Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = antigenotoxic activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 768 KB  
Review
Lactoferrin, a Natural Protein with Multiple Functions in Health and Disease
by Manuela Rizzi, Paolo Manzoni, Chiara Germano, Maria Florencia Quevedo and Pier Paolo Sainaghi
Nutrients 2025, 17(21), 3403; https://doi.org/10.3390/nu17213403 - 29 Oct 2025
Viewed by 716
Abstract
Lactoferrin is a multifunctional glycoprotein showing multiple biological properties (antimicrobