations have potential as carriers for the electro-assisted delivery of natural antioxidants such as Quercetin. Full article
(This article belongs to the Special Issue Natural Products in Cancer Prevention and Treatment)
Show Figures

Figure 1

18 pages, 634 KiB  
Review
Cardiorenal Syndrome: Molecular Pathways Linking Cardiovascular Dysfunction and Chronic Kidney Disease Progression
by Fabian Vasquez, Caterina Tiscornia, Enrique Lorca-Ponce, Valeria Aicardi and Sofia Vasquez
Int. J. Mol. Sci. 2025, 26(15), 7440; https://doi.org/10.3390/ijms26157440 - 1 Aug 2025
Viewed by 177
Abstract
Cardiorenal syndrome (CRS) is a multifactorial clinical condition characterized by the bidirectional deterioration of cardiac and renal function, driven by mechanisms such as renin–angiotensin–aldosterone system (RAAS) overactivation, systemic inflammation, oxidative stress, endothelial dysfunction, and fibrosis. The aim of this narrative review is to [...] Read more.
Cardiorenal syndrome (CRS) is a multifactorial clinical condition characterized by the bidirectional deterioration of cardiac and renal function, driven by mechanisms such as renin–angiotensin–aldosterone system (RAAS) overactivation, systemic inflammation, oxidative stress, endothelial dysfunction, and fibrosis. The aim of this narrative review is to explore the key molecular pathways involved in CRS and to highlight emerging therapeutic approaches, with a special emphasis on nutritional interventions. We examined recent evidence on the contribution of mitochondrial dysfunction, uremic toxins, and immune activation to CRS progression and assessed the role of dietary and micronutrient factors. Results indicate that a high dietary intake of sodium, phosphorus additives, and processed foods is associated with volume overload, vascular damage, and inflammation, whereas deficiencies in potassium, magnesium, and vitamin D correlate with worse clinical outcomes. Anti-inflammatory and antioxidant bioactives, such as omega-3 PUFAs, curcumin, and anthocyanins from maqui, demonstrate potential to modulate key CRS mechanisms, including the nuclear factor kappa B (NF-κB) pathway and the NLRP3 inflammasome. Gene therapy approaches targeting endothelial nitric oxide synthase (eNOS) and transforming growth factor-beta (TGF-β) signaling are also discussed. An integrative approach combining pharmacological RAAS modulation with personalized medical nutrition therapy and anti-inflammatory nutrients may offer a promising strategy to prevent or delay CRS progression and improve patient outcomes. Full article
Show Figures

Figure 1

21 pages, 4201 KiB  
Review
Feedback Loops Shape Oxidative and Immune Interactions in Hepatic Ischemia–Reperfusion Injury
by Kenneth J. Dery, Richard Chiu, Aanchal Kasargod and Jerzy W. Kupiec-Weglinski
Antioxidants 2025, 14(8), 944; https://doi.org/10.3390/antiox14080944 - 31 Jul 2025
Viewed by 337
Abstract
Reactive oxygen species (ROS) play a dual role as both essential signaling molecules and harmful mediators of damage. Imbalances in the redox state of the liver can overwhelm antioxidant defenses and promote mitochondrial dysfunction, oxidative damage, and inflammation. Complex feedback loops between ROS [...] Read more.
Reactive oxygen species (ROS) play a dual role as both essential signaling molecules and harmful mediators of damage. Imbalances in the redox state of the liver can overwhelm antioxidant defenses and promote mitochondrial dysfunction, oxidative damage, and inflammation. Complex feedback loops between ROS and immune signaling pathways are a hallmark of pathological liver conditions, such as hepatic ischemia–reperfusion injury (IRI). This is a major cause of liver transplant failure and is of increasing significance due to the increased use of marginally discarded livers for transplantation. This review outlines the major enzymatic and metabolic sources of ROS in hepatic IRI, including mitochondrial reverse electron transport, NADPH oxidases, cytochrome P450 enzymes, and endoplasmic reticulum stress. Hepatocyte injury activates redox feedback loops that initiate immune cascades through DAMP release, toll-like receptor signaling, and cytokine production. Emerging regulatory mechanisms, such as succinate accumulation and cytosolic calcium–CAMKII signaling, further shape oxidative dynamics. Pharmacological therapies and the use of antioxidant and immunomodulatory approaches, including nanoparticles and redox-sensitive therapeutics, are discussed as protective strategies. A deeper understanding of how redox and immune feedback loops interact is an exciting and active area of research that warrants further clinical investigation. Full article
Show Figures

