Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,187)

Search Parameters:
Keywords = antioxidative enzymes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3614 KiB  
Article
Gum Acacia–Dexamethasone Combination Attenuates Sepsis-Induced Acute Kidney Injury in Rats via Targeting SIRT1-HMGB1 Signaling Pathway and Preserving Mitochondrial Integrity
by Fawaz N. Alruwaili, Omnia A. Nour and Tarek M. Ibrahim
Pharmaceuticals 2025, 18(8), 1164; https://doi.org/10.3390/ph18081164 - 5 Aug 2025
Abstract
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley [...] Read more.
Background/Objective: Sepsis-associated acute kidney injury (SA-AKI) is a substantial contributor to mortality in critically ill patients. This study aimed to investigate the impact of gum acacia (GA) and dexamethasone (DEX) combination on lipopolysaccharide (LPS)-induced SA-AKI in rats. Methods: Thirty-six male Sprague Dawley rats were separated into six groups, including the control, GA group, LPS-induced AKI group, DEX + LPS group, GA + LPS group, and GA + DEX + LPS group. AKI was induced in rats using LPS (10 mg/kg, i.p.). GA was administered orally (7.5 g/kg) for 14 days before LPS injection, and DEX was injected (1mg/kg, i.p.) 2 h after LPS injection. Results: LPS injection significantly (p < 0.05, vs. control group) impaired renal function, as evidenced through increased levels of kidney function biomarkers, decreased creatinine clearance, and histopathological alterations in the kidneys. LPS also significantly (p < 0.05, vs. control group) elevated levels of oxidative stress markers, while it reduced levels of antioxidant enzymes. Furthermore, LPS triggered an inflammatory response, manifested by significant (p < 0.05, vs. control group) upregulation of Toll-like receptor 4, myeloid differentiation primary response 88, interleukin-1β, tumor necrosis factor-α, and nuclear factor-κB, along with increased expression of high-mobility group box 1. Administration of GA significantly ameliorated LPS-induced renal impairment by enhancing antioxidant defenses and suppressing inflammatory pathways (p < 0.05, vs. LPS group). Furthermore, GA-DEX-treated rats showed improved kidney function, reduced oxidative stress, and attenuated inflammatory markers (p < 0.05, vs. LPS group). Conclusions: The GA-DEX combination exhibited potent renoprotective effects against LPS-induced SA-AKI, possibly due to their antioxidant and anti-inflammatory properties. These results suggest that the GA-DEX combination could be a promising and effective therapeutic agent for managing SA-AKI. Full article
(This article belongs to the Section Pharmacology)
51 pages, 2918 KiB  
Review
Therapeutic Applications and Mechanisms of Superoxide Dismutase (SOD) in Different Pathogenesis
by Shehwaz Anwar, Tarique Sarwar, Amjad Ali Khan and Arshad Husain Rahmani
Biomolecules 2025, 15(8), 1130; https://doi.org/10.3390/biom15081130 - 5 Aug 2025
Abstract
An imbalance between the generation of reactive oxygen species (ROS) and antioxidant defenses is known as oxidative stress, and it is implicated in a number of diseases. The superoxide radical O2– is produced by numerous biochemically relevant redox processes and is thought [...] Read more.
An imbalance between the generation of reactive oxygen species (ROS) and antioxidant defenses is known as oxidative stress, and it is implicated in a number of diseases. The superoxide radical O2– is produced by numerous biochemically relevant redox processes and is thought to play role in diseases and pathological processes, such as aging, cancer, membrane or DNA damage, etc.; SOD, or superoxide dismutase, is essential for reducing oxidative stress. As a result, the elimination of ROS by SOD may be a useful disease prevention tactic. There have been reports of protective effects against neurodegeneration, apoptosis, carcinogenesis, and radiation. Exogenous SODs’ low bioavailability has drawn criticism. However, this restriction might be removed, and interest in SOD’s medicinal qualities increased with advancements in its formulation. This review discusses the findings of human and animal studies that support the benefits of SOD enzyme regulation in reducing oxidative stress in various ways. Additionally, this review summarizes contemporary understandings of the biology of Cu/Zn superoxide dismutase 1 (SOD1) from SOD1 genetics and its therapeutic potential. Full article
(This article belongs to the Topic Enzymes and Enzyme Inhibitors in Drug Research)
Show Figures

