Effects of the Species and Growth Stage on the Antioxidant and Antifungal Capacities, Polyphenol Contents, and Volatile Profiles of Bamboo Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Materials
2.2.1. Bamboo Leaves
2.2.2. Fungal Strains
2.3. BLE Preparation
2.4. Total Phenolic Content (TPC) Determination
2.5. Total Flavonoid Content (TFC) Determination
2.6. Antioxidant Capacity Determination
2.6.1. DPPH Radical-Scavenging Capacity
2.6.2. ABTS+ Radical-Scavenging Capacity
2.7. Antifungal Capacity Assays
2.8. GC-IMS Assay
2.9. Statistical Analysis
3. Results
3.1. TPC and TFC of BLE
3.2. Antioxidant Capacities against DPPH and ABTS+ Radicals
3.3. Antifungal Capacities against C. musae, B. cinerea, and A. alternata
3.4. Pearson’s Correlation Analysis of Biological Components and Capacities
3.5. Volatile Profile of Bamboo Leaves Using GC-IMS
3.6. Qualitative Analysis of VOCs in Bamboo Leaves
3.7. Multivariate Statistical Analysis of VOCs
3.7.1. PCA
3.7.2. Multivariate Analysis of VOCs
3.8. Distinguishing VOCs in Bamboo Leaves by Species and Growth Stage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singhal, P.; Bal, L.M.; Satya, S.; Sudhakar, P.; Naik, S.N. Bamboo shoots: A novel source of nutrition and medicine. Crit. Rev. Food Sci. 2013, 53, 517–534. [Google Scholar] [CrossRef]
- Li, Y.G.; Han, N.; Li, X.J.; Du, H.Q.; Mao, F.J.; Cui, L.; Liu, T.Y.; Xing, L.Q. Spatiotemporal estimation of bamboo forest aboveground carbon storage based on landsat data in Zhejiang, China. Remote Sens. 2018, 10, 898. [Google Scholar] [CrossRef]
- Ramakrishnan, M.; Yrjälä, K.; Vinod, K.K.; Sharma, A.; Cho, J.; Satheesh, V.; Zhou, M.B. Genetics and genomics of moso bamboo (Phyllostachys edulis): Current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry. Food Energy Secur. 2020, 9, e229. [Google Scholar] [CrossRef]
- Zhang, Y.X. Review on the study of the genus Chimonocalamus (Poaceae: Bambusoideae). J. Bamboo Res. 2022, 41, 5–9. [Google Scholar] [CrossRef]
- Kimura, I.; Kagawa, S.; Tsuneki, H.; Tanaka, K.; Nagashima, F. Multitasking bamboo leaf-derived compounds in prevention of infectious, inflammatory, atherosclerotic, metabolic, and neuropsychiatric diseases. Pharmacol. Therapeut. 2022, 235, 108159. [Google Scholar] [CrossRef]
- Cheng, Y.Q.; Wan, S.Q.; Yao, L.N.; Lin, D.; Wu, T.; Chen, Y.J.; Zhang, A.L.; Lu, C.F. Bamboo leaf: A review of traditional medicinal property, phytochemistry, pharmacology, and purification technology. J. Ethnopharmacol. 2023, 306, 116166. [Google Scholar] [CrossRef]
- GB 2760–2014; National Food Safety Standard-Standard for the Use of Food Additives. National Health and Family Planning Commission of the People’s Republic of China (NHFPC): Beijing, China, 2014.
