Connecting the Dots: Beetroot and Asthma
Abstract
1. Introduction
2. Bioactive Analysis of Beetroot
3. Comparison of Bioactive Compounds in Beetroot Formulations
4. Bioavailability of Beetroot’s Bioactive Compounds
5. Bioactive Compounds in Asthma Management: Implications for Beetroot Use
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Becker, A.B.; Abrams, E.M. Asthma guidelines: The Global Initiative for Asthma in relation to national guidelines. Curr. Opin. Allergy Clin. Immunol. 2017, 17, 99–103. [Google Scholar] [CrossRef]
- Rutter, C.; Silverwood, R.; Pérez Fernández, V.; Pearce, N.; Strachan, D.; Mortimer, K.; Lesosky, M.; Asher, I.; Ellwood, P.; Chiang, C.-Y. The global burden of asthma. Int. J. Tuberc. Lung Dis. 2022, 26, 20–23. [Google Scholar]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Buendia, J.A.; Zuluaga, A.F.; Martínez-Rodríguez, C.E. Global and regional projections of the economic burden of Asthma: A value of statistical life approach. F1000Research 2025, 14, 146. [Google Scholar] [CrossRef]
- Ishmael, F.T. The inflammatory response in the pathogenesis of asthma. J. Osteopath. Med. 2011, 111, 11–17. [Google Scholar]
- Cho, Y.S.; Moon, H.-B. The role of oxidative stress in the pathogenesis of asthma. Allergy Asthma Immunol. Res. 2010, 2, 183–187. [Google Scholar] [CrossRef]
- Sena, L.A.; Chandel, N.S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 2012, 48, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Comhair, S.A.; Erzurum, S.C. Redox control of asthma: Molecular mechanisms and therapeutic opportunities. Antioxid. Redox Signal. 2010, 12, 93–124. [Google Scholar] [CrossRef]
- Albano, G.D.; Gagliardo, R.P.; Montalbano, A.M.; Profita, M. Overview of the Mechanisms of Oxidative Stress: Impact in Inflammation of the Airway Diseases. Antioxidants 2022, 11, 2237. [Google Scholar] [CrossRef]
- Castillo, J.R.; Peters, S.P.; Busse, W.W. Asthma exacerbations: Pathogenesis, prevention, and treatment. J. Allergy Clin. Immunol. Pract. 2017, 5, 918–927. [Google Scholar] [CrossRef]
- Mohammed, S.; Goodacre, S. Intravenous and nebulised magnesium sulphate for acute asthma: Systematic review and meta-analysis. Emerg. Med. J. 2007, 24, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.E.; Hurd, S.S.; Lemanske, R.F.; Becker, A.; Zar, H.J.; Sly, P.D.; Soto-Quiroz, M.; Wong, G.; Bateman, E.D. Global strategy for the diagnosis and management of asthma in children 5 years and younger. Pediatr. Pulmonol. 2011, 46, 1–17. [Google Scholar] [CrossRef]
- Barnes, P.J. Drugs for asthma. Br. J. Pharmacol. 2006, 147, S297–S303. [Google Scholar] [CrossRef]
- Schaneberg, B.T.; Crockett, S.; Bedir, E.; Khan, I.A. The role of chemical fingerprinting: Application to Ephedra. Phytochemistry 2003, 62, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Adams, B.K.; Cydulka, R.K. Asthma evaluation and management. Emerg. Med. Clin. 2003, 21, 315–330. [Google Scholar] [CrossRef]
- DiMartino, S.J. Idiopathic inflammatory myopathy: Treatment options. Curr. Rheumatol. Rep. 2008, 10, 321–327. [Google Scholar] [CrossRef]
- Kesler, S.M.; Sprenkle, M.D.; David, W.S.; Leatherman, J.W. Severe weakness complicating status asthmaticus despite minimal duration of neuromuscular paralysis. Intensive Care Med. 2009, 35, 157–160. [Google Scholar] [CrossRef]
- Persaud, P.N.; Tran, A.P.; Messner, D.; Thornton, J.D.; Williams, D.; Harper, L.J.; Tejwani, V. Perception of burden of oral and inhaled corticosteroid adverse effects on asthma-specific quality of life. Ann. Allergy Asthma Immunol. 2023, 131, 745–751.e11. [Google Scholar] [CrossRef]
- Khan, M.; Hirsch, C.; Jones, A.M. Suspected Adverse Drug Reactions Associated With Leukotriene Receptor Antagonists Versus First Line Asthma Medications: A National Registry-Pharmacology Approach. medRxiv 2024, in press. [Google Scholar] [CrossRef]
- Song, W.-J.; Lee, J.-H.; Kang, Y.; Joung, W.J.; Chung, K.F. Future risks in patients with severe asthma. Allergy Asthma Immunol. Res. 2019, 11, 763–778. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.W.; Ghushchyan, V.H.; Globe, G.; Schatz, M. Oral corticosteroid exposure and adverse effects in asthmatic patients. J. Allergy Clin. Immunol. 2018, 141, 110–116.e7. [Google Scholar] [CrossRef]
- Davis, S.R.; Ampon, R.D.; Poulos, L.M.; Lee, T.; Marks, G.B.; Toelle, B.G.; Reddel, H.K. Prevalence and burden of difficult-to-treat and severe asthma in Australia: A national population survey. Respirology 2024, 29, 685–693. [Google Scholar] [CrossRef]
- Miravitlles, M.; Auladell-Rispau, A.; Monteagudo, M.; Vázquez-Niebla, J.C.; Mohammed, J.; Nuñez, A.; Urrútia, G. Systematic review on long-term adverse effects of inhaled corticosteroids in the treatment of COPD. Eur. Respir. Rev. 2021, 30, 210075. [Google Scholar] [CrossRef]
- Lee, C.-H.; Kim, K.; Hyun, M.K.; Jang, E.J.; Lee, N.R.; Yim, J.-J. Use of inhaled corticosteroids and the risk of tuberculosis. Thorax 2013, 68, 1105–1113. [Google Scholar] [CrossRef]
- Güner Zırıh, N.M.; Yılmaz Kara, B.; Özyurt, S.; Okçu, O.; İlgar, T.; Şahin, Ü. Giant lung cavity due to three different pathogens in a patient receiving inhaled salmeterol plus fluticasone propionate for asthma. J. Asthma 2024, 61, 643–648. [Google Scholar] [CrossRef]
