Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = antioxidant of bamboo leaves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 13874 KiB  
Article
Development of Chitosan-Coated Tung Oil Microcapsules with Antioxidants from Bamboo Leaves for Enhanced Antimicrobial Waterborne Coatings
by Nana Zhang and Xiaoxing Yan
Coatings 2025, 15(5), 517; https://doi.org/10.3390/coatings15050517 - 25 Apr 2025
Cited by 1 | Viewed by 491
Abstract
Antibacterial microcapsules were prepared by using a compound of chitosan with an antioxidant of bamboo leaves (AOB) as the wall material and tung oil as the core material. The microcapsules were modified by adding them to waterborne coatings, and the modified waterborne coatings [...] Read more.
Antibacterial microcapsules were prepared by using a compound of chitosan with an antioxidant of bamboo leaves (AOB) as the wall material and tung oil as the core material. The microcapsules were modified by adding them to waterborne coatings, and the modified waterborne coatings were coated onto Basswood samples. The performance of the obtained coatings was then characterised through a comparative analysis. The investigation focused on the effect of varying percentages of chitosan and AOB in microcapsules with a constant core-to-wall ratio on the performance of the waterborne on the surface of Basswood. The core-to-wall ratio of the microcapsules was established at 1:2, with the ratios of chitosan and AOB in the walls fixed at 9:1, 8:2, and 7:3, respectively. The results demonstrated that the gloss, impact resistance, and hardness of the coatings exhibited an increase with increasing ratios of AOB under varying Mchitosan:MAOB (MC:MA) conditions. Conversely, the adhesion exhibited a decrease with an increase in AOB. The colour difference value exhibited minimal change. The self-healing rate of the coating exhibited an initial increase, followed by a subsequent decrease, in response to the increasing AOB concentration. The antimicrobial effect was optimised at a ratio of 9:1 for the combination of chitosan and AOB. The coating of Basswood containing 1.0% microcapsules and 9:1 MC:MA demonstrated superior performance, exhibiting a gloss of 9.7 GU, a colour difference ΔE of 31.03, a hardness of HB, an adhesion rating of grade 1, an impact resistance of grade 4, a self-healing rate of 19.09%, and a noteworthy antimicrobial effect against both Escherichia coli and Staphylococcus aureus. Full article
(This article belongs to the Special Issue Innovations in Functional Coatings for Wood Processing)
Show Figures

Figure 1

22 pages, 20099 KiB  
Article
Allelochemicals from Moso Bamboo: Identification and Their Effects on Neighbor Species
by Anke Wang, Kaiwen Huang, Yilin Ning and Yufang Bi
Forests 2024, 15(11), 2040; https://doi.org/10.3390/f15112040 - 19 Nov 2024
Cited by 2 | Viewed by 1209
Abstract
Moso bamboo, which is essential to China’s economy, is currently facing significant threats due to declining profits. Inadequate management of moso bamboo can negatively impact the surrounding ecosystems. This study investigated allelopathy in moso bamboo forests by identifying potential allelochemicals and their effects [...] Read more.
Moso bamboo, which is essential to China’s economy, is currently facing significant threats due to declining profits. Inadequate management of moso bamboo can negatively impact the surrounding ecosystems. This study investigated allelopathy in moso bamboo forests by identifying potential allelochemicals and their effects on coexisting plants. Fresh leaves and litter from moso bamboo were collected to examine allelochemicals released through natural processes such as rainwater leaching and litter decomposition. Seven substances with potential allelopathic effects were identified using liquid chromatography–mass spectrometry (LC–MS). Four of these substances—DBP, PHBA, citric acid, and CGA—were selected for a detailed analysis of their effects on the photosynthetic and antioxidant systems of two naturally coexisting plants, Phoebe chekiangensis and Castanopsis sclerophylla. The results indicated that the four chemicals influenced P. chekiangensis and C. sclerophylla through different patterns of interference. DBP, PHBA, and citric acid negatively impacted the transfer of electrons during photosynthesis in both plants but had a lesser effect on the antioxidant system-related indicators in P. chekiangensis. In C. sclerophylla, these four chemicals led to a significant accumulation of reactive oxygen species (ROS) and increased malondialdehyde (MDA) content and catalase (CAT) activity to varying degrees. Furthermore, the relative abundance of fungi and bacteria in the soil was also affected by the DBP treatment. The identification of allelochemicals from moso bamboo, along with the investigation of their mechanisms, provides valuable insights into competitive interactions among plant species, particularly between moso bamboo and other species, along with the expansion of moso bamboo forests. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