- Gong, J.Y.; Xia, D.Z.; Huang, J.; Ge, Q.; Mao, J.W.; Liu, S.W.; Zhang, Y. Functional components of bamboo shavings and bamboo leaf extracts and their antioxidant activities in vitro. J. Med. Food 2015, 18, 453–459. [Google Scholar] [CrossRef]
- Zhang, J.H.; Sun, H.L.; Chen, S.Y.; Zeng, L.; Wang, T.T. Anti-fungal activity, mechanism studies on α-Phellandrene and Nonanal against Penicillium cyclopium. Biomed. Pharmacother. 2017, 58, 13. [Google Scholar] [CrossRef]
- Ma, N.H.; Guo, J.; Chen, S.H.; Yuan, X.R.; Zhang, T.; Ding, Y. Antioxidant and compositional HPLC analysis of three common bamboo leaves. Molecules 2020, 25, 409. [Google Scholar] [CrossRef]
- Wang, B.; Yan, S.; Gao, W.; Kang, X.; Yu, B.; Liu, P.; Guo, L.; Cui, B.; Abd El-Aty, A.M. Antibacterial activity, optical, and functional properties of corn starch-based films impregnated with bamboo leaf volatile oil. Food Chem. 2021, 357, 129743. [Google Scholar] [CrossRef]
- Chu, X.; Zhang, K.; Wei, H.Y.; Ma, Z.Y.; Fu, H.; Miao, P.; Jiang, H.Z.; Liu, H.L. A Vis/NIR spectra-based approach for identifying bananas infected with Colletotrichum musae. Front Plant Sci. 2023, 14, 1180203. [Google Scholar] [CrossRef]
- AbuQamar, S.; Moustafa, K.; Tran, L.S.P. Mechanisms and strategies of plant defense against Botrytis cinerea. Crit. Rev. Biotechnol. 2017, 37, 262–274. [Google Scholar] [CrossRef]
- Pan, T.T.; Chyngyz, E.; Sun, D.W.; Paliwal, J.; Pu, H.B. Pathogenetic process monitoring and early detection of pear black spot disease caused by Alternaria alternata using hyperspectral imaging. Postharvest Biol. Technol. 2019, 154, 96–104. [Google Scholar] [CrossRef]
- Liao, M.; Ren, X.X.; Gao, Q.; Liu, N.N.; Tang, F.; Wang, G.; Cao, H.Q. Anti-fungal activity of moso bamboo (Phyllostachys pubescens) leaf extract and its development into a botanical fungicide to control pepper phytophthora blight. Sci. Rep. 2021, 11, 4146. [Google Scholar] [CrossRef]
- Wang, S.Q.; Chen, H.T.; Sun, B.G. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef]
- Li, X.J.; Zeng, X.Q.; Song, H.L.; Xi, Y.; Li, Y.; Hui, B.W.; Li, H.; Li, J. Characterization of the aroma profiles of cold and hot break tomato pastes by GC-O-MS, GC × GC-O-TOF-MS, and GC-IMS. Food Chem. 2023, 405, 134823. [Google Scholar] [CrossRef]
- Takahashi, T.; Mizui, K.; Miyazawa, M. Volatile compounds with characteristic odour in moso-bamboo stems (Phyllostachys pubescens Mazel ex Houz. De ehaie). Phytochem. Anal. 2010, 21, 489–495. [Google Scholar] [CrossRef]
- Mi, S.; Yu, W.L.; Li, J.; Liu, M.X.; Sang, Y.X.; Wang, X.J. Characterization and discrimination of chilli peppers based on multi-element and non-targeted metabolomics analysis. LWT-Food Sci. Technol. 2020, 131, 109742. [Google Scholar] [CrossRef]