- Ellwood, P.; Asher, M.I.; García-Marcos, L.; Williams, H.; Keil, U.; Robertson, C.; Nagel, G.; Group, I.P.I.S. Do fast foods cause asthma, rhinoconjunctivitis and eczema? Global findings from the International Study of Asthma and Allergies in Childhood (ISAAC) phase three. Thorax 2013, 68, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Iikura, M.; Yi, S.; Ichimura, Y.; Hori, A.; Izumi, S.; Sugiyama, H.; Kudo, K.; Mizoue, T.; Kobayashi, N. Effect of lifestyle on asthma control in Japanese patients: Importance of periodical exercise and raw vegetable diet. PLoS ONE 2013, 8, e68290. [Google Scholar] [CrossRef] [PubMed]
- Willers, S.M.; Wijga, A.H.; Brunekreef, B.; Scholtens, S.; Postma, D.S.; Kerkhof, M.; de Jongste, J.C.; Smit, H.A. Childhood diet and asthma and atopy at 8 years of age: The PIAMA birth cohort study. Eur. Respir. J. 2011, 37, 1060–1067. [Google Scholar] [CrossRef]
- Butland, B.; Strachan, D.; Anderson, H. Fresh fruit intake and asthma symptoms in young British adults: Confounding or effect modification by smoking? Eur. Respir. J. 1999, 13, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Uddenfeldt, M.; Janson, C.; Lampa, E.; Leander, M.; Norbäck, D.; Larsson, L.; Rask-Andersen, A. High BMI is related to higher incidence of asthma, while a fish and fruit diet is related to a lower–: Results from a long-term follow-up study of three age groups in Sweden. Respir. Med. 2010, 104, 972–980. [Google Scholar] [CrossRef]
- La Vecchia, C.; Decarli, A.; Pagano, R. Vegetable consumption and risk of chronic disease. Epidemiology 1998, 9, 208–210. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef]
- Shergis, J.L.; Wu, L.; Zhang, A.L.; Guo, X.; Lu, C.; Xue, C.C. Herbal medicine for adults with asthma: A systematic review. J. Asthma 2016, 53, 650–659. [Google Scholar] [CrossRef]
- Clarke, R.; Lundy, F.; McGarvey, L. Herbal treatment in asthma and COPD–current evidence. Clin. Phytosci. 2015, 1, 4. [Google Scholar] [CrossRef]
- Ajaz, M.; Singh, I.; Vugic, L.; Jani, R.; Rathnayake, H.; Diyapaththugama, S.; Mulaw, G.F.; Colson, N.J. The Interplay of Plant-Based Antioxidants, Inflammation, and Clinical Outcomes in Asthma: A Systematic Review. Respir. Med. 2024, 236, 107918. [Google Scholar] [CrossRef] [PubMed]
- Koshak, A.; Wei, L.; Koshak, E.; Wali, S.; Alamoudi, O.; Demerdash, A.; Qutub, M.; Pushparaj, P.N.; Heinrich, M. Nigella sativa supplementation improves asthma control and biomarkers: A randomized, double-blind, placebo-controlled trial. Phytother. Res. 2017, 31, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Manarin, G.; Anderson, D.; Silva, J.M.e.; Coppede, J.d.S.; Roxo-Junior, P.; Pereira, A.M.S.; Carmona, F. Curcuma longa L. ameliorates asthma control in children and adolescents: A randomized, double-blind, controlled trial. J. Ethnopharmacol. 2019, 238, 111882. [Google Scholar] [CrossRef]
- Fouladi, S.; Masjedi, M.; Hakemi, M.G.; Eskandari, N. The review of in vitro and in vivo studies over the glycyrrhizic acid as natural remedy option for treatment of allergic asthma. Iran. J. Allergy Asthma Immunol. 2019, 18, 1–11. [Google Scholar] [CrossRef]
- El-Elimat, T.; Al-khawlani, A.R.; Al-Sawalha, N.A.; Sa’ed, M.M.; Al-Qiam, R.; Sharie, A.H.A.; Qinna, N.A. The effect of beetroot juice on airway inflammation in a murine model of asthma. J. Food Biochem. 2022, 46, e14381. [Google Scholar] [CrossRef]
- Chawla, H.; Parle, M.; Sharma, K.; Yadav, M. Beetroot: A health promoting functional food. Inven. Rapid Nutraceuticals 2016, 1, 0976–3872. [Google Scholar]
- Mikołajczyk-Bator, K.; Błaszczyk, A.; Czyżniejewski, M.; Kachlicki, P. Characterisation and identification of triterpene saponins in the roots of red beets (Beta vulgaris L.) using two HPLC–MS systems. Food Chem. 2016, 192, 979–990. [Google Scholar] [CrossRef] [PubMed]
- dos S. Baião, D.; da Silva, D.V.T.; Paschoalin, V.M.F. Beetroot, A Remarkable Vegetable: Its Nitrate and Phytochemical Contents Can be Adjusted in Novel Formulations to Benefit Health and Support Cardiovascular Disease Therapies. Antioxidants 2020, 9, 960. [Google Scholar] [CrossRef]
- Yashwant, K. Beetroot: A super food. Int. J. Eng. Stud. Tech. Approach 2015, 1, 20–26. [Google Scholar]
- Mirmiran, P.; Houshialsadat, Z.; Gaeini, Z.; Bahadoran, Z.; Azizi, F. Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutr. Metab. 2020, 17, 3. [Google Scholar] [CrossRef]
- Dhiman, A.; Suhag, R.; Chauhan, D.S.; Thakur, D.; Chhikara, S.; Prabhakar, P.K. Status of beetroot processing and processed products: Thermal and emerging technologies intervention. Trends Food Sci. Technol. 2021, 114, 443–458. [Google Scholar] [CrossRef]
- Carrillo, C.; Wilches-Pérez, D.; Hallmann, E.; Kazimierczak, R.; Rembiałkowska, E. Organic versus conventional beetroot. Bioactive compounds and antioxidant properties. LWT 2019, 116, 108552. [Google Scholar] [CrossRef]
- Czapski, J.; Mikołajczyk, K.; Kaczmarek, M. Relationship between antioxidant capacity of red beet juice and contents of its betalain pigments. Pol. J. Food Nutr. Sci. 2009, 59, 119–122. [Google Scholar]
- Muramatsu, D.; Uchiyama, H.; Higashi, H.; Kida, H.; Iwai, A. Effects of heat degradation of betanin in red beetroot (Beta vulgaris L.) on biological activity and antioxidant capacity. PLoS ONE 2023, 18, e0286255. [Google Scholar] [CrossRef]
- Monteiro, R.; Azevedo, I. Chronic inflammation in obesity and the metabolic syndrome. Mediat. Inflamm. 2010, 2010, 289645. [Google Scholar] [CrossRef]
- El Gamal, A.A.; AlSaid, M.S.; Raish, M.; Al-Sohaibani, M.; Al-Massarani, S.M.; Ahmad, A.; Hefnawy, M.; Al-Yahya, M.; Basoudan, O.A.; Rafatullah, S. Beetroot (Beta vulgaris L.) extract ameliorates gentamicin-induced nephrotoxicity associated oxidative stress, inflammation, and apoptosis in rodent model. Mediat. Inflamm. 2014, 2014, 983952. [Google Scholar] [CrossRef] [PubMed]
- Miraj, S. Chemistry and pharmacological effect of Beta vulgaris: A systematic review. Der Pharm. Lett. 2016, 8, 404–409. [Google Scholar]
- Ormsbee, M.J.; Lox, J.; Arciero, P.J. Beetroot juice and exercise performance. Nutr. Diet. Suppl. 2013, 5, 27–35. [Google Scholar] [CrossRef]
- Coles, L.T.; Clifton, P.M. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: A randomized, placebo-controlled trial. Nutr. J. 2012, 11, 106. [Google Scholar] [CrossRef]
- Zielińska-Przyjemska, M.; Olejnik, A.; Dobrowolska-Zachwieja, A.; Grajek, W. In Vitro effects of beetroot juice and chips on oxidative metabolism and apoptosis in neutrophils from obese individuals. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2009, 23, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Dai, R.; Wang, Y.; Wang, N. Betalain alleviates airway inflammation in an ovalbumin-induced-asthma mouse model via the TGF-β1/Smad signaling pathway. J. Environ. Pathol. Toxicol. Oncol. 2021, 40, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Shen, Y.; Guo, X.; Xu, Y.; Mao, Y.; Wu, Y.; He, F.; Wang, C.; Chen, Y.; Yang, Y. Betanin Dose-Dependently Ameliorates Allergic Airway Inflammation by Attenuating Th2 Response and Upregulating cAMP–PKA–CREB Pathway in Asthmatic Mice. J. Agric. Food Chem. 2022, 70, 3708–3718. [Google Scholar] [CrossRef] [PubMed]
- Ritz, T.; Werchan, C.A.; Kroll, J.L.; Rosenfield, D. Beetroot juice supplementation for the prevention of cold symptoms associated with stress: A proof-of-concept study. Physiol. Behav. 2019, 202, 45–51. [Google Scholar] [CrossRef]
- Chhikara, N.; Kushwaha, K.; Sharma, P.; Gat, Y.; Panghal, A. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chem. 2019, 272, 192–200. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Sharma, N.; Sanwal, N.; Lorenzo, J.M.; Sahu, J.K. Bioactive potential of beetroot (Beta vulgaris). Food Res. Int. 2022, 158, 111556. [Google Scholar] [CrossRef]
- Deshmukh, G.; Inka, P.; Sindhav, R.; Jose, N. Application of beetroot as natural coloring pigment and functional ingredient in dairy and food products. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2010–2016. [Google Scholar] [CrossRef]
- Kale, R.; Sawate, A.; Kshirsagar, R.; Patil, B.; Mane, R. Studies on evaluation of physical and chemical composition of beetroot (Beta vulgaris L.). Int. J. Chem. Stud. 2018, 6, 2977–2979. [Google Scholar]
- Sentkowska, A.; Pyrzyńska, K. Old-Fashioned, but Still a Superfood—Red Beets as a Rich Source of Bioactive Compounds. Appl. Sci. 2023, 13, 7445. [Google Scholar] [CrossRef]
- Ceclu, L.; Oana-Viorela, N. Red Beetroot: Composition and Health Effects—A Review. J. Nutr. Med. Diet Care 2020, 6, 43. [Google Scholar] [CrossRef]
- Wruss, J.; Waldenberger, G.; Huemer, S.; Uygun, P.; Lanzerstorfer, P.; Müller, U.; Höglinger, O.; Weghuber, J. Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. J. Food Compos. Anal. 2015, 42, 46–55. [Google Scholar] [CrossRef]
- Salovaara, S.; Sandberg, A.-S.; Andlid, T. Organic acids influence iron uptake in the human epithelial cell line Caco-2. J. Agric. Food Chem. 2002, 50, 6233–6238. [Google Scholar] [CrossRef]
- Duke, J.A. Handbook of Phytochemical Constituent Grass, Herbs and Other Economic Plants: Herbal Reference Library; Routledge: Oxfordshire, UK, 2017. [Google Scholar]
- Food Standards Australia New Zealand. Australian Food Composition Database: Beetroot, Fresh, Purple, Peeled, Boiled, Drained (F001014). Available online: https://afcd.foodstandards.gov.au/fooddetails.aspx?PFKID=F001014 (accessed on 5 July 2025).
- Kazimierczak, R.; Siłakiewicz, A.; Hallmann, E.; Srednicka-Tober, D.; Rembiałkowska, E. Chemical composition of selected beetroot juices in relation to beetroot production system and processing technology. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 491–498. [Google Scholar] [CrossRef]
- Vasconcellos, J.; Conte-Junior, C.; Silva, D.; Pierucci, A.P.; Paschoalin, V.; Alvares, T.S. Comparison of total antioxidant potential, and total phenolic, nitrate, sugar, and organic acid contents in beetroot juice, chips, powder, and cooked beetroot. Food Sci. Biotechnol. 2016, 25, 79–84. [Google Scholar] [CrossRef]
- Silva, D.V.T.d.; Silva, F.d.O.; Perrone, D.; Pierucci, A.P.T.R.; Conte-Junior, C.A.; Alvares, T.d.S.; Aguila, E.M.D.; Paschoalin, V.M.F. Physicochemical, nutritional, and sensory analyses of a nitrate-enriched beetroot gel and its effects on plasmatic nitric oxide and blood pressure. Food Nutr. Res. 2016, 60, 29909. [Google Scholar] [CrossRef] [PubMed]
- Shyamala, B.; Jamuna, P. Nutritional content and antioxidant properties of pulp waste from Daucus carota and Beta vulgaris. Malays. J. Nutr. 2010, 16, 397–408. [Google Scholar] [PubMed]
- Platosz, N.; Sawicki, T.; Wiczkowski, W. Profile of phenolic acids and flavonoids of red beet and its fermentation products. Does long-term consumption of fermented beetroot juice affect phenolics profile in human blood plasma and urine? Pol. J. Food Nutr. Sci. 2020, 70, 55–65. [Google Scholar] [CrossRef]
- Baião, D.d.S.; da Silva, D.V.; Del Aguila, E.M.; Paschoalin, V.M.F. Nutritional, bioactive and physicochemical characteristics of different beetroot formulations. Food Addit. 2017, 6, 21–43. [Google Scholar]
- Fu, Y.; Shi, J.; Xie, S.-Y.; Zhang, T.-Y.; Soladoye, O.P.; Aluko, R.E. Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. J. Agric. Food Chem. 2020, 68, 11595–11611. [Google Scholar] [CrossRef]
- Gawałek, J. Effect of Spray Dryer Scale Size on the Properties of Dried Beetroot Juice. Molecules 2021, 26, 6700. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, T.; Martinez-Villaluenga, C.; Frias, J.; Wiczkowski, W.; Peñas, E.; Bączek, N.; Zieliński, H. The effect of processing and in vitro digestion on the betalain profile and ACE inhibition activity of red beetroot products. J. Funct. Foods 2019, 55, 229–237. [Google Scholar] [CrossRef]
- Hamid, M.G.; Mohamed Nour, A.A.A. Effect of different drying methods on quality attributes of beetroot (Beta vulgaris) slices. World J. Sci. Technol. Sustain. Dev. 2018, 15, 287–298. [Google Scholar] [CrossRef]
- Costa, A.P.D.; Hermes, V.S.; Rios, A.d.O.; Flôres, S.H. Minimally processed beetroot waste as an alternative source to obtain functional ingredients. J. Food Sci. Technol. 2017, 54, 2050–2058. [Google Scholar] [CrossRef]
- Ravichandran, K.; Saw, N.M.M.T.; Mohdaly, A.A.A.; Gabr, A.M.M.; Kastell, A.; Riedel, H.; Cai, Z.; Knorr, D.; Smetanska, I. Impact of processing of red beet on betalain content and antioxidant activity. Food Res. Int. 2013, 50, 670–675. [Google Scholar] [CrossRef]
- Hostettmann, K.; Marston, A. Chemistry and Pharmacology of Natural Products; Cambridge University Press: Cambridge, UK, 1995; Volume 548. [Google Scholar]
- Murakami, T.; Matsuda, H.; Inadzuki, M.; Hirano, K.; Yoshikawa, M. Medicinal Foodstuffs. XVI. Sugar beet. (3): Absolute stereostructures of betavulgarosides II and IV, hypoglycemic saponins having a unique substituent, from the roots of Beta vulgaris L. Chem. Pharm. Bull. 1999, 47, 1717–1724. [Google Scholar] [CrossRef]
- Leong, S.Y.; Oey, I. Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chem. 2012, 133, 1577–1587. [Google Scholar] [CrossRef]
- Szopińska, A.A.; Gawęda, M. Comparison of Yield and Quality of Red Beet Roots Cultivated Using Conventional, Integrated and Organic Method. J. Hortic. Res. 2013, 21, 107–114. [Google Scholar] [CrossRef]
- Pavlović, N.V.; Mladenović, J.; Stevović, V.; Bošković-Rakočević, L.; Moravčević, Đ.; Poštić, D.; Zdravković, J. Effect of processing on vitamin C content, total phenols and antioxidative activity of organically grown red beetroot (Beta vulgaris ssp. Rubra). Food Feed Res. 2021, 48, 131–139. [Google Scholar] [CrossRef]
- Abdo, E.; El-Sohaimy, S.; Shaltout, O.; Abdalla, A.; Zeitoun, A. Nutritional Evaluation of Beetroots (Beta vulgaris L.) and Its Potential Application in a Functional Beverage. Plants 2020, 9, 1752. [Google Scholar] [CrossRef] [PubMed]
- Baião, D.; Silva, F.; d’El-Rei, J.; Neves, M.; Perrone, D.; Del Aguila, E.; Paschoalin, V. A new functional beetroot formulation enhances adherence to nitrate supplementation and health outcomes in clinical practice. SDRP J. Food Sci. Technol 2018, 3, 484–498. [Google Scholar]
- Mubajje, M.S. The Potential Use of Beetroot (Beta vulgaris L.) Powder to Complement Dietary Iron Intake of Adolescent School Girls (10–19 Years Old). Master’s Thesis, Makerere University, Kampala, Uganda, 2021. [Google Scholar]
- Natesh, H.; Abbey, L.; Asiedu, S. An overview of nutritional and antinutritional factors in green leafy vegetables. Hortic. Int. J. 2017, 1, 00011. [Google Scholar]
- Lisiewska, Z.; Gebczynski, P.; Slupski, J. Effect of processing and cooking on total and soluble oxalate content in frozen root vegetables prepared for consumption. Agric. Food Sci. 2011, 20, 305–314. [Google Scholar] [CrossRef]
- Srivastava, S.; Pandey, V.K.; Singh, P.; Bhagya Raj, G.V.S.; Dash, K.K.; Singh, R. Effects of microwave, ultrasound, and various treatments on the reduction of antinutritional factors in elephant foot yam: A review. eFood 2022, 3, e40. [Google Scholar] [CrossRef]
- Kala, B.; Mohan, V. Effect of microwave treatment on the antinutritional factors of two accessions of velvet bean, Mucuna pruriens (L.) DC. var. utilis (Wall. ex Wight) Bak. ex Burck. Int. Food Res. J. 2012, 19, 961–969. [Google Scholar]
- Jat, K.; Jayachandran, L.E.; Rao, P.S. Impact of temperature assisted ultrasonication on the quality attributes of beetroot (Beta vulgaris L.) juice. J. Food Process Eng. 2023, 46, e14329. [Google Scholar] [CrossRef]
- Enkhtuya, N.; Baatar, D.; Odontuya, L. Possible ways of decreasing oxalate content in red beet foods. Proc. Mong. Acad. Sci. 2017, 52, 55. [Google Scholar] [CrossRef]
- Babatunde, O.M.; Ibukun, O.E. Effect of deoxalation on in-vitro antioxidant activity and inhibition of ferric induced lipid peroxidation of beetroot juice. Coast J. Sch. Sci. Oaustech Okitipupa 2020, 2, 356–367. [Google Scholar]
- Zhen, G.M. Study on the correlation between root weight and sugar content in sugar beet. China Sugarbeet. 1995, 1, 16–19. [Google Scholar]
- Hoffmann, C.M.; Kenter, C. Yield potential of sugar beet–have we hit the ceiling? Front. Plant Sci. 2018, 9, 289. [Google Scholar] [CrossRef]
- Diego dos, S.B.; Davi, V.T.d.S.; Eduardo, M.D.A.; Vânia, M.F.P. Nutritional, Bioactive and Physicochemical Characteristics of Different Beetroot Formulations. In Food Additives; Desiree Nedra, K., Geethi, P., Eds.; IntechOpen: Rijeka, Croatia, 2017; p. Ch.2. [Google Scholar]
- Alminger, M.; Aura, A.M.; Bohn, T.; Dufour, C.; El, S.; Gomes, A.; Karakaya, S.; Martínez-Cuesta, M.C.; McDougall, G.J.; Requena, T. In Vitro models for studying secondary plant metabolite digestion and bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2014, 13, 413–436. [Google Scholar] [CrossRef]