17 pages, 8055 KiB  
Article
Effects of the Species and Growth Stage on the Antioxidant and Antifungal Capacities, Polyphenol Contents, and Volatile Profiles of Bamboo Leaves
by Hui Shen, Yan Wang, Pingping Shi, Hong Li, Yanan Chen, Tenggen Hu, Yuanshan Yu, Jinxiang Wang, Fang Yang, Haibo Luo and Lijuan Yu
Foods 2024, 13(3), 480; https://doi.org/10.3390/foods13030480 - 2 Feb 2024
Cited by 6 | Viewed by 2448
Abstract
Bamboo leaves contain high concentrations of various biologically active compounds, such as polyphenols and volatiles, making them attractive as raw resources for antioxidant additives in the food industry. Here, we investigated the total phenolic content (TPC) and total flavonoid content (TFC) of four [...] Read more.
Bamboo leaves contain high concentrations of various biologically active compounds, such as polyphenols and volatiles, making them attractive as raw resources for antioxidant additives in the food industry. Here, we investigated the total phenolic content (TPC) and total flavonoid content (TFC) of four bamboo leaf extracts from two species (Phyllostachys edulis and Chimonocalamus delicatus) at two growth stages (first and second years). Antioxidant capacity was determined based on the radical-scavenging capacity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+). We also assessed the antifungal capacity based on mycelial growth inhibition of Colletotrichum musae (C. musae), Botrytis cinerea (B. cinereain), and Alternaria alternata (A. alternata). Pearson’s correlation coefficients showed that the TPC was significantly (p < 0.01) negatively correlated with the half-maximal inhibitory concentrations against DPPH and ABTS+, whereas the TFC was positively correlated with C. musae and B. cinereain growth inhibition, which suggest that TPC and TFC might be the major contributors to the antioxidant and antifungal capacities of bamboo leaves, respectively. The volatile organic compounds (VOCs) of bamboo leaves were also analyzed using gas chromatography–ion mobility spectrometry. The VOCs included twenty-four aldehydes, eleven alcohols, four furans, seven esters, fifteen terpenes, three ketones, one pyrazine, and thirty unidentified compounds. Principal component analysis, partial least squares discriminant analysis, and hierarchical cluster analysis were performed to assess the differences in the volatile profiles of the four bamboo leaf samples, from which 23 discriminatory VOCs with variable importance in the projection values > 1 were screened, and part of them were impacted by species or growth stage. These findings provide a theoretical foundation for the use of bamboo leaves. Full article
Show Figures

Graphical abstract

15 pages, 3910 KiB  
Article
The Effects of Sudden Freezing on the Biochemical Status of Bamboo Leaves: A Case Study on Nine Species on a Subtropical Plateau
by Sushuang Wang, Yingdan Yan, Yufang Wu, Li Zhou, Jiaxin Liu, Dejia Yang, Juan Li and Shuguang Wang
Forests 2023, 14(12), 2289; https://doi.org/10.3390/f14122289 - 22 Nov 2023
Cited by 2 | Viewed by 1175
Abstract
The differences in the response of the leaves of different bamboo types to sudden snowfalls in winter were analyzed in order to provide scientific references for the introduction and cultivation of cold-resistant bamboo species and to provide new theoretical information on bamboo afforestation [...] Read more.
The differences in the response of the leaves of different bamboo types to sudden snowfalls in winter were analyzed in order to provide scientific references for the introduction and cultivation of cold-resistant bamboo species and to provide new theoretical information on bamboo afforestation and disaster reduction. A total of nine bamboo species were selected to analyze the physiological and chemical changes in the leaves caused by a sudden snowfall. The results showed that sudden snowfall in winter led to a decrease in the moisture, soluble sugar, and starch contents in the leaves of all of the bamboo species analyzed, but there were increases in the contents of proline, MDA, and H2O2 and in the ratios of AsA/DHA and GSH/GSSG. Both the enzymatic activities (SOD, POD, CAT, APX, DHAR, GPX, and GR) and non-enzymatic antioxidant contents (AsA and GSH) were increased after the snowfall, which indicated that the sudden snowfall caused an increase in the antioxidant abilities in the leaves of all bamboo species analyzed. Different bamboo species adopted different strategies for resisting the freezing damage caused by the sudden snowfall. The prevention and mitigation of snow disasters in winter can be scientifically carried out in bamboo forests according to their tolerance abilities. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