- Shen, D.Y.; Song, H.L.; Zou, T.T.; Wan, S.Y.; Li, M.K. Characterization of odor-active compounds in moso bamboo (Phyllostachys pubescens Mazel) leaf via gas chromatography-ion mobility spectrometry, one- and two-dimensional gas chromatography-olfactory-mass spectrometry, and electronic nose. Food Res. Int. 2021, 152, 110916. [Google Scholar] [CrossRef]
- Shang, Y.F.; Sang, M.K.; Um, B.H. Optimisation of pressurised liquid extraction of antioxidants from black bamboo leaves. Food Chem. 2014, 154, 164–170. [Google Scholar] [CrossRef]
- Ma, Y.L.; Yang, Y.; Gao, J.; Feng, J.; Shang, Y.F.; Wei, Z.J. Phenolics and antioxidant activity of bamboo leaves soup as affected by in vitro digestion. Food Chem. Toxicol. 2019, 135, 110941. [Google Scholar] [CrossRef]
- Tundis, R.; Augimeri, G.; Vivacqua, A.; Romeo, R.; Sicari, V.; Bonofiglio, D.; Loizzo, M.R. Anti-inflammatory and antioxidant effects of leaves and sheath from bamboo (Phyllostacys edulis J. Houz). Antioxidants 2023, 12, 1239. [Google Scholar] [CrossRef]
- Tao, C.; Wu, J.; Liu, Y.; Liu, M.; Yang, R.P.; Lv, Z.L. Antimicrobial activities of bamboo (Phyllostachys heterocycla cv. Pubescens) leaf essential oil and its major components. Eur. Food Res. Technol. 2018, 244, 881–891. [Google Scholar] [CrossRef]
- Esparza, I.; Moler, J.A.; Arteta, M.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C. Phenolic composition of grape stems from different spanish varieties and vintages. Biomolecules 2021, 11, 1221. [Google Scholar] [CrossRef]
- Sun, Y.N.; Yang, K.; Cao, Q.; Sun, J.D.; Xia, Y.; Wang, Y.H.; Li, W.; Ma, C.H.; Liu, S.X. Homogenate-assisted vacuum-powered bubble extraction of moso bamboo flavonoids for on-line scavenging free radical capacity analysis. Molecules 2017, 22, 1156. [Google Scholar] [CrossRef]
- Pinto, T.; Aires, A.; Cosme, F.; Bacelar, E.; Morais, M.C.; Oliveira, I.; Ferreira-Cardoso, J.; Anjos, R.; Vilela, A.; Gonçalves, B. Bioactive (Poly)phenols, volatile compounds from vegetables, medicinal and aromatic plants. Foods 2021, 10, 106. [Google Scholar] [CrossRef]
- Zhao, X.X.; Zhou, J.Y.; Tian, R.F.; Liu, Y.L. Microbial volatile organic compounds: Antifungal mechanisms, applications, and challenges. Front. Microbiol. 2022, 13, 922450. [Google Scholar] [CrossRef]
- Zhou, H.; Cui, W.; Gao, Y.F.; Li, P.; Pu, X.Y.; Wang, Y.; Wang, Z.M.; Xu, B.C. Analysis of the volatile compounds in Fuliji roast chicken during processing and storage based on GC-IMS. Curr. Res. Food Sci. 2022, 5, 1484–1493. [Google Scholar] [CrossRef]
- Lopez, A.; Vasconi, M.; Bellagamba, F.; Mentasti, T.; Pazzaglia, M.; Moretti, V.M. Volatile organic compounds profile in white sturgeon (Acipenser transmontanus) caviar at different stages of ripening by multiple headspace solid phase microextraction. Molecules 2020, 25, 1074. [Google Scholar] [CrossRef]