- Desseva, I.; Stoyanova, M.; Petkova, N.; Mihaylova, D. Red beetroot juice phytochemicals bioaccessibility: An In Vitro approach. Pol. J. Food Nutr. Sci. 2020, 70, 45–53. [Google Scholar] [CrossRef]
- Guldiken, B.; Toydemir, G.; Nur Memis, K.; Okur, S.; Boyacioglu, D.; Capanoglu, E. Home-processed red beetroot (Beta vulgaris L.) products: Changes in antioxidant properties and bioaccessibility. Int. J. Mol. Sci. 2016, 17, 858. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Volino-Souza, M.; Oliveira, G.V.d.; Conte-Junior, C.A.; Alvares, T.S. COVID-19 Quarantine: Impact of Lifestyle Behaviors Changes on Endothelial Function and Possible Protective Effect of Beetroot Juice. Front. Nutr. 2020, 7, 582210. [Google Scholar] [CrossRef]
- Milton-Laskibar, I.; Martínez, J.A.; Portillo, M.P. Current Knowledge on Beetroot Bioactive Compounds: Role of Nitrate and Betalains in Health and Disease. Foods 2021, 10, 1314. [Google Scholar] [CrossRef] [PubMed]
- Tesoriere, L.; Gentile, C.; Angileri, F.; Attanzio, A.; Tutone, M.; Allegra, M.; Livrea, M. Trans-epithelial transport of the betalain pigments indicaxanthin and betanin across Caco-2 cell monolayers and influence of food matrix. Eur. J. Nutr. 2013, 52, 1077–1087. [Google Scholar] [CrossRef]
- Davi Vieira Teixeira da, S.; Diego dos Santos, B.; de Oliveira Silva, F.; Alves, G.; Perrone, D.; Eduardo Mere Del, A. Betanin, a Natural Food Additive: Stability, Bioavailability, Antioxidant and Preservative Ability Assessments. Molecules 2019, 24, 458. [Google Scholar] [CrossRef]
- Bargagli, M.; Tio, M.C.; Waikar, S.S.; Ferraro, P.M. Dietary Oxalate Intake and Kidney Outcomes. Nutrients 2020, 12, 2673. [Google Scholar] [CrossRef]
- Ramírez-Ojeda, A.; Moreno-Rojas, R.; Cámara-Martos, F. Mineral and trace element content in legumes (lentils, chickpeas and beans): Bioaccesibility and probabilistic assessment of the dietary intake. J. Food Compos. Anal. 2018, 73, 17–28. [Google Scholar] [CrossRef]
- Igual, M.; Fernandes, Â.; Dias, M.I.; Pinela, J.; García-Segovia, P.; Martínez-Monzó, J.; Barros, L. The In Vitro Simulated Gastrointestinal Digestion Affects the Bioaccessibility and Bioactivity of Beta vulgaris Constituents. Foods 2023, 12, 338. [Google Scholar] [CrossRef]
- Jelena, C.H.; Giorgio, R.; Justyna, G.; Neda, M.-D.; Natasa, S.; Artur, B.; Giuseppe, G. Beneficial effects of polyphenols on chronic diseases and ageing. In Polyphenols: Properties, Recovery, and Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 69–102. [Google Scholar]
- Xiao, J.; Hogger, P. Dietary polyphenols and type 2 diabetes: Current insights and future perspectives. Curr. Med. Chem. 2015, 22, 23–38. [Google Scholar] [CrossRef]
- Wang, X.; Ouyang, Y.Y.; Liu, J.; Zhao, G. Flavonoid intake and risk of CVD: A systematic review and meta-analysis of prospective cohort studies. Br. J. Nutr. 2014, 111, 1–11. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, H.; Ma, C.; Lv, L.; Feng, J.; Han, S. Gallic acid attenuates allergic airway inflammation via suppressed interleukin-33 and group 2 innate lymphoid cells in ovalbumin-induced asthma in mice. In International Forum of Allergy & Rhinology; Wiley Online Library: Hoboken, NJ, USA, 2018. [Google Scholar]
- Singla, E.; Dharwal, V.; Naura, A.S. Gallic acid protects against the COPD-linked lung inflammation and emphysema in mice. Inflamm. Res. 2020, 69, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Wang, T.; Fu, Y.; Yu, T.; Ding, Y.; Nie, H. Ferulic Acid: A Review of Pharmacology, Toxicology, and Therapeutic Effects on Pulmonary Diseases. Int. J. Mol. Sci. 2023, 24, 8011. [Google Scholar] [CrossRef]
- Dhayanandamoorthy, Y.; Antoniraj, M.G.; Kandregula, C.A.B.; Kandasamy, R. Aerosolized hyaluronic acid decorated, ferulic acid loaded chitosan nanoparticle: A promising asthma control strategy. Int. J. Pharm. 2020, 591, 119958. [Google Scholar] [CrossRef]
- Saeedavi, M.; Goudarzi, M.; Mehrzadi, S.; Basir, Z.; Hasanvand, A.; Hosseinzadeh, A. Sinapic acid ameliorates airway inflammation in murine ovalbumin-induced allergic asthma by reducing Th2 cytokine production. Life Sci. 2022, 307, 120858. [Google Scholar] [CrossRef] [PubMed]
- Hemmati, A.A.; Dianat, M.; Jalali, A. Evaluation of the Effect of Caffeic Acid Phenethyl Ester (CAPE) on Pharmacological Responses of Isolated Rat Trachea In Vitro. Tanaffos 2020, 19, 256. [Google Scholar] [PubMed]
- Lin, L.-J.; Huang, H.Y. DFSG, a novel herbal cocktail with anti-asthma activity, suppressed MUC5AC in A549 cells and alleviated allergic airway hypersensitivity and inflammatory cell infiltration in a chronic asthma mouse model. Biomed. Pharmacother. 2020, 121, 109584. [Google Scholar] [CrossRef]
- Molitorisova, M.; Sutovska, M.; Kazimierova, I.; Barborikova, J.; Joskova, M.; Novakova, E.; Franova, S. The anti-asthmatic potential of flavonol kaempferol in an experimental model of allergic airway inflammation. Eur. J. Pharmacol. 2021, 891, 173698. [Google Scholar] [CrossRef]
- Li, X.; Jin, F.; Lee, H.J.; Lee, C.J. Kaempferol regulates the expression of airway MUC5AC mucin gene via IκBα-NF-κB p65 and p38-p44/42-Sp1 signaling pathways. Biomol. Ther. 2021, 29, 303. [Google Scholar] [CrossRef]
- Podder, B.; Song, K.S.; Song, H.-Y.; Kim, Y.-S. Cytoprotective effect of kaempferol on paraquat-exposed BEAS-2B cells via modulating expression of MUC5AC. Biol. Pharm. Bull. 2014, 37, 1486–1494. [Google Scholar] [CrossRef] [PubMed]