Figure 1

23 pages, 2316 KiB  
Article
Effect of Callistemon citrinus Phytosomes on Oxidative Stress in the Brains of Rats Fed a High-Fat–Fructose Diet
by Oliver Rafid Magaña-Rodríguez, Luis Gerardo Ortega-Pérez, Aram Josué García-Calderón, Luis Alberto Ayala-Ruiz, Jonathan Saúl Piñón-Simental, Asdrubal Aguilera-Méndez, Daniel Godínez-Hernández and Patricia Rios-Chavez
Biomolecules 2025, 15(8), 1129; https://doi.org/10.3390/biom15081129 - 5 Aug 2025
Abstract
Callistemon citrinus has shown antioxidant and anti-inflammatory properties in certain tissues. However, its impact on the brain remains unproven. This study investigates the effect of C. citrinus extract and phytosomes on the oxidative status of the brains of rats fed a high-fat–fructose diet [...] Read more.
Callistemon citrinus has shown antioxidant and anti-inflammatory properties in certain tissues. However, its impact on the brain remains unproven. This study investigates the effect of C. citrinus extract and phytosomes on the oxidative status of the brains of rats fed a high-fat–fructose diet (HFD). Fifty-four male Wistar rats were randomly divided into nine groups (n = 6). Groups 1, 2, and 3 received a standard chow diet; Group 2 also received the vehicle, and Group 3 was supplemented with C. citrinus extract (200 mg/kg). Groups 4, 5, 6, 7, 8, and 9 received a high-fat diet (HFD). Additionally, groups 5, 6, 7, 8, and 9 were supplemented with orlistat at 5 mg/kg, C. citrinus extract at 200 mg/kg, and phytosomes loaded with C. citrinus at doses of 50, 100, and 200 mg/kg, respectively. Administration was oral for 16 weeks. Antioxidant enzymes, biomarkers of oxidative stress, and fatty acid content in the brain were determined. A parallel artificial membrane permeability assay (PAMPA) was employed to identify compounds that can cross the intestinal and blood–brain barriers. The HFD group (group 4) increased body weight and adipose tissue, unlike the other groups. The brain fatty acid profile showed slight variations in all of the groups. On the other hand, group 4 showed a decrease in the activities of antioxidant enzymes SOD, CAT, and PON. It reduced GSH level, while increasing GPx activity as well as MDA, 4-HNE, and AOPP levels. C. citrinus extract and phytosomes restore the antioxidant enzyme activities and mitigate oxidative stress in the brain. C. citrinus modulates oxidative stress in brain tissue through 1.8-cineole and α-terpineol, which possess antioxidant and anti-inflammatory properties. Full article
(This article belongs to the Special Issue Natural Bioactives as Leading Molecules for Drug Development)
Show Figures

Figure 1

25 pages, 1951 KiB  
Review
Antioxidant Capacity and Therapeutic Applications of Honey: Health Benefits, Antimicrobial Activity and Food Processing Roles
by Ivana Tlak Gajger, Showket Ahmad Dar, Mohamed Morsi M. Ahmed, Magda M. Aly and Josipa Vlainić
Antioxidants 2025, 14(8), 959; https://doi.org/10.3390/antiox14080959 (registering DOI) - 4 Aug 2025
Abstract
Honey is a natural product of honeybees that has been consumed for centuries due to its nutritional value and potential health benefits. Recent scientific research has focused on its antioxidant capacity, which is linked to a variety of bioactive compounds such as phenolic [...] Read more.
Honey is a natural product of honeybees that has been consumed for centuries due to its nutritional value and potential health benefits. Recent scientific research has focused on its antioxidant capacity, which is linked to a variety of bioactive compounds such as phenolic acids, enzymes (e.g., glucose oxidase, catalase), flavonoids, ascorbic acid, carotenoids, amino acids, and proteins. Together, these components work synergistically to neutralize free radicals, regulate antioxidant enzyme activity, and reduce oxidative stress. This review decisively outlines the antioxidant effects of honey and presents compelling clinical and experimental evidence supporting its critical role in preventing diseases associated with oxidative stress. Honey stands out for its extensive health benefits, which include robust protection against cardiovascular issues, notable anticancer and anti-inflammatory effects, enhanced glycemic control in diabetes, immune modulation, neuroprotection, and effective wound healing. As a recognized functional food and dietary supplement, honey is essential for the prevention and adjunct treatment of chronic diseases. However, it faces challenges due to variations in composition linked to climatic conditions, geographical and floral sources, as well as hive management practices. The limited number of large-scale clinical trials further underscores the need for more research. Future studies must focus on elucidating honey’s antioxidant mechanisms, standardizing its bioactive compounds, and examining its synergistic effects with other natural antioxidants to fully harness its potential. Full article
Show Figures