13 pages, 4113 KiB  
Article
Synergistic Effect of Combined Treatment with Allicin and Antioxidant of Bamboo Leaves and Preservation of Bullfrogs (Lithobates catesbeiana) during Refrigeration Storage
by Weiqing Lan, Bingjie Zhang, Jintao Du, Shengyun Zhu, Xiao Xu and Jing Xie
Foods 2023, 12(18), 3467; https://doi.org/10.3390/foods12183467 - 18 Sep 2023
Cited by 1 | Viewed by 1525
Abstract
The effects of allicin and antioxidant of bamboo leaves (AOB) on the quality of bullfrogs (Lithobates catesbeiana) during refrigerated storage (4 °C) were investigated. The quality changes in samples treated with deionized water (CK), allicin solution (All), antioxidant of bamboo leaves [...] Read more.
The effects of allicin and antioxidant of bamboo leaves (AOB) on the quality of bullfrogs (Lithobates catesbeiana) during refrigerated storage (4 °C) were investigated. The quality changes in samples treated with deionized water (CK), allicin solution (All), antioxidant of bamboo leaves (AOB), and allicin solution combined with AOB solution (AA) in microbiological, physicochemical, and sensory evaluation were analyzed, respectively. The results demonstrated that combination treatment inhibited the increase in total viable counts, delayed the decrease in amino acid content, and retarded the sensory deterioration. Preservative treatment has an inhibitory effect on the early storage of PBC, which can reduce PBC by about 1.0 log CFU/g. The reduction in thiobarbituric acid (TBA) content and total volatile basic nitrogen (TVB-N) content indicated that combination treatment could better restrain the lipid oxidation and degradation of protein than the CK group and single-treatment group. In addition, the TVB-N content in the AA group still did not exceed the threshold on the 14th day. As a consequence, combination treatment prolonged the shelf life of bullfrogs for another six days. Therefore, allicin and AOB with excellent antioxidant and antimicrobial activity could be an effective approach to delay the biochemical reaction of refrigerated bullfrogs. This study has provided a potential approach for increasing the shelf life of bullfrogs and preserving their quality during refrigerated storage. Full article
Show Figures

Figure 1

12 pages, 1941 KiB  
Article
Anti-Inflammatory and Antioxidant Effects of Leaves and Sheath from Bamboo (Phyllostacys edulis J. Houz)
by Rosa Tundis, Giuseppina Augimeri, Adele Vivacqua, Rosa Romeo, Vincenzo Sicari, Daniela Bonofiglio and Monica Rosa Loizzo
Antioxidants 2023, 12(6), 1239; https://doi.org/10.3390/antiox12061239 - 8 Jun 2023
Cited by 16 | Viewed by 6405
Abstract
Bamboo (Phyllostacys edulis J. Houz) has become an emerging forest resource of economic and ecological significance with health benefits. Since the beneficial effects of the non-edible parts of bamboo have not been thoroughly explored, we characterized in this study bamboo leaf (BL) [...] Read more.
Bamboo (Phyllostacys edulis J. Houz) has become an emerging forest resource of economic and ecological significance with health benefits. Since the beneficial effects of the non-edible parts of bamboo have not been thoroughly explored, we characterized in this study bamboo leaf (BL) and sheath (BS) extracts. The total phenol and flavonoid content (TPC and TFC), antioxidant activity (ABTS, DPPH, FRAP and β-carotene bleaching test) and anti-inflammatory properties were determined. Leaves exhibited a TPC value of 73.92 mg equivalent (eq) gallic acid/g fresh weight (FW) and a TFC value of 56.75 mg eq quercetin/g FW. Ultra-High-Performance Liquid Chromatography (UHPLC) coupled with photo diode array detector (PDA) analysis revealed evidence for the presence of protocatechuic acid, isoorientin, orientin and isovitexin in BL, whereas BS was rich in phenolic acids. Both samples demonstrated a significant ability to scavenge radicals against ABTS·+, with an inhibitory concentration of 50% of 3.07 μg/mL for BL and 6.78 μg/mL for BS. At a concentration of 0.1 and 0.2 mg/mL, BS decreased reactive oxygen species production without hampering cell viability in HepG2 liver cells, while at the same concentrations, BL exhibited cytotoxicity in HepG2 cells. In addition, 0.1 and 0.2 mg/mL BS and BL reduced Interleukin-6 and Monocyte Chemoattractant Protein-1 production in human lipopolysaccharide-stimulated THP-1 macrophages, without affecting cell viability. These findings highlight the anti-inflammatory and antioxidant properties of BL and BS, corroborating their different potential applications in the nutraceutical, cosmetic and pharmaceutical industries. Full article
(This article belongs to the Special Issue Plant Materials and Their Antioxidant Potential)
Show Figures