- Zhang, L.L.; Mao, Y.Z.; Pan, J.J.; Wang, S.S.; Chen, L.; Xiang, J. Bamboo leaf extract ameliorates cardiac fibrosis possibly via alleviating inflammation, oxidative stress and apoptosis. Biomed. Pharmacother. 2017, 95, 808–817. [Google Scholar] [CrossRef]
- Steglińska, A.; Pielech-Przybylska, K.; Janas, R.; Grzesik, M.; Borowski, S.; Kręgiel, D.; Gutarowska, B. Volatile organic compounds and physiological parameters as markers of potato (Solanum tuberosum L.) infection with phytopathogens. Molecules 2022, 27, 3708. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.J.; Sun, Y.M.; Cui, M.X.; Zhang, E.S.; Dong, L.Y.; Wang, Y.C.; Wang, W.J.; Li, Z.; Yang, J.M. Analysis of volatile compounds and flavor fingerprint using gas chromatography-ion mobility spectrometry (GC-IMS) on Crassostrea gigas with fdifferent ploidy and gender. Molecules 2023, 28, 4475. [Google Scholar] [CrossRef]
- Ma, Y.R.; Deng, Q.B.; Du, Y.J.; Ren, J.Y.; Chen, Y.F.; Liu, X.H.; Guo, X.W.; Xiao, D.G. A biosynthetic pathway for ethyl butyrate production in Saccharomyces cerevisiae. J. Agric. Food Chem. 2020, 68, 4252–4260. [Google Scholar] [CrossRef]
- Hallier, A.; Prost, C.; Serot, T. Influence of rearing conditions on the volatile compounds of cooked fillets of Silurus glanis (European catfish). J. Agric. Food Chem. 2005, 53, 7204–7211. [Google Scholar] [CrossRef] [PubMed]
- Qian, G.T.; Li, X.Y.; Zhang, H.; Zhang, H.L.; Zhou, J.W.; Ma, X.H.; Sun, W.; Yang, W.; He, R.K.; Wahab, A.T.; et al. Metabolomics analysis reveals the accumulation patterns of flavonoids and phenolic acids in quinoa (Chenopodium quinoa Willd.) grains of different colors. Food Chem. X 2023, 17, 100594. [Google Scholar] [CrossRef] [PubMed]
Sample | TPC (mg GAE g−1) | TFC (mg RT g−1) |
---|---|---|
Annual P. edulis | 662.94 ± 0.81 b | 86.00 ± 0.06 d |
Biennial P. edulis | 898.90 ± 0.81 a | 93.00 ± 0.06 c |
Annual C. delicates | 546.73 ± 0.81 d | 110.75 ± 0.06 b |
Biennial C. delicatus | 605.54 ± 1.07 c | 135.60 ± 0.06 a |
Sample | IC50 Value for the DPPH Radical (mg mL−1) | IC50 Value for ABTS+ (mg mL−1) |
---|---|---|
Annual P. edulis | 0.81 ± 0.00 c | 0.40 ± 0.00 c |
Biennial P. edulis | 0.63 ± 0.00 d | 0.32 ± 0.00 d |
Annual C. delicates | 0.89 ± 0.00 a | 0.57 ± 0.00 a |
Biennial C. delicates | 0.84 ± 0.00 b | 0.50 ± 0.00 b |
L-Ascorbic acid | 0.03 ± 0.00 e | 0.02 ± 0.00 e |
No. | Compound | CAS# | Formula | MW | RI | RC (%) | CRC (%) |
---|---|---|---|---|---|---|---|
Aldehydes | |||||||
1 | 2-Hexenal-D | 505-57-7 | C6H10O | 98.1 | 855.5 | 6.88 | 38.34 |
2 | (E)-2-Pentenal-M | 1576-87-0 | C5H8O | 84.1 | 754 | 5.89 | |