Figure 1

15 pages, 1546 KiB  
Article
Ozone Treatment Modulates Reactive Oxygen Species Metabolism Regulation and Enhances Storage Quality of Kiwifruit During Cold Storage
by Ziyu Jin, Jin Tan, Xinyu Zhang, Xin Li, Wenqiang Guan, Pu Liu and Aiqiang Chen
Horticulturae 2025, 11(8), 911; https://doi.org/10.3390/horticulturae11080911 (registering DOI) - 4 Aug 2025
Abstract
Fresh fruit are highly perishable commodities, facing significant postharvest losses primarily due to physiological deterioration and microbial spoilage. Conventional preservation methods often face limitations regarding safety, residue, and environmental impact. Because of its rapid decomposition and low-residue-impact characteristics, ozone has proven superior as [...] Read more.
Fresh fruit are highly perishable commodities, facing significant postharvest losses primarily due to physiological deterioration and microbial spoilage. Conventional preservation methods often face limitations regarding safety, residue, and environmental impact. Because of its rapid decomposition and low-residue-impact characteristics, ozone has proven superior as an efficient and eco-friendly solution for preserving fruit quality after harvest. The maturation and aging processes of kiwifruit are closely linked to the involvement of reactive oxygen species (ROS) metabolism. This study aimed to investigate the effects of intermittent ozone treatment (21.4 mg/m3, applied for 0, 1, 3, or 5 h weekly) on ROS metabolism, the antioxidant defense system, and storage quality of kiwifruit during cold storage (0.0 ± 0.5 °C). The results showed ozone treatment slowed the decline in titratable acid (TA) content and fruit firmness, inhibited increases in total soluble solids (TSSs) and weight loss, and maintained the storage quality. Additionally, ozone treatment enhanced the activities of antioxidant-related enzymes. This includes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). Furthermore, it delayed the reduction in ascorbate (ASA), glutathione (GSH), total phenolic compounds, and flavonoid content, while also preventing the accumulation of ROS and the rise in malondialdehyde (MDA) levels. In summary, the results indicate that ozone treatment enhances the antioxidant capacity of kiwifruit by increasing the structural integrity of cell membranes, preserving the structural integrity of cell membranes, and effectively maintaining the storage quality of the fruit. Full article
15 pages, 1624 KiB  
Article
Cytotoxicity Evaluation of Cyprodinil, Potentially Carcinogenic Chemical Micropollutant, for Oxidative Stress, Apoptosis and Cell Membrane Interactions
by Agata Jabłońska-Trypuć, Nina Wiśniewska, Gabriela Sitko, Urszula Wydro, Elżbieta Wołejko, Rafał Krętowski, Monika Naumowicz, Joanna Kotyńska, Marzanna Cechowska-Pasko, Bożena Łozowicka, Piotr Kaczyński and Adam Cudowski
Appl. Sci. 2025, 15(15), 8631; https://doi.org/10.3390/app15158631 (registering DOI) - 4 Aug 2025
Abstract
Fungicides are compounds with potentially toxic effects on the human body, but the molecular mechanisms of their action have not yet been explained. The effect of cyprodinil on cell viability, apoptosis level, cell membrane function, cell morphology and expression of antioxidant enzyme genes [...] Read more.
Fungicides are compounds with potentially toxic effects on the human body, but the molecular mechanisms of their action have not yet been explained. The effect of cyprodinil on cell viability, apoptosis level, cell membrane function, cell morphology and expression of antioxidant enzyme genes in the A-375 and DLD-1 cell lines was examined. The cell lines were selected because they can be an excellent in vitro model of neoplastic changes occurring in the skin and large intestine after exposure to a fungicide. The fungicide selected for the study is commonly used in Poland to protect crops against fungi. Our results showed that the tested compound increased cell viability and proliferation, probably activated by mechanisms related to oxidative stress. Cyprodinil caused an increase in glutathione level (in A-375 by about 37% and in DLD-1 by about 28%) and oxidative stress enzymes activity, but not in apoptosis level. Its membrane interactions and its penetration into cells was concentration dependent. It is worth emphasizing that the novelty of our work lies in the use of non-traditional toxicological methods based on molecular analyses using human cell lines. This allowed us to demonstrate not only the toxicity of a single substance but also its behavior within cellular structures. Our findings suggest that cyprodinil may have tumor-promoting properties in skin and colorectal cancer cells. Full article
(This article belongs to the Special Issue Exposure Pathways and Health Implications of Environmental Chemicals)
Show Figures