Graphical abstract

24 pages, 2992 KiB  
Article
Sodium Nitroprusside Improves Bamboo Resistance under Mn and Cr Toxicity with Stimulation of Antioxidants Activity, Relative Water Content, and Metal Translocation and Accumulation
by Abolghassem Emamverdian, Yulong Ding, James Barker, Guohua Liu, Yang Li and Farzad Mokhberdoran
Int. J. Mol. Sci. 2023, 24(3), 1942; https://doi.org/10.3390/ijms24031942 - 18 Jan 2023
Cited by 17 | Viewed by 2934
Abstract
Sodium nitroprusside (SNP), as a single minuscule signaling molecule, has been employed to alleviate plant stress in recent years. This approach has a beneficial effect on the biological and physiological processes of plants. As a result, an in vitro tissue culture experiment was [...] Read more.
Sodium nitroprusside (SNP), as a single minuscule signaling molecule, has been employed to alleviate plant stress in recent years. This approach has a beneficial effect on the biological and physiological processes of plants. As a result, an in vitro tissue culture experiment was carried out to investigate the effect of high and low levels of SNP on the amelioration of manganese (Mn) and chromium (Cr) toxicity in a one-year-old bamboo plant, namely Pleioblastus pygmaea L. Five different concentrations of SNP were utilized as a nitric oxide (NO) donor (0, 50, 80, 150, 250, and 400 µM) in four replications of 150 µM Mn and 150 µM Cr. The results revealed that while 150 µM Mn and 150 µM Cr induced an over-generation of reactive oxygen species (ROS) compounds, enhancing plant membrane injury, electrolyte leakage (EL), and oxidation in bamboo species, the varying levels of SNP significantly increased antioxidant and non-antioxidant activities, proline (Pro), glutathione (GSH), and glycine betaine (GB) content, photosynthesis, and plant growth parameters, while also reducing heavy metal accumulation and translocation in the shoot and stem. This resulted in an increase in the plant’s tolerance to Mn and Cr toxicity. Hence, it is inferred that NO-induced mechanisms boosted plant resistance to toxicity by increasing antioxidant capacity, inhibiting heavy metal accumulation in the aerial part of the plant, restricting heavy metal translocation from root to leaves, and enhancing the relative water content of leaves. Full article
(This article belongs to the Special Issue Metal Stress in Plants)
Show Figures