3 | 3-Methylbutanal-D | 590-86-3 | C5H10O | 86.1 | 649 | 3.94 | |
4 | 2-Methylbutanal | 96-17-3 | C5H10O | 86.1 | 670.4 | 3.66 | |
5 | 2-Methylpropanal | 78-84-2 | C4H8O | 72.1 | 531 | 3.10 | |
6 | (E, E)-2,4-Hexadienal-D | 142-83-6 | C6H8O | 96.1 | 923.6 | 2.04 | |
7 | Butanal-D | 123-72-8 | C4H8O | 72.1 | 575.3 | 1.99 | |
8 | 3-Methylbutanal-M | 590-86-3 | C5H10O | 86.1 | 651.3 | 1.65 | |
9 | Propanal-M | 123-38-6 | C3H6O | 58.1 | 501.7 | 1.48 | |
10 | 2-Methyl-2-Propenal | 78-85-3 | C4H6O | 70.1 | 562.6 | 1.20 | |
11 | Propanal-D | 123-38-6 | C3H6O | 58.1 | 493.5 | 0.95 | |
12 | 2-Hexenal-M | 505-57-7 | C6H10O | 98.1 | 852.3 | 0.92 | |
13 | (E)-2-Pentenal-D | 1576-87-0 | C5H8O | 84.1 | 756.6 | 0.82 | |
14 | Nonanal-M | 124-19-6 | C9H18O | 142.2 | 1105.7 | 0.76 | |
15 | 2-Phenyl-1,3-Dioxolane-4-Methanol | 1708-39-0 | C10H12O3 | 180.2 | 975.9 | 0.56 | |
16 | Trans-2-Penten-1-al | 1576-87-0 | C5H8O | 84.1 | 731.7 | 0.46 | |
17 | (E, E)-2,4-Hexadienal-M | 142-83-6 | C6H8O | 96.1 | 923.1 | 0.44 | |
18 | Butanal-M | 123-72-8 | C4H8O | 72.1 | 590.9 | 0.34 | |
19 | (E)-Hept-2-Enal | 18829-55-5 | C7H12O | 112.2 | 961.9 | 0.34 | |
20 | (E, E)-2,4-Heptadienal | 4313-03-5 | C7H10O | 110.2 | 1012.1 | 0.32 | |
21 | Heptanal | 111-71-7 | C7H14O | 114.2 | 902 | 0.25 | |
22 | Nonanal-D | 124-19-6 | C9H18O | 142.2 | 1106.2 | 0.16 | |
23 | (E)-2-Octenal-M | 2548-87-0 | C8H14O | 126.2 | 1070.2 | 0.15 | |
24 | (E)-2-Octenal-D | 2548-87-0 | C8H14O | 126.2 | 1070.6 | 0.03 | |
Alcohols | |||||||
25 | 1-Propanol-M | 71-23-8 | C3H8O | 60.1 | 566.6 | 3.39 | 11.21 |
26 | 2-Butanol-D | 78-92-2 | C4H10O | 74.1 | 585 | 2.10 | |
27 | 1-Propanethiol-D | 107-03-9 | C3H8S | 76.2 | 618.8 | 1.44 | |
28 | 1-Propanethiol-M | 107-03-9 | C3H8S | 76.2 | 624.7 | 0.85 | |
29 | 2-Butanol-M | 78-92-2 | C4H10O | 74.1 | 583.4 | 0.66 | |
30 | Pentan-1-Ol-M | 71-41-0 | C5H12O | 88.1 | 768.5 | 0.54 | |
31 | 3-Heptanol | 589-82-2 | C7H16O | 116.2 | 895.4 | 0.54 | |
32 | (Z)-4-Heptenal-D | 6728-31-0 | C7H12O | 112.2 | 901.9 | 0.51 | |
33 | Ethyl Propanoate | 105-37-3 | C5H10O2 | 102.1 | 708.8 | 0.47 | |
34 | Pentan-1-Ol-D | 71-41-0 | C5H12O | 88.1 | 767.5 | 0.45 | |
35 | (Z)-4-Heptenal-M | 6728-31-0 | C7H12O | 112.2 | 902.2 | 0.27 | |
Furans | |||||||
36 | 2-Ethylfuran-M | 3208-16-0 | C6H8O | 96.1 | 706.8 | 4.96 | 10.86 |
37 | 2,5-Dimethylfuran | 625-86-5 | C6H8O | 96.1 | 696.6 | 4.56 | |
38 | 2-Ethylfuran-D | 3208-16-0 | C6H8O | 96.1 | 705.3 | 1.09 | |
39 | 2-Pentylfuran | 3777-69-3 | C9H14O | 138.2 | 995.5 | 0.25 | |
Esters | |||||||
40 | Ethyl Butyrate | 105-54-4 | C6H12O2 | 116.2 | 789.3 | 1.62 | 3.92 |
41 | Ethyl 3-Hydroxybutanoate | 5405-41-4 | C6H12O3 | 132.2 | 911.7 | 0.67 | |