Figure 1

20 pages, 753 KiB  
Article
Production of Vegan Ice Cream: Enrichment with Fermented Hazelnut Cake
by Levent Yurdaer Aydemir, Hande Demir, Zafer Erbay, Elif Kılıçarslan, Pelin Salum and Melike Beyza Ozdemir
Fermentation 2025, 11(8), 454; https://doi.org/10.3390/fermentation11080454 - 4 Aug 2025
Abstract
The growing demand for sustainable plant-based dairy alternatives has spurred interest in valorizing agro-industrial byproducts like hazelnut cake, a protein-rich byproduct of oil extraction. This study developed formulations for vegan ice cream using unfermented (HIC) and Aspergillus oryzae-fermented hazelnut cake (FHIC), comparing [...] Read more.
The growing demand for sustainable plant-based dairy alternatives has spurred interest in valorizing agro-industrial byproducts like hazelnut cake, a protein-rich byproduct of oil extraction. This study developed formulations for vegan ice cream using unfermented (HIC) and Aspergillus oryzae-fermented hazelnut cake (FHIC), comparing their physicochemical, functional, and sensory properties to conventional dairy ice cream (DIC). Solid-state fermentation (72 h, 30 °C) enhanced the cake’s bioactive properties, and ice creams were characterized for composition, texture, rheology, melting behavior, antioxidant activity, and enzyme inhibition pre- and post-in vitro digestion. The results indicate that FHIC had higher protein content (64.64% vs. 58.02% in HIC) and unique volatiles (e.g., benzaldehyde and 3-methyl-1-butanol). While DIC exhibited superior overrun (15.39% vs. 4.01–7.00% in vegan samples) and slower melting, FHIC demonstrated significantly higher post-digestion antioxidant activity (4.73 μmol TE/g DPPH vs. 1.44 in DIC) and angiotensin-converting enzyme (ACE) inhibition (4.85–7.42%). Sensory evaluation ranked DIC highest for overall acceptability, with FHIC perceived as polarizing due to pronounced flavors. Despite textural challenges, HIC and FHIC offered nutritional advantages, including 18–30% lower calories and enhanced bioactive compounds. This study highlights fermentation as a viable strategy to upcycle hazelnut byproducts into functional vegan ice creams, although the optimization of texture and flavor is needed for broader consumer acceptance. Full article
(This article belongs to the Topic Fermented Food: Health and Benefit)
Show Figures

Figure 1

16 pages, 1991 KiB  
Article
Antihypertensive Effects of Lotus Seed (Nelumbo nucifera Gaertn.) Extract via eNOS Upregulation and Oxidative Stress Reduction in L-NAME-Induced Hypertensive Rats
by Anjaree Inchan, Tippaporn Bualeong, Worasak Kaewkong, Nitra Nuengchamnong, Phapada Apaikawee, Pakaporn Sa-Nguanpong, Wiriyaporn Sumsakul, Natthawut Charoenphon, Usana Chatturong, Watcharakorn Deetud and Krongkarn Chootip
Pharmaceuticals 2025, 18(8), 1156; https://doi.org/10.3390/ph18081156 - 4 Aug 2025
Abstract
Background/Objectives: Nelumbo nucifera Gaertn. (lotus) seeds have traditionally been used to treat hypertension, though their mechanisms remain unclear. This study investigated the antihypertensive effects of lotus seed extract (LSE) and its mechanisms in rats with Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. [...] Read more.
Background/Objectives: Nelumbo nucifera Gaertn. (lotus) seeds have traditionally been used to treat hypertension, though their mechanisms remain unclear. This study investigated the antihypertensive effects of lotus seed extract (LSE) and its mechanisms in rats with Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Methods: Male Sprague Dawley rats received L-NAME (40 mg/kg/day) in drinking water and were treated orally with LSE (5, 10, or 100 mg/kg/day), captopril (5 mg/kg/day), or a combination of LSE and captopril (2.5 mg/kg/day each) for 5 weeks. Hemodynamic parameters and histological changes in the left ventricle and aorta were assessed. Mechanistic studies included measurements of plasma nitric oxide (NO) metabolites, malondialdehyde (MDA), superoxide dismutase (SOD) activity, angiotensin II (Ang II), angiotensin-converting enzyme (ACE) activity, and protein expression via western blot. Results: L-NAME elevated systolic blood pressure and induced cardiovascular remodeling, oxidative stress, and renin-angiotensin system activation. LSE treatment reduced blood pressure, improved antioxidant status, increased NO bioavailability, and downregulated gp91phox and AT1R expression. The combination of low-dose LSE and captopril produced stronger effects than LSE alone, with efficacy comparable to captopril. Conclusions: These findings suggest that LSE exerts antihypertensive effects via antioxidant activity and inhibition of the renin-angiotensin system, supporting its potential as an adjunct therapy for hypertension. Full article
Show Figures