Figure 1

23 pages, 2507 KiB  
Article
The Effects of Drying Techniques on Phytochemical Contents and Biological Activities on Selected Bamboo Leaves
by Mohammad Amil Zulhilmi Benjamin, Shean Yeaw Ng, Fiffy Hanisdah Saikim and Nor Azizun Rusdi
Molecules 2022, 27(19), 6458; https://doi.org/10.3390/molecules27196458 - 30 Sep 2022
Cited by 35 | Viewed by 4659
Abstract
The therapeutic potential of bamboos has acquired global attention. Nonetheless, the biological activities of the plants are rarely considered due to limited available references in Sabah, Malaysia. Furthermore, the drying technique could significantly affect the retention and degradation of nutrients in bamboos. Consequently, [...] Read more.
The therapeutic potential of bamboos has acquired global attention. Nonetheless, the biological activities of the plants are rarely considered due to limited available references in Sabah, Malaysia. Furthermore, the drying technique could significantly affect the retention and degradation of nutrients in bamboos. Consequently, the current study investigated five drying methods, namely, sun, shade, microwave, oven, and freeze-drying, of the leaves of six bamboo species, Bambusa multiplex, Bambusa tuldoides, Bambusa vulgaris, Dinochloa sublaevigata, Gigantochloa levis, and Schizostachyum brachycladum. The infused bamboo leaves extracts were analysed for their total phenolic content (TPC) and total flavonoid content (TFC). The antioxidant activities of the samples were determined via the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays, whereas their toxicities were evaluated through the brine shrimp lethality assay (BSLA). The chemical constituents of the samples were determined using liquid chromatography–tandem mass spectrometry (LC-MS/MS). The freeze-drying method exhibited the highest phytochemical contents and antioxidant activity yield, excluding the B. vulgaris sample, in which the microwave-dried sample recorded the most antioxidant and phytochemical levels. The TPC and TFC results were within the 2.69 ± 0.01–12.59 ± 0.09 mg gallic acid equivalent (GAE)/g and 0.77 ± 0.01–2.12 ± 0.01 mg quercetin equivalent (QE)/g ranges, respectively. The DPPH and ABTS IC50 (half-maximal inhibitory concentration) were 2.92 ± 0.01–4.73 ± 0.02 and 1.89–0.01 to 3.47 ± 0.00 µg/mL, respectively, indicating high radical scavenging activities. The FRAP values differed significantly between the drying methods, within the 6.40 ± 0.12–36.65 ± 0.09 mg Trolox equivalent (TE)/g range. The phytochemical contents and antioxidant capacities exhibited a moderate correlation, revealing that the TPC and TFC were slightly responsible for the antioxidant activities. The toxicity assessment of the bamboo extracts in the current study demonstrated no toxicity against the BSLA based on the LC50 (lethal concentration 50) analysis at >1000 µg/mL. LC-MS analysis showed that alkaloid and pharmaceutical compounds influence antioxidant activities, as found in previous studies. The acquired information might aid in the development of bamboo leaves as functional food items, such as bamboo tea. They could also be investigated for their medicinal ingredients that can be used in the discovery of potential drugs. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

14 pages, 2800 KiB  
Article
Bamboo Biochar and Zinc Oxide Nanoparticles Improved the Growth of Maize (Zea mays L.) and Decreased Cadmium Uptake in Cd-Contaminated Soil
by Yan Zha, Bo Zhao and Tianxin Niu
Agriculture 2022, 12(9), 1507; https://doi.org/10.3390/agriculture12091507 - 19 Sep 2022
Cited by 19 | Viewed by 3400
Abstract
Cadmium (Cd) has attained top priority among all the toxic trace elements, and it easily accumulates in the human body through various pathways. The current pot study was focused on the impacts of foliar spray zinc oxide nanoparticles (ZnO NPs) (0, 50, 75, [...] Read more.
Cadmium (Cd) has attained top priority among all the toxic trace elements, and it easily accumulates in the human body through various pathways. The current pot study was focused on the impacts of foliar spray zinc oxide nanoparticles (ZnO NPs) (0, 50, 75, 100 mg·L−1), alone or combined with soil-applied bamboo biochar (1.0% w/w), on the maize growth and Cd and Zn accumulations in the grains of maize under Cd-contaminated soil. The results showed that the maize-growth, photosynthesis, and gas-exchange attributes were accelerated by the foliar-applied ZnO NPs, and this effect was further enhanced by the bamboo biochar application in combination with ZnO NPs. All the amendments decreased the electrolyte leakage (EL) and malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, and they enhanced the activities of the antioxidant enzymes in the leaves and roots of the maize more than the control. The Cd concentrations in the shoots decreased by 74.55%, in the roots 66.38%, and in the grains by 76.19% after the bamboo biochar combined with a foliar spray of 100 mg·L−1 ZnO NPs. The current study concluded that the combination of the foliar spray of ZnO NPs and soil-applied bamboo biochar is a feasible strategy for safely growing crops on Cd-contaminated soils. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