- Leal, L.K.; Costa, M.F.; Pitombeira, M.; Barroso, V.M.; Silveira, E.R.; Canuto, K.M.; Viana, G.S. Mechanisms underlying the relaxation induced by isokaempferide from Amburana cearensis in the guinea-pig isolated trachea. Life Sci. 2006, 79, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Nie, X. Afzelin attenuates asthma phenotypes by downregulation of GATA3 in a murine model of asthma. Mol. Med. Rep. 2015, 12, 71–76. [Google Scholar] [CrossRef]
- Chung, M.J.; Pandey, R.P.; Choi, J.W.; Sohng, J.K.; Choi, D.J.; Park, Y.I. Inhibitory effects of kaempferol-3-O-rhamnoside on ovalbumin-induced lung inflammation in a mouse model of allergic asthma. Int. Immunopharmacol. 2015, 25, 302–310. [Google Scholar] [CrossRef]
- Cho, I.-H.; Gong, J.-H.; Kang, M.-K.; Lee, E.-J.; Park, J.H.Y.; Park, S.-J.; Kang, Y.-H. Astragalin inhibits airway eotaxin-1 induction and epithelial apoptosis through modulating oxidative stress-responsive MAPK signaling. BMC Pulm. Med. 2014, 14, 122. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Choi, Y.-J.; Kang, M.-K.; Park, S.-H.; Antika, L.D.; Lee, E.-J.; Kim, D.Y.; Kang, Y.-H. Astragalin inhibits allergic inflammation and airway thickening in ovalbumin-challenged mice. J. Agric. Food Chem. 2017, 65, 836–845. [Google Scholar] [CrossRef]
- Park, S.-W.; Lee, A.Y.; Lim, J.-O.; Lee, S.-J.; Kim, W.-I.; Yang, Y.-G.; Kim, B.; Kim, J.-S.; Chae, S.-W.; Na, K.; et al. Loranthus tanakae Franch. & Sav. Suppresses Inflammatory Response in Cigarette Smoke Condensate Exposed Bronchial Epithelial Cells and Mice. Antioxidants 2022, 11, 1885. [Google Scholar] [CrossRef] [PubMed]
- Duarte, J.; Pérez-Vizcaíno, F.; Zarzuelo, A.; Jiménez, J.; Tamargo, J. Vasodilator effects of quercetin in isolated rat vascular smooth muscle. Eur. J. Pharmacol. 1993, 239, 1–7. [Google Scholar] [CrossRef]
- Gryglewski, R.J.; Korbut, R.; Robak, J.; Świȩs, J. On the mechanism of antithrombotic action of flavonoids. Biochem. Pharmacol. 1987, 36, 317–322. [Google Scholar] [CrossRef]
- Perez-Vizcaino, F.; Duarte, J.; Jimenez, R.; Santos-Buelga, C.; Osuna, A. Antihypertensive effects of the flavonoid quercetin. Pharmacol. Rep. 2009, 61, 67–75. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, Y.; Zhang, X.; Zhang, X.; Chen, S.; Hu, Z.; Zhou, C.; Zhang, E.; Ma, S. Astragalin attenuates allergic inflammation in a murine asthma model. Inflammation 2015, 38, 2007–2016. [Google Scholar] [CrossRef]
- Paudel, K.R.; Wadhwa, R.; Mehta, M.; Chellappan, D.K.; Hansbro, P.M.; Dua, K. Rutin loaded liquid crystalline nanoparticles inhibit lipopolysaccharide induced oxidative stress and apoptosis in bronchial epithelial cells in vitro. Toxicol. Vitr. 2020, 68, 104961. [Google Scholar] [CrossRef]
- Mehta, M.; Paudel, K.R.; Shukla, S.D.; Shastri, M.D.; Satija, S.; Singh, S.K.; Gulati, M.; Dureja, H.; Zacconi, F.C.; Hansbro, P.M. Rutin-loaded liquid crystalline nanoparticles attenuate oxidative stress in bronchial epithelial cells: A PCR validation. Future Med. Chem. 2021, 13, 543–549. [Google Scholar] [CrossRef]
- Grochowski, D.M.; Locatelli, M.; Granica, S.; Cacciagrano, F.; Tomczyk, M. A review on the dietary flavonoid tiliroside. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1395–1421. [Google Scholar] [CrossRef] [PubMed]
- Soodaeva, S.; Klimanov, I.; Kubysheva, N.; Popova, N.; Batyrshin, I. The state of the nitric oxide cycle in respiratory tract diseases. Oxidative Med. Cell. Longev. 2020, 2020, 4859260. [Google Scholar] [CrossRef]
- Sriboonyong, T.; Kawamatawong, T.; Sriwantana, T.; Srihirun, S.; Titapiwatanakun, V.; Vivithanaporn, P.; Pornsuriyasak, P.; Sibmooh, N.; Kamalaporn, H. Efficacy and safety of inhaled nebulized sodium nitrite in asthmatic patients. Pulm. Pharmacol. Ther. 2021, 66, 101984. [Google Scholar] [CrossRef] [PubMed]
- Szaefer, H.; Krajka-Kuźniak, V.; Ignatowicz, E.; Adamska, T.; Baer-Dubowska, W. Evaluation of the effect of beetroot juice on DMBA-induced damage in liver and mammary gland of female sprague–dawley rats. Phytother. Res. 2014, 28, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Alqasmi, I. Ameliorative potential of betanin on cigarette smoke extract-induced respiratory mucosal inflammation and oxidative stress in the adult zebrafish model. Pharmacogn. Mag. 2023, 19, 244–253. [Google Scholar] [CrossRef]
- Tural, K.; Ozden, O.; Bilgi, Z.; Kubat, E.; Ermutlu, C.S.; Merhan, O.; Findik Guvendi, K.; Kucuker, S.A. The protective effect of betanin and copper on heart and lung in end-organ ischemia reperfusion injury. Bratisl. Med. J. Bratisl. Lek. Listy 2020, 121, 211–217. [Google Scholar] [CrossRef]
- Sung, J.-E.; Lee, H.-A.; Kim, J.-E.; Yun, W.-B.; An, B.-S.; Yang, S.-Y.; Kim, D.-S.; Lee, C.-Y.; Lee, H.-S.; Bae, C.-J. Saponin-enriched extract of Asparagus cochinchinensis alleviates airway inflammation and remodeling in ovalbumin-induced asthma model. Int. J. Mol. Med. 2017, 40, 1365–1376. [Google Scholar] [CrossRef]
- Xue, K.; Ruan, L.; Hu, J.; Fu, Z.; Tian, D.; Zou, W. Panax notoginseng saponin R1 modulates TNF-α/NF-κB signaling and attenuates allergic airway inflammation in asthma. Int. Immunopharmacol. 2020, 88, 106860. [Google Scholar] [CrossRef]
- Alternative Medicine: Expanding Medical Horizons: A Report to the National Institutes of Health on Alternative Medical Systems and Practices in the United States; Alternative Medicine: Chantilly, VA, USA, 1995; pp. 183–206.