Graphical abstract

16 pages, 1313 KiB  
Article
Mycorrhizas Promote Total Flavonoid Levels in Trifoliate Orange by Accelerating the Flavonoid Biosynthetic Pathway to Reduce Oxidative Damage Under Drought
by Lei Liu and Hong-Na Mu
Horticulturae 2025, 11(8), 910; https://doi.org/10.3390/horticulturae11080910 (registering DOI) - 4 Aug 2025
Abstract
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis [...] Read more.
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis mosseae or not, and subjected to well-watered (70–75% of field maximum water-holding capacity) or drought stress (50–55% field maximum water-holding capacity) conditions for 10 weeks. Plant growth performance, photosynthetic physiology, leaf flavonoid content and their antioxidant capacity, reactive oxygen species levels, and activities and gene expression of key flavonoid biosynthesis enzymes were analyzed. Although drought stress significantly reduced root colonization and soil hyphal length, inoculation with F. mosseae consistently enhanced the biomass of leaves, stems, and roots, as well as root surface area and diameter, irrespective of soil moisture. Despite drought suppressing photosynthesis in mycorrhizal plants, F. mosseae substantially improved photosynthetic capacity (measured via gas exchange) and optimized photochemical efficiency (assessed by chlorophyll fluorescence) while reducing non-photochemical quenching (heat dissipation). Inoculation with F. mosseae elevated the total flavonoid content in leaves by 46.67% (well-watered) and 14.04% (drought), accompanied by significantly enhanced activities of key synthases such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), 4-coumarate:coA ligase (4CL), and cinnamate 4-hydroxylase (C4H), with increases ranging from 16.90 to 117.42% under drought. Quantitative real-time PCR revealed that both mycorrhization and drought upregulated the expression of PtPAL1, PtCHI, and Pt4CL genes, with soil moisture critically modulating mycorrhizal regulatory effects. In vitro assays showed that flavonoid extracts scavenged radicals at rates of 30.07–41.60% in hydroxyl radical (•OH), 71.89–78.06% in superoxide radical anion (O2•−), and 49.97–74.75% in 2,2-diphenyl-1-picrylhydrazyl (DPPH). Mycorrhizal symbiosis enhanced the antioxidant capacity of flavonoids, resulting in higher scavenging rates of •OH (19.07%), O2•− (5.00%), and DPPH (31.81%) under drought. Inoculated plants displayed reduced hydrogen peroxide (19.77%), O2•− (23.90%), and malondialdehyde (17.36%) levels. This study concludes that mycorrhizae promote the level of total flavonoids in trifoliate orange by accelerating the flavonoid biosynthesis pathway, hence reducing oxidative damage under drought. Full article
Show Figures