14 pages, 1143 KiB  
Article
The Effects of Different Natural Plant Extracts on the Formation of Polycyclic Aromatic Hydrocarbons (PAHs) in Roast Duck
by Xixi Shen, Xinyuan Huang, Xiaoyan Tang, Junliang Zhan and Suke Liu
Foods 2022, 11(14), 2104; https://doi.org/10.3390/foods11142104 - 15 Jul 2022
Cited by 19 | Viewed by 2701
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with high carcinogenicity and mutagenicity may be generated in roast duck during high-temperature roasting. Natural extracts with antioxidant effects may inhibit the formation of PAHs. The objective of this study was to compare the effects of green tea extract [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) with high carcinogenicity and mutagenicity may be generated in roast duck during high-temperature roasting. Natural extracts with antioxidant effects may inhibit the formation of PAHs. The objective of this study was to compare the effects of green tea extract (GTE); extract of bamboo leaves (EBL); grape seed extract (GSE) and rosemary extract (RE) on PAHs in roast duck to obtain the optimum extract and present a guidance for reducing PAHs in roast duck. The total phenol content and antioxidant capacity of the four extracts were measured, and the PAH changes in the roast duck caused by the four extracts were detected. The total phenol content of GTE was the highest, 277 mg gallic acid equivalent (GAE)/g, while RE was the lowest at 85 mg GAE/g. The antioxidant capacity of RE was 1.9 mmol Trolox/g, which was significantly lower than that of the other three. The four extracts inhibited PAHs formation in roast duck to varying degrees: When the concentration was 25 g/kg, the best inhibitory effects on Benzo [a] pyrene (BaP) and PAH4 (BaP, BaA, BbF and CHR) were obtained from GTE, with inhibition rates of 75.8% and 79.7%, respectively, while the weakest inhibition rates, 32.7% and 43.6%, respectively, were from RE. Full article
(This article belongs to the Special Issue Recent Advances in Meat Processing Technology)
Show Figures

Figure 1

16 pages, 3890 KiB  
Article
Effect of Glazing with Different Materials on the Quality of Tuna During Frozen Storage
by Jinfeng Wang, Wenhui Yu and Jing Xie
Foods 2020, 9(2), 231; https://doi.org/10.3390/foods9020231 - 21 Feb 2020
Cited by 37 | Viewed by 5084
Abstract
This study investigated and determined the changes in various qualities of tuna samples that were glazed with rosmarinic acid, a bamboo leaf antioxidant, and sodium lactate and stored at −18 °C for 180 days. The water-holding capacity, cooking loss, color, texture, protein content, [...] Read more.
This study investigated and determined the changes in various qualities of tuna samples that were glazed with rosmarinic acid, a bamboo leaf antioxidant, and sodium lactate and stored at −18 °C for 180 days. The water-holding capacity, cooking loss, color, texture, protein content, and total volatile basic nitrogen (TVB-N) were monitored, to study the effect of tuna glazed with different materials on the quality every 30 days. Low-field nuclear magnetic resonance (LF-NMR) was used to measure the water distribution of tuna in this paper. The results showed that the quality of unglazed tuna decreased significantly after 180 days of frozen storage. During frozen storage, the hardness and a* values of RG (glazed with the rosmarinic acid group), SG (glazed with the sodium lactate group), and CG (glazed with the composite of rosmarinic acid, sodium lactate, and the antioxidant of bamboo leaf) tuna decreased slowly, while the malondialdehyde (MDA) value of AG (glazed with the antioxidant of bamboo leaf group) tuna increased slowly. After 180 days of frozen storage, CG tuna had the highest protein content and the lowest TVB-N value, which may have been due to the synergistic effect of glazing materials. The tuna with CG also had the best freshness and quality after frozen storage. Considering the results, a composite of rosemary (0.3%), sodium lactate (3.4%), and antioxidants of bamboo leaves (0.12%) is the best material for glazing tuna. Full article
Show Figures