- Bielory, L.; Lupoli, K. Herbal interventions in asthma and allergy. J. Asthma 1999, 36, 1–65. [Google Scholar] [CrossRef] [PubMed]
- Chantilly, V.; Achterberg, J.; Ansher, I.; Potomac, M.; Arnold, L.E.; Expert, S.; Bahor, R.; Barbatsis, B.; Barlow, E.; Barnard, R.J. Alternative Medicine: Expanding Medical Horizons; University Press of the Pacific Publisher: Honolulu, HI, USA, 2002. [Google Scholar]
- Jeong, Y.-J.; Kim, J.-H.; Kang, J.S.; Lee, W.J.; Hwang, Y.-i. Mega-dose vitamin C attenuated lung inflammation in mouse asthma model. Anat. Cell Biol. 2010, 43, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-H.; Chen, C.-S.; Lin, J.-Y. High dose vitamin C supplementation increases the Th1/Th2 cytokine secretion ratio, but decreases eosinophilic infiltration in bronchoalveolar lavage fluid of ovalbumin-sensitized and challenged mice. J. Agric. Food Chem. 2009, 57, 10471–10476. [Google Scholar] [CrossRef] [PubMed]
- Kianian, F.; Karimian, S.M.; Kadkhodaee, M.; Takzaree, N.; Seifi, B.; Sadeghipour, H.R. Protective effects of ascorbic acid and calcitriol combination on airway remodelling in ovalbumin-induced chronic asthma. Pharm. Biol. 2020, 58, 107–115. [Google Scholar] [CrossRef]
- Zajac, D.; Wojciechowski, P. The Role of Vitamins in the Pathogenesis of Asthma. Int. J. Mol. Sci. 2023, 24, 8574. [Google Scholar] [CrossRef]
- Quyen, D.T.; Irei, A.V.; Sato, Y.; Ota, F.; Fujimaki, Y.; Sakai, T.; Kunii, D.; Khan, N.C.; Yamamoto, S. Nutritional factors, parasite infection and allergy in rural and suburban Vietnamese school children. J. Med. Investig. 2004, 51, 171–177. [Google Scholar] [CrossRef]
- Collipp, P.; Goldzier, S.; Weiss, N.; Soleymani, Y.; Snyder, R. Pyridoxine treatment of childhood bronchial asthma. Ann. Allergy 1975, 35, 93–97. [Google Scholar] [PubMed]
- Zhang, W.; Li, W.; Du, J. Association between dietary carotenoid intakes and the risk of asthma in adults: A cross-sectional study of NHANES, 2007–2012. BMJ Open 2022, 12, e052320. [Google Scholar] [CrossRef]
- García-García, C.; Kim, M.; Baik, I. Associations of dietary vitamin A and C intake with asthma, allergic rhinitis, and allergic respiratory diseases. Nutr. Res. Pract. 2023, 17, 997–1006. [Google Scholar] [CrossRef]
- Choi, Y.J.; Lee, S.-Y.; Kwon, S.-O.; Kang, M.-J.; Seo, J.-H.; Yoon, J.; Cho, H.-J.; Jung, S.; Hong, S.-J. The association between MTHFR polymorphism, dietary methyl donors, and childhood asthma and atopy. Asian Pac. J. Allergy Immunol. 2023, 43, 244–253. [Google Scholar]
- Shams, M.-H.; Jafari, R.; Eskandari, N.; Masjedi, M.; Kheirandish, F.; Ganjalikhani Hakemi, M.; Ghasemi, R.; Varzi, A.-M.; Sohrabi, S.-M.; Baharvand, P.A.; et al. Anti-allergic effects of vitamin E in allergic diseases: An updated review. Int. Immunopharmacol. 2021, 90, 107196. [Google Scholar] [CrossRef]
- Jespersen, T.; Kampmann, F.B.; Dantoft, T.M.; Jørgensen, N.R.; Kårhus, L.L.; Madsen, F.; Linneberg, A.; Thysen, S.M. The association of vitamin K status with lung function and disease in a general population. ERJ Open Res. 2023, 9, 00208-2023. [Google Scholar] [CrossRef] [PubMed]
- Vlašić, Ž.; Dodig, S.; Čepelak, I.; Topić, R.Z.; Živčić, J.; Nogalo, B.; Turkalj, M. Iron and ferritin concentrations in exhaled breath condensate of children with asthma. J. Asthma 2009, 46, 81–85. [Google Scholar] [CrossRef]
- Kadrabová, J.; Mad’arič, A.; Kovačiková, Z.; Podivínsky, F.; Ginter, E.; Gazdík, F. Selenium status is decreased in patients with intrinsic asthma. Biol. Trace Elem. Res. 1996, 52, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Uysalol, M.; Uysalol, E.P.; Yilmaz, Y.; Parlakgul, G.; Ozden, T.A.; Ertem, H.V.; Omer, B.; Uzel, N. Serum level of vitamin D and trace elements in children with recurrent wheezing: A cross-sectional study. BMC Pediatr. 2014, 14, 270. [Google Scholar] [CrossRef]
- Koumpagioti, D.; Boutopoulou, B.; Douros, K. Chapter 29—The Mediterranean diet and asthma. In The Mediterranean Diet, 2nd ed.; Preedy, V.R., Watson, R.R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 327–336. [Google Scholar]
- Berthon, B.S.; Macdonald-Wicks, L.K.; Gibson, P.G.; Wood, L.G. Investigation of the association between dietary intake, disease severity and airway inflammation in asthma. Respirology 2013, 18, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.A.; Gribben, K.C.; Alam, M.; Lyden, E.R.; Hanson, C.K.; LeVan, T.D. Association of dietary fiber on asthma, respiratory symptoms, and inflammation in the adult national health and nutrition examination survey population. Ann. Am. Thorac. Soc. 2020, 17, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, K.; Son, S.; Kim, Y.-C.; Kwak, J.W.; Kim, H.G.; Lee, S.H.; Kim, T.H. Association of allergic diseases and related conditions with dietary fiber intake in Korean adults. Int. J. Environ. Res. Public Health 2021, 18, 2889. [Google Scholar] [CrossRef]
- Andrianasolo, R.M.; Hercberg, S.; Kesse-Guyot, E.; Druesne-Pecollo, N.; Touvier, M.; Galan, P.; Varraso, R. Association between dietary fibre intake and asthma (symptoms and control): Results from the French national e-cohort NutriNet-Santé. Br. J. Nutr. 2019, 122, 1040–1051. [Google Scholar] [CrossRef]
- McLoughlin, R.; Berthon, B.S.; Rogers, G.B.; Baines, K.J.; Leong, L.E.; Gibson, P.G.; Williams, E.J.; Wood, L.G. Soluble fibre supplementation with and without a probiotic in adults with asthma: A 7-day randomised, double blind, three way cross-over trial. EBioMedicine 2019, 46, 473–485. [Google Scholar] [CrossRef]
- Klimanov, I.A.; Soodaeva, S.; Tush, E.; Obykhov, A.; Ovsyannikov, D.; Vanyakina, S.V.; Khaletskaya, O.; Glukhova, M.; Nikitina, L. Oxalate excretion in patients with allergic airway diseases. Eur. Respir. Soc. 2021, 58 (Suppl. 65), PA725. [Google Scholar]
- Shaĭlieva, L.O.; Fedoseev, G.B.; Zorina, M.L.; Petrova, M.A.; Trofimov, V.I.; Kakliugin, A.P. Clinical, laboratory, and functional characteristic of patients with bronchial asthma and chronic obstructive pulmonary disease with disturbances of oxalic acid metabolism. Klin. Meditsina 2013, 91, 36–40. [Google Scholar]
- Fedoseev, G.B.; Petrova, M.A.; Shaĭlieva, L.O.; Kakliugin, A.P.; Zorina, M.L.; Sakharov, A.N.; Pavliukova, N.O. Clinical characteristics and condition of the bronchial tree in patients with bronchial asthma and chronic obstructive pulmonary disease in combination with hyperoxaluria. Ter. Arkhiv 2007, 79, 37–41. [Google Scholar]