Figure 1

14 pages, 276 KiB  
Article
Inclusion of Hydrolyzed Feather Meal in Diets for Giant River Prawn (Macrobrachium rosenbergii) During the Nursery Phase: Effects on Growth, Digestive Enzymes, and Antioxidant Status
by Eduardo Luis Cupertino Ballester, Angela Trocino, Cecília de Souza Valente, Marlise Mauerwerk, Milena Cia Retcheski, Luisa Helena Cazarolli, Caio Henrique do Nascimento Ferreira and Francesco Bordignon
Appl. Sci. 2025, 15(15), 8627; https://doi.org/10.3390/app15158627 (registering DOI) - 4 Aug 2025
Abstract
We evaluated the inclusion of hydrolyzed feather meal (HFM) as a partial replacement for fishmeal in diets for Macrobrachium rosenbergii post-larvae (PL) over a 32-day nursery feeding trial. Five experimental diets with increasing HFM levels (control, 1.5%, 3.0%, 4.5%, and 6.0%) were tested. [...] Read more.
We evaluated the inclusion of hydrolyzed feather meal (HFM) as a partial replacement for fishmeal in diets for Macrobrachium rosenbergii post-larvae (PL) over a 32-day nursery feeding trial. Five experimental diets with increasing HFM levels (control, 1.5%, 3.0%, 4.5%, and 6.0%) were tested. Survival rates ranged from 73.3 ± 5.44% to 83.3 ± 3.84% without significant differences among groups. Dietary HFM inclusion levels above 3.0% significantly improved prawn performance, including final weight (up to 2.18-fold higher than control), length (1.13-fold), antenna length (1.18-fold), biomass gain (2.14-fold), and feed conversion ratio (1.59-fold lower). Prawn-fed diets at 6.0% HFM showed the highest performance among all experimental groups. No significant effects were observed on antioxidant biomarkers or digestive enzymes in prawns hepatopancreas, which suggests no imbalance in the antioxidant system or impairment of digestive function. Likewise, carcass proximate composition remained stable across experimental groups. These findings suggest that HFM at 3.0–6.0% dietary inclusion levels is a potential alternative to fishmeal in nursery-phase diets for M. rosernbergii PL, promoting prawn growth and welfare and maintaining health and carcass quality. Notably, to the best of our knowledge, this is the first study demonstrating the potential effective use of HFM in feeding the nursery phase of M. rosernbergii. Full article
(This article belongs to the Section Agricultural Science and Technology)
27 pages, 3015 KiB  
Article
Preparation of Auricularia auricula-Derived Immune Modulators and Alleviation of Cyclophosphamide-Induced Immune Suppression and Intestinal Microbiota Dysbiosis in Mice
by Ming Zhao, Huiyan Huang, Bowen Li, Yu Pan, Chuankai Wang, Wanjia Du, Wenliang Wang, Yansheng Wang, Xue Mao and Xianghui Kong
Life 2025, 15(8), 1236; https://doi.org/10.3390/life15081236 - 4 Aug 2025
Abstract
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant [...] Read more.
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant capacity of the body. Polypeptides and polysaccharides derived from edible fungi demonstrate significant strong antioxidant activity and immunomodulatory effects. Auricularia auricula, the second most cultivated mushroom in China, is not only nutritionally rich but also offers considerable health benefits. In particular, its polysaccharides have been widely recognized for their immunomodulatory activities, while its abundant protein content holds great promise as a raw material for developing immunomodulatory peptides. To meet the demand for high-value utilization of Auricularia auricula resources, this study developed a key technology for the stepwise extraction of polypeptides (AAPP1) and polysaccharides (AAPS3) using a composite enzymatic hydrolysis process. Their antioxidant and immunomodulatory effects were assessed using cyclophosphamide (CTX)-induced immune-suppressed mice. The results showed that both AAPP1 and AAPS3 significantly reversed CTX-induced decreases in thymus and spleen indices (p < 0.05); upregulated serum levels of cytokines (e.g., IL-4, TNF-α) and immunoglobulins (e.g., IgA, IgG); enhanced the activities of hepatic antioxidant enzymes SOD and CAT (p < 0.05); and reduced the content of MDA, a marker of oxidative damage. Intestinal microbiota analysis revealed that these compounds restored CTX-induced reductions in microbial α-diversity, increased the abundance of beneficial bacteria (Paramuribaculum, Prevotella; p < 0.05), decreased the proportion of pro-inflammatory Duncaniella, and reshaped the balance of the Bacteroidota/Firmicutes phyla. This study represents the first instance of synergistic extraction of polypeptides and polysaccharides from Auricularia auricula using a single process. It demonstrates their immune-enhancing effects through multiple mechanisms, including “antioxidation-immune organ repair-intestinal microbiota regulation.” The findings offer a theoretical and technical foundation for the deep processing of Auricularia auricula and the development of functional foods. Full article
(This article belongs to the Special Issue Research Progress of Cultivation of Edible Fungi: 2nd Edition)
Show Figures