Figure 1

14 pages, 1462 KiB  
Article
Antioxidant and Compositional HPLC Analysis of Three Common Bamboo Leaves
by Ning-Hui Ma, Jing Guo, Si-Han Xu Chen, Xiu-Rong Yuan, Tong Zhang and Yue Ding
Molecules 2020, 25(2), 409; https://doi.org/10.3390/molecules25020409 - 18 Jan 2020
Cited by 30 | Viewed by 5333
Abstract
Bamboo leaves of Phyllostachys nigra (PN), Lophatherum gracile (LG), and Pleioblastus amarus (PA) are three common herbs in China. In this work, a new high performance liquid chromatography (HPLC) method for the simultaneous determination of seven compounds in bamboo leaves has been developed; [...] Read more.
Bamboo leaves of Phyllostachys nigra (PN), Lophatherum gracile (LG), and Pleioblastus amarus (PA) are three common herbs in China. In this work, a new high performance liquid chromatography (HPLC) method for the simultaneous determination of seven compounds in bamboo leaves has been developed; and PN, LG, and PA leaves were analyzed. PN showed four times as much chlorogenic acid (CA) than the other two, and contained the most isoorientin (iso-ORI) and isovitexin (iso-VIT) as well. The PA presented the most orientin (ORI) and LG covered a majority of cynaroside (CYN). We measured the antioxidant activity by scavenging the stable 2,2-diphenyl-1-pyridinohydrazinyl (DPPH) free radicals, and found that Luteolin (inhibitory concentration (IC)50 = 0.42 µM, LUT) and CYN (IC50 = 0.43 µM) showed 2–3 times higher antioxidant activity than iso-ORI (IC50 = 0.81 µM), ORI (IC50 = 0.84 µM), and other related antioxidant standards such as trolox (IC50 = 0.97 µM) and ascorbic acid (IC50 = 0.93 µM, VC). Among extracts, PN and PA showed considerable antioxidant activity, which was related well with the contents of CA, iso-ORI, and iso-VIT (p < 0.05). This study firstly provides evidence for functional antioxidant compounds of bamboo leaves based on statistical analysis of the HPLC analysis and DPPH assay, and it lays a foundation for its further development or utilization. Full article
Show Figures

Figure 1

20 pages, 2636 KiB  
Article
Biochar Type and Ratio as a Peat Additive/Partial Peat Replacement in Growing Media for Cabbage Seedling Production
by Antonios Chrysargyris, Munoo Prasad, Anna Kavanagh and Nikos Tzortzakis
Agronomy 2019, 9(11), 693; https://doi.org/10.3390/agronomy9110693 - 29 Oct 2019
Cited by 46 | Viewed by 5853
Abstract
Biochar has been proposed mainly as a soil amendment, positively affecting plant growth/yield, and to a lesser degree for growing media. In this study, four commercial grade biochars (A-forest wood; B-husks and paper fiber; C-bamboo and D-fresh wood screening), mostly wood-based materials, were [...] Read more.
Biochar has been proposed mainly as a soil amendment, positively affecting plant growth/yield, and to a lesser degree for growing media. In this study, four commercial grade biochars (A-forest wood; B-husks and paper fiber; C-bamboo and D-fresh wood screening), mostly wood-based materials, were selected. Initial mixtures of peat (P) with different Biochar type and ratios (0-5-10-15-20%) were selected for cabbage seedling production. Biochar material had high K content and pH ≥ 8.64 which resulted in increased pH of the growing media. Biochar A and C at 20% reduced cabbage seed emergence. Biochar A, B and D maintained or improved plant growth at low ratio (i.e., 5–10%) while all Biochars increased N, K and P content in leaves. Biochars A and D were further examined at 7.5% and 15% with the addition of two doses of minerals (1-fold and 1.5-fold). Biochar A and D, initially stimulated seed emergence when compared to the control. High dose of fertilizer favored plant growth in Biochar A at 7.5% and Biochar D at 15%. Leaf stomatal conductance was decreased at Biochar A+Fert at 7.5% and Chlorophyll b content was decreased at Biochar A+Fert at 15%. The presence of Biochar A increased the antioxidant activity (as assayed by 2,2-diphenyl-1-picrylhydrazyl-DPPH). Lipid peroxidation was higher in plants grown with fertilized peat and Biochar A at 15%, activating antioxidant enzymatic metabolisms. Potassium, phosphorous and copper accumulation and magnesium deficiency in cabbage leaves were related to the Biochar presence. Wooden biochar of beech, spruce and pine species (Biochar A) at 7.5% and fertilized biochar of fruit trees and hedges (Biochar D) were more promising for peat replacement for cabbage seedling production. Full article
(This article belongs to the Special Issue Soilless Culture, Growing Media and Horticultural Plants)
Show Figures