42 | Acetic Acid Hexyl ester | 142-92-7 | C8H16O2 | 144.2 | 1010.9 | 0.60 | |
43 | Methyl 2-Furoate | 611-13-2 | C6H6O3 | 126.1 | 975.8 | 0.51 | |
44 | (Z)-3-Hexenyl Acetate | 3681/7/18 | C8H14O2 | 142.2 | 1011.1 | 0.24 | |
45 | Methyl Salicylate | 119-36-8 | C8H8O3 | 152.1 | 1182.6 | 0.21 | |
46 | Hexyl Butanoate | 2639-63-6 | C10H20O2 | 172.3 | 1198.2 | 0.06 | |
Terpenes | |||||||
47 | 2-Heptanone-D | 110-43-0 | C7H14O | 114.2 | 890.6 | 0.66 | 3.62 |
48 | Camphene | 79-92-5 | C10H16 | 136.2 | 948.7 | 0.48 | |
49 | Limonene-M | 138-86-3 | C10H16 | 136.2 | 1038.6 | 0.41 | |
50 | β-Myrcene-D | 123-35-3 | C10H16 | 136.2 | 993.5 | 0.40 | |
51 | β-Pinene-M | 127-91-3 | C10H16 | 136.2 | 976.9 | 0.29 | |
52 | β-Ocimene | 13877-91-3 | C10H16 | 136.2 | 1050.6 | 0.25 | |
53 | γ-Terpinene | 99-85-4 | C10H16 | 136.2 | 1059.1 | 0.24 | |
54 | α-Pinene-M | 80-56-8 | C10H16 | 136.2 | 934.1 | 0.23 | |
55 | β-Myrcene-M | 123-35-3 | C10H16 | 136.2 | 993.3 | 0.16 | |
56 | β-Myrcene-T | 123-35-3 | C10H16 | 136.2 | 993.1 | 0.14 | |
57 | Limonene-D | 138-86-3 | C10H16 | 136.2 | 1038.4 | 0.10 | |
58 | β-Pinene-D | 127-91-3 | C10H16 | 136.2 | 975.8 | 0.07 | |
59 | α-Pinene-D | 80-56-8 | C10H16 | 136.2 | 935.1 | 0.07 | |
60 | 2-Heptanone-M | 110-43-0 | C7H14O | 114.2 | 892 | 0.07 | |
61 | β-Pinene-T | 127-91-3 | C10H16 | 136.2 | 976.2 | 0.05 | |
Ketones | |||||||
62 | 2,3-Pentadione | 600-14-6 | C5H8O2 | 100.1 | 650.4 | 1.93 | 2.35 |
63 | 2-Hydroxy-3-Methyl-2-Cyclopenten-1-One | 80-71-7 | C6H8O2 | 112.1 | 1000.6 | 0.28 | |
64 | 2-Pentanone | 107-87-9 | C5H10O | 86.1 | 690.3 | 0.14 | |
Pyrazine | |||||||
65 | 2,3-Dimethylpyrazine | 5910-89-4 | C6H8N2 | 108.1 | 922.8 | 1.80 | 1.80 |
No. | Compound | VIP Value | The Relative Content (%) | |||
---|---|---|---|---|---|---|
Annual P. edulis | Biennial P. edulis | Annual C. delicatus | Biennial C. delicatus | |||
Aldehydes | ||||||
1 | 2-Methylpropanal | 1.60 | 2.95 ± 0.12 b | 3.59 ± 0.19 a | 2.28 ± 0.13 c | 3.57 ± 0.08 a |
2 | (E)-2-Pentenal-M | 1.53 | 6.42 ± 0.13 a | 5.13 ± 0.11 c | 6.36 ± 0.11 a | 5.66 ± 0.04 b |
3 | 3-Methylbutanal-D | 1.42 | 2.77 ± 0.14 c | 4.64 ± 0.18 a | 3.74 ± 0.04 b | 4.64 ± 0.03 a |
4 | Butanal-D | 1.24 | 1.82 ± 0.10 b | 1.80 ± 0.07 b | 1.92 ± 0.02 b | 2.41 ± 0.02 a |
5 | 2-Methylbutanal | 1.24 | 3.15 ± 0.13 b | 4.09 ± 0.12 a | 3.29 ± 0.05 b | 4.12 ± 0.02 a |
6 | 3-Methylbutanal-M | 1.14 | 2.39 ± 0.11 a | 1.28 ± 0.04 c | 1.51 ± 0.09 b | 1.40 ± 0.02 bc |
7 | 2-Phenyl-1,3-Dioxolane-4-Methanol | 1.11 | 0.61 ± 0.02 b | 0.47 ± 0.03 c | 0.32 ± 0.02 d | 0.82 ± 0.01 a |
8 | (E, E)-2,4-Heptadienal | 1.08 | 1.05 ± 0.10 a | 0.07 ± 0.00 b | 0.09 ± 0.03 b | 0.07 ± 0.01 b |
9 | Nonanal-M | 1.07 | 0.87 ± 0.04 b | 0.70 ± 0.05 c | 0.49 ± 0.05 d | 0.95 ± 0.00 a |