- Antonio Buendia, J.; Acuña-Cordero, R.; Patiño, D.G. The role of high carbohydrate-rich food intake and severity of asthma exacerbation in children between 2 to 6 years aged. J. Asthma 2023, 60, 412–418. [Google Scholar] [CrossRef]
- Musiol, S.; Harris, C.P.; Karlina, R.; Gostner, J.M.; Rathkolb, B.; Schnautz, B.; Schneider, E.; Mair, L.; Vergara, E.E.; Flexeder, C. Dietary digestible carbohydrates are associated with higher prevalence of asthma in humans and with aggravated lung allergic inflammation in mice. Allergy 2023, 78, 1218–1233. [Google Scholar] [CrossRef]
- Kim, H.J.; Dinh, D.T.T.; Yang, J.; Herath, K.H.I.N.M.; Seo, S.H.; Son, Y.-O.; Kang, I.; Jee, Y. High sucrose intake exacerbates airway inflammation through pathogenic Th2 and Th17 response in ovalbumin (OVA)-induced acute allergic asthma in C57BL/6 mice. J. Nutr. Biochem. 2024, 124, 109504. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Vargas, F.; Jiménez, A.; Paredes-López, O. Natural pigments: Carotenoids, anthocyanins, and betalains—Characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. Nutr. 2000, 40, 173–289. [Google Scholar] [CrossRef]
- Bsc, S.N.; Bsc, G.S. Oxalate content of foods and its effect on humans. Asia Pac. J. Clin. Nutr. 1999, 8, 64–74. [Google Scholar] [CrossRef]
- Mathlouthi, M.; Reiser, P. Sucrose: Properties and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Jackman, R.; Smith, J. Anthocyanins and betalains. In Natural Food Colorants; Springer: Berlin/Heidelberg, Germany, 1996; pp. 244–309. [Google Scholar]
- Kumar, A.; Patel, A.A.; Singh, R.B.; Desai, K. Alkali pre-soaking effects on acridity, colour parameters and oxalate content of elephant foot yam. J. Root Crops 2013, 39, 88–95. [Google Scholar]
- Panpae, K.; Jaturonrusmee, W.; Mingvanish, W.; Nuntiwattanawong, C.; Chunwiset, S.; Santudrob, K.; Triphanpitak, S. Minimization of sucrose losses in sugar industry by pH and temperature optimization. Malays. J. Anal. Sci. 2008, 12, 513–519. [Google Scholar]
- Rodríguez-Sevilla, M.D.; Villanueva-Suárez, M.J.; Redondo-Cuenca, A. Effects of processing conditions on soluble sugars content of carrot, beetroot and turnip. Food Chem. 1999, 66, 81–85. [Google Scholar] [CrossRef]
- Özyurt, G.; Uslu, L.; Durmuş, M.; Sakarya, Y.; Uzlaşir, T.; Küley, E. Chemical and physical characterization of microencapsulated Spirulina fermented with Lactobacillus plantarum. Algal Res. 2023, 73, 103149. [Google Scholar] [CrossRef]
- Czyzowska, A.; Siemianowska, K.; Sniadowska, M.; Nowak, A. Bioactive compounds and microbial quality of stored fermented red beetroots and red beetroot juice. Pol. J. Food Nutr. Sci. 2020, 70, 35–44. [Google Scholar] [CrossRef]
- Wadamori, Y.; Vanhanen, L.; Savage, G.P. Effect of Kimchi Fermentation on Oxalate Levels in Silver Beet (Beta vulgaris var. cicla). Foods 2014, 3, 269–278. [Google Scholar] [CrossRef]
- Otegbayo, B.O.; Akwa, I.M.; Tanimola, A.R. Physico-chemical properties of beetroot (Beta vulgaris L.) wine produced at varying fermentation days. Sci. Afr. 2020, 8, e00420. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, J.; He, J.; Liu, T.; Guo, X. Influences of Ultrasonic Treatments on the Structure and Antioxidant Properties of Sugar Beet Pectin. Foods 2023, 12, 1020. [Google Scholar] [CrossRef] [PubMed]
- Bong, W.-C.; Vanhanen, L.P.; Savage, G.P. Addition of calcium compounds to reduce soluble oxalate in a high oxalate food system. Food Chem. 2017, 221, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Pannetier, N.; Khoukh, A.; François, J. Physico-chemical study of sucrose and calcium ions interactions in alkaline aqueous solutions. In Macromolecular Symposia; Wiley Online Library: Hoboken, NJ, USA, 2001. [Google Scholar]
Reference | Compound | Concentration per 100 gm or L−1 of Juice |
---|---|---|
[67] | Dietary fibre | 3.8 g |
Sucrose | 9 g | |
Oxalic acid | 0.2 g | |
Folate | 77 ug | |
Thiamine | 0.026 mg | |
Riboflavin | 0.019 mg | |
Niacin | 0.39 mg | |
Pyridoxine | 0.09 mg | |
Vitamin C | 4 mg | |
Alpha tocopherol | 0.1 mg | |
Vitamin E | 0.07 mg | |
Beta carotene | 5 ug | |
[62,68] | Gallic acid | 65.93 ± 45.38 mg |
Chlorogenic acid | 2.29 ± 2.09 mg | |
Caffeic acid | 0.77 ± 0.28 mg | |
Ferulic acid | 1.71 ± 0.76 mg | |
Myricetin | 0.30 ± 0.109 mg | |
Luteolin | 0.13 ± 0.003 mg | |
Quercetin | 0.010 ± 0.009 mg | |
[63] | Betanin | 128.7 ± 22.0 mg |
Metrics | Betalains | Oxalates | Sugars |
---|---|---|---|
Solubility | Water soluble [171] | Water soluble (Na+, K+, and NH4+) and insoluble (Ca2+, Fe2+, and Mg2+) salts [172] | Water soluble [173] |
pH | Stable at 3–7 [174] | ↓ In alkaline medium [175] | Stable at pH 5–11, ↓ pH 3 over time [176] |
Heat treatment drying | ↓ Betacyanin ↑ Betaxanthins [77] | ↓ Concentration [88] | ↓ Concentration [69,177] |
Freeze drying | ↑ Concentration [42,69] | ↑ Concentration [89] | ↑ Concentration [69,177] |
Spray drying | ↓ Concentration [75] | ↑ Concentration [178] | ↑Concentration [69,177] |
Fermentation | ↓ Concentration [179] | ↓ Concentration [180] | ↓ Concentration over time [181] |
Ultrasonication | ↑ Concentration [92] | ↓ Concentration [90] | ↓ Concentration over time [182] |
Calcium salts (calcium chloride) | - | ↓ Concentration [183] | Forms complexes with calcium ions (e.g., Calcium hydroxide) [184] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajaz, M.; Singh, I.; Vugic, L.; Jani, R.; Diyapaththugama, S.; Shilton, N. Connecting the Dots: Beetroot and Asthma. J. Respir. 2025, 5, 12. https://doi.org/10.3390/jor5030012
Ajaz M, Singh I, Vugic L, Jani R, Diyapaththugama S, Shilton N. Connecting the Dots: Beetroot and Asthma. Journal of Respiration. 2025; 5(3):12. https://doi.org/10.3390/jor5030012
Chicago/Turabian StyleAjaz, Madiha, Indu Singh, Lada Vugic, Rati Jani, Shashya Diyapaththugama, and Natalie Shilton. 2025. "Connecting the Dots: Beetroot and Asthma" Journal of Respiration 5, no. 3: 12. https://doi.org/10.3390/jor5030012
APA StyleAjaz, M., Singh, I., Vugic, L., Jani, R., Diyapaththugama, S., & Shilton, N. (2025). Connecting the Dots: Beetroot and Asthma. Journal of Respiration, 5(3), 12. https://doi.org/10.3390/jor5030012