Figure 1

19 pages, 9234 KiB  
Article
Physiological Changes and Transcriptomics of Elodea nuttallii in Response to High-Temperature Stress
by Yanling Xu, Yuanyuan Jin, Manrong Zha, Yuhan Mao, Wenqiang Ren, Zirao Guo, Yufei Zhang, Beier Zhou, Tao Zhang, Qi He, Shibiao Liu and Bo Jiang
Biology 2025, 14(8), 993; https://doi.org/10.3390/biology14080993 (registering DOI) - 4 Aug 2025
Abstract
Elodea nuttallii is a significant submerged macrophyte utilized in shrimp and crab aquaculture, yet it exhibits low thermotolerance. This study investigated the physiological responses and transcriptomic characteristics of E. nuttallii under high-temperature stress (HTS). The results indicated that HTS significantly reduced the absolute [...] Read more.
Elodea nuttallii is a significant submerged macrophyte utilized in shrimp and crab aquaculture, yet it exhibits low thermotolerance. This study investigated the physiological responses and transcriptomic characteristics of E. nuttallii under high-temperature stress (HTS). The results indicated that HTS significantly reduced the absolute growth rate (AGR) and photosynthetic efficiency of E. nuttallii while concurrently elevating antioxidant enzyme activities, malondialdehyde (MDA) content, and concentrations of osmotic adjustment compounds. Furthermore, the apical segments of E. nuttallii demonstrated greater sensitivity to HTS compared to the middle segments. Under exposure to 35 °C and 40 °C, antioxidant enzyme activities, MDA content, and osmotic adjustment compound levels were significantly higher in the apical segments than in the middle segments. Transcriptomic analysis revealed 7526 differentially expressed genes (DEGs) in the apical segments at 35 °C, a number substantially exceeding that observed in the middle segments. Enrichment analysis of DEGs revealed significant upregulation of key metabolic regulators under HTS, including carbohydrate metabolism genes (HXK, FRK) and phenylpropanoid biosynthesis enzymes (4CL, COMT). This transcriptional reprogramming demonstrates E. nuttallii’s adaptive strategy of modulating carbon allocation and phenolic compound synthesis to mitigate thermal damage. Our findings not only elucidate novel thermotolerance mechanisms in aquatic plants but also provide candidate genetic targets (HXK, 4CL) for molecular breeding of heat-resilient cultivars through transcriptomic screening. Full article
Show Figures

Figure 1

33 pages, 938 KiB  
Review
Exploring the Antioxidant Roles of Cysteine and Selenocysteine in Cellular Aging and Redox Regulation
by Marta Pace, Chiara Giorgi, Giorgia Lombardozzi, Annamaria Cimini, Vanessa Castelli and Michele d’Angelo
Biomolecules 2025, 15(8), 1115; https://doi.org/10.3390/biom15081115 - 3 Aug 2025
Viewed by 197
Abstract
Aging is a complex, universal biological process characterized by the progressive and irreversible decline of physiological functions across multiple organ systems. This deterioration is primarily driven by cumulative cellular damage arising from both intrinsic and extrinsic stressors. The free radical theory of aging, [...] Read more.
Aging is a complex, universal biological process characterized by the progressive and irreversible decline of physiological functions across multiple organ systems. This deterioration is primarily driven by cumulative cellular damage arising from both intrinsic and extrinsic stressors. The free radical theory of aging, first proposed by Denham Harman in 1956, highlights the role of reactive oxygen species (ROS), byproducts of normal metabolism, in driving oxidative stress and age-related degeneration. Emerging evidence emphasizes the importance of redox imbalance in the onset of neurodegenerative diseases and aging. Among the critical cellular defenses against oxidative stress are sulfur-containing amino acids, namely cysteine (Cys) and selenocysteine (Sec). Cysteine serves as a precursor for glutathione (GSH), a central intracellular antioxidant, while selenocysteine is incorporated into key antioxidant enzymes such as glutathione peroxidases (GPx) and thioredoxin reductases (TrxR). These molecules play pivotal roles in neutralizing ROS and maintaining redox homeostasis. This review aims to provide an updated and critical overview of the role of thiol-containing amino acids, specifically cysteine and selenocysteine, in the regulation of redox homeostasis during aging. Full article
Show Figures