10 | Propanal-M | 1.07 | 1.78 ± 0.08 a | 1.34 ± 0.06 b | 1.81 ± 0.15 a | 0.99 ± 0.00 c |
11 | 2,4-Hexadienal, (E, E)-D | 1.03 | 2.31 ± 0.18 a | 1.66 ± 0.35 b | 2.23 ± 0.23 a | 1.94 ± 0.01 ab |
12 | Propanal-D | 1.01 | 0.74 ± 0.04 c | 1.31 ± 0.03 a | 0.88 ± 0.05 b | 0.88 ± 0.05 b |
Alcohols | ||||||
13 | 1-Propanol-M | 1.63 | 5.18 ± 0.22 a | 3.05 ± 0.10 b | 2.99 ± 0.13 b | 2.34 ± 0.02 c |
14 | 2-Butanol-D | 1.46 | 1.57 ± 0.02 d | 2.39 ± 0.03 b | 2.65 ± 0.05 a | 1.81 ± 0.01 c |
15 | 1-Propanethiol-D | 1.07 | 1.96 ± 0.01 a | 1.42 ± 0.02 b | 1.08 ± 0.11 d | 1.30 ± 0.01 c |
Furans | ||||||
16 | 2,5-Dimethylfuran | 2.42 | 5.34 ± 0.10 b | 5.00 ± 0.03 c | 5.54 ± 0.10 a | 2.42 ± 0.07 d |
17 | 2-Ethylfuran-M | 2.14 | 1.83 ± 0.18 b | 5.92 ± 0.11 a | 5.92 ± 0.25 a | 6.19 ± 0.00 a |
18 | 2-Ethylfuran-D | 1.11 | 0.59 ± 0.01 c | 1.44 ± 0.04 a | 0.81 ± 0.11 b | 1.53 ± 0.01 a |
Esters | ||||||
19 | Ethyl Butyrate | 1.67 | 1.04 ± 0.13 c | 2.57 ± 0.21 a | 1.49 ± 0.05 b | 1.41 ± 0.02 b |
20 | Methyl 2-Furoate | 1.11 | 0.27 ± 0.03 b | 0.23 ± 0.03 b | 0.77 ± 0.02 a | 0.78 ± 0.01 a |
21 | Ethyl 3-Hydroxybutanoate | 1.01 | 0.50 ± 0.05 c | 0.97 ± 0.03 a | 0.35 ± 0.07 d | 0.85 ± 0.02 b |
Terpene | ||||||
22 | 2-Heptanone-D | 1.59 | 0.15 ± 0.02 c | 0.18 ± 0.01 c | 1.53 ± 0.26 a | 0.76 ± 0.00 b |
Pyrazine | ||||||
23 | 2,3-Dimethylpyrazine | 1.70 | 0.88 ± 0.06 c | 1.28 ± 0.10 b | 2.53 ± 0.16 a | 2.49 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, H.; Wang, Y.; Shi, P.; Li, H.; Chen, Y.; Hu, T.; Yu, Y.; Wang, J.; Yang, F.; Luo, H.; et al. Effects of the Species and Growth Stage on the Antioxidant and Antifungal Capacities, Polyphenol Contents, and Volatile Profiles of Bamboo Leaves. Foods 2024, 13, 480. https://doi.org/10.3390/foods13030480
Shen H, Wang Y, Shi P, Li H, Chen Y, Hu T, Yu Y, Wang J, Yang F, Luo H, et al. Effects of the Species and Growth Stage on the Antioxidant and Antifungal Capacities, Polyphenol Contents, and Volatile Profiles of Bamboo Leaves. Foods. 2024; 13(3):480. https://doi.org/10.3390/foods13030480
Chicago/Turabian StyleShen, Hui, Yan Wang, Pingping Shi, Hong Li, Yanan Chen, Tenggen Hu, Yuanshan Yu, Jinxiang Wang, Fang Yang, Haibo Luo, and et al. 2024. "Effects of the Species and Growth Stage on the Antioxidant and Antifungal Capacities, Polyphenol Contents, and Volatile Profiles of Bamboo Leaves" Foods 13, no. 3: 480. https://doi.org/10.3390/foods13030480
APA StyleShen, H., Wang, Y., Shi, P., Li, H., Chen, Y., Hu, T., Yu, Y., Wang, J., Yang, F., Luo, H., & Yu, L. (2024). Effects of the Species and Growth Stage on the Antioxidant and Antifungal Capacities, Polyphenol Contents, and Volatile Profiles of Bamboo Leaves. Foods, 13(3), 480. https://doi.org/10.3390/foods13030480