Figure 1

55 pages, 6122 KiB  
Review
Isorhamnetin: Reviewing Recent Developments in Anticancer Mechanisms and Nanoformulation-Driven Delivery
by Juie Nahushkumar Rana, Kainat Gul and Sohail Mumtaz
Int. J. Mol. Sci. 2025, 26(15), 7381; https://doi.org/10.3390/ijms26157381 - 30 Jul 2025
Viewed by 219
Abstract
Natural compounds, particularly flavonoids, have emerged as promising anticancer agents due to their various biological activities and no or negligible toxicity towards healthy tissues. Among these, isorhamnetin, a methylated flavonoid, has gained significant attention for its potential to target multiple cancer hallmarks. This [...] Read more.
Natural compounds, particularly flavonoids, have emerged as promising anticancer agents due to their various biological activities and no or negligible toxicity towards healthy tissues. Among these, isorhamnetin, a methylated flavonoid, has gained significant attention for its potential to target multiple cancer hallmarks. This review comprehensively explores the mechanisms by which isorhamnetin exerts its anticancer effects, including cell cycle regulation, apoptosis, suppression of metastasis and angiogenesis, and modulation of oxidative stress and inflammation. Notably, isorhamnetin arrests cancer cell proliferation by regulating cyclins, and CDKs induce apoptosis via caspase activation and mitochondrial dysfunction. It inhibits metastatic progression by downregulating MMPs, VEGF, and epithelial–mesenchymal transition (EMT) markers. Furthermore, its antioxidant and anti-inflammatory properties mitigate reactive oxygen species (ROS) and pro-inflammatory cytokines, restricting cancer progression and modulating tumor microenvironments. Combining isorhamnetin with other treatments was also discussed to overcome multidrug resistance. Importantly, this review integrates the recent literature (2022–2024) and highlights isorhamnetin’s roles in modulating cancer-specific signaling pathways, immune evasion, tumor microenvironment dynamics, and combination therapies. We also discuss nanoformulation-based strategies that significantly enhance isorhamnetin’s delivery and bioavailability. This positions isorhamnetin as a promising adjunct in modern oncology, capable of improving therapeutic outcomes when used alone or in synergy with conventional treatments. The future perspectives and potential research directions were also summarized. By consolidating current knowledge and identifying critical research gaps, this review positions Isorhamnetin as a potent and versatile candidate in modern oncology, offering a pathway toward safer and more effective cancer treatment strategies. Full article
(This article belongs to the Special Issue The Role of Natural Compounds in Cancer and Inflammation, 2nd Edition)
Show Figures

Figure 1

20 pages, 307 KiB  
Review
High-Intensity Interval Training as Redox Medicine: Targeting Oxidative Stress and Antioxidant Adaptations in Cardiometabolic Disease Cohorts
by Dejan Reljic
Antioxidants 2025, 14(8), 937; https://doi.org/10.3390/antiox14080937 - 30 Jul 2025
Viewed by 342
Abstract
High-intensity interval training (HIIT) has emerged as a promising non-pharmacological intervention for improving cardiometabolic health. In populations with diabetes, cardiovascular disease, obesity, or metabolic dysfunction, redox imbalance—characterized by elevated oxidative stress and impaired antioxidant defense—is a key contributor to disease progression. This narrative [...] Read more.
High-intensity interval training (HIIT) has emerged as a promising non-pharmacological intervention for improving cardiometabolic health. In populations with diabetes, cardiovascular disease, obesity, or metabolic dysfunction, redox imbalance—characterized by elevated oxidative stress and impaired antioxidant defense—is a key contributor to disease progression. This narrative review synthesizes current evidence on the effects of HIIT on oxidative stress and antioxidant capacity across diverse cardiometabolic disease cohorts. While findings are heterogeneous, the majority of studies demonstrate that HIIT intervention can reduce levels of oxidative stress markers and enhance antioxidant enzyme expression. These redox adaptations may underpin improvements in vascular endothelial function, inflammation, and metabolic regulation. Importantly, variations in intensity, duration, and health status influence these responses, highlighting the need for individualized exercise prescriptions. Safety considerations are emphasized, including the necessity for medical clearance, gradual progression, and individualized training prescriptions in higher-risk individuals. In conclusion, HIIT shows potential as a targeted strategy to restore redox homeostasis and improve cardiometabolic outcomes, although further research is needed to clarify optimal protocols and the underlying mechanisms. Full article
Back to TopTop