Figure 1

26 pages, 2221 KiB  
Article
Effects of ε-Poly-L-Lysine/Chitosan Composite Coating on the Storage Quality, Reactive Oxygen Species Metabolism, and Membrane Lipid Metabolism of Tremella fuciformis
by Junzheng Sun, Yingying Wei, Longxiang Li, Mengjie Yang, Yusha Liu, Qiting Li, Shaoxiong Zhou, Chunmei Lai, Junchen Chen and Pufu Lai
Int. J. Mol. Sci. 2025, 26(15), 7497; https://doi.org/10.3390/ijms26157497 (registering DOI) - 3 Aug 2025
Viewed by 53
Abstract
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated [...] Read more.
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated by surface spraying, with distilled water serving as the control. The effects of the coating on storage quality, physicochemical properties, reactive oxygen species (ROS) metabolism, and membrane lipid metabolism were evaluated during storage at (25 ± 1) °C. The results showed that the ε-PL/CTS composite coating significantly retarded quality deterioration, as evidenced by reduced weight loss, maintained whiteness and color, and higher retention of soluble sugars, soluble solids, and soluble proteins. The coating also effectively limited water migration and loss. Mechanistically, the coated T. fuciformis exhibited enhanced antioxidant capacity, characterized by increased superoxide anion (O2) resistance capacity, higher activities of antioxidant enzymes (SOD, CAT, APX), and elevated levels of non-enzymatic antioxidants (AsA, GSH). This led to a significant reduction in malondialdehyde (MDA) accumulation, alongside improved DPPH radical scavenging activity and reducing power. Furthermore, the ε-PL/CTS coating preserved cell membrane integrity by inhibiting the activities of lipid-degrading enzymes (lipase, LOX, PLD), maintaining higher levels of key phospholipids (phosphatidylinositol and phosphatidylcholine), delaying phosphatidic acid accumulation, and consequently reducing cell membrane permeability. In conclusion, the ε-PL/CTS composite coating effectively extends the shelf life and maintains the quality of postharvest T. fuciformis by modulating ROS metabolism and preserving membrane lipid homeostasis. This study provides a theoretical basis and a practical approach for the quality control of fresh T. fuciformis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

30 pages, 1511 KiB  
Review
Environmental and Health Impacts of Pesticides and Nanotechnology as an Alternative in Agriculture
by Jesús Martín Muñoz-Bautista, Ariadna Thalía Bernal-Mercado, Oliviert Martínez-Cruz, Armando Burgos-Hernández, Alonso Alexis López-Zavala, Saul Ruiz-Cruz, José de Jesús Ornelas-Paz, Jesús Borboa-Flores, José Rogelio Ramos-Enríquez and Carmen Lizette Del-Toro-Sánchez
Agronomy 2025, 15(8), 1878; https://doi.org/10.3390/agronomy15081878 - 3 Aug 2025
Viewed by 50
Abstract
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to [...] Read more.
The extensive use of conventional pesticides has been a fundamental strategy in modern agriculture for controlling pests and increasing crop productivity; however, their improper application poses significant risks to human health and environmental sustainability. This review compiles scientific evidence linking pesticide exposure to oxidative stress and genotoxic damage, particularly affecting rural populations and commonly consumed foods, even at levels exceeding the maximum permissible limits in fruits, vegetables, and animal products. Additionally, excessive pesticide use has been shown to alter soil microbiota, negatively compromising long-term agricultural fertility. In response to these challenges, recent advances in nanotechnology offer promising alternatives. This review highlights the development of nanopesticides designed for controlled release, improved stability, and targeted delivery of active ingredients, thereby reducing environmental contamination and increasing efficacy. Moreover, emerging nanobiosensor technologies, such as e-nose and e-tongue systems, have shown potential for real-time monitoring of pesticide residues and soil health. Although pesticides are still necessary, it is crucial to implement stricter laws and promote sustainable solutions that ensure safe and responsible agricultural practices. The need for evidence-based public policy is emphasized to regulate pesticide use and protect both human health and agricultural resources. Full article
Show Figures

Figure 1

Back to TopTop