Figure 1

13 pages, 3554 KiB  
Article
Soil Silicon Amendment Increases Phyllostachys praecox Cold Tolerance in a Pot Experiment
by Zhuang Zhuang Qian, Shun Yao Zhuang, Qiang Li and Ren Yi Gui
Forests 2019, 10(5), 405; https://doi.org/10.3390/f10050405 - 10 May 2019
Cited by 11 | Viewed by 2849
Abstract
Cultivated bamboos are occasionally subjected to cold stress in winter, and silicon could improve their cold tolerance. However, evidence of the effect of Si on bamboos is still limited. Therefore, a batch and pot experiment was conducted for six months to investigate the [...] Read more.
Cultivated bamboos are occasionally subjected to cold stress in winter, and silicon could improve their cold tolerance. However, evidence of the effect of Si on bamboos is still limited. Therefore, a batch and pot experiment was conducted for six months to investigate the effects of different Si fertilizer application rates (0, 0.5, 1.0, 2.0, 4.0, and 8.0 g kg−1 of soil weight) on the physiological responses and photosynthesis parameters of Phyllostachys praecox under a simulated cold stress condition. The cold temperature was set to 5 °C, 0 °C, and −5 °C, successively. The bamboo biomass increased significantly when the Si amendment rate was at least 2.0 g kg−1 (P = 0.002), and the highest biomass increase and root-to-canopy ratio were obtained with the 4.0 g kg−1 Si amendment. Furthermore, the Si contents in all organs of the bamboos increased with the increase of the Si amendment rate. The highest content of Si among the other organs was observed in the leaf, and the content was 68.95 mg kg−1 with the treatment of 4.0 g kg−1. With the application of Si, the photosynthesis rate of bamboo leaves was significantly increased (P = 0.008). The Si-amended bamboo exhibited a cold tolerance that was associated with stimulating antioxidant systems, and the enzyme activities of superoxide dismutase, peroxidase, and catalase increased with the increase of the Si amendment rate, whereas the malondialdehyde content and cell membrane permeability decreased with all Si treatments. A low temperature of −5 °C exerted effects on the bamboo leaf chloroplasts, but the ultrastructures of the chloroplasts remained intact after Si treatment. These findings suggest that Si fertilizer enhances bamboo growth and the tolerance of bamboo plants to cold stress. However, a high application rate (8.0 g kg−1) caused a decline in the bamboo biomass, compared to T4. Thus, a Si fertilization rate of 2.0~8.0 g kg−1 is recommended for bamboos under cold conditions. Full article
(This article belongs to the Special Issue Physiological Responses to Abiotic and Biotic Stress in Forest Trees)
Show Figures

Figure 1

13 pages, 2120 KiB  
Article
Homogenate-assisted Vacuum-powered Bubble Extraction of Moso Bamboo Flavonoids for On-line Scavenging Free Radical Capacity Analysis
by Yinnan Sun, Kui Yang, Qin Cao, Jinde Sun, Yu Xia, Yinhang Wang, Wei Li, Chunhui Ma and Shouxin Liu
Molecules 2017, 22(7), 1156; https://doi.org/10.3390/molecules22071156 - 11 Jul 2017
Cited by 17 | Viewed by 5482
Abstract
A homogenate-assisted vacuum-powered bubble extraction (HVBE) method using ethanol was applied for extraction of flavonoids from Phyllostachys pubescens (P. pubescens) leaves. The mechanisms of homogenate-assisted extraction and vacuum-powered bubble generation were discussed in detail. Furthermore, a method for the rapid determination of flavonoids [...] Read more.
A homogenate-assisted vacuum-powered bubble extraction (HVBE) method using ethanol was applied for extraction of flavonoids from Phyllostachys pubescens (P. pubescens) leaves. The mechanisms of homogenate-assisted extraction and vacuum-powered bubble generation were discussed in detail. Furthermore, a method for the rapid determination of flavonoids by HPLC was established. HVBE followed by HPLC was successfully applied for the extraction and quantification of four flavonoids in P. pubescens, including orientin, isoorientin, vitexin, and isovitexin. This method provides a fast and effective means for the preparation and determination of plant active components. Moreover, the on-line antioxidant capacity, including scavenging positive ion and negative ion free radical capacity of different fractions from the bamboo flavonoid extract was evaluated. Results showed that the scavenging DPPH˙ free radical capacity of vitexin and isovitexin was larger than that of isoorientin and orientin. On the contrary, the scavenging ABTS+˙free radical capacity of isoorientin and orientin was larger than that of vitexin and isovitexin. Full article
Show Figures

Graphical abstract

Back to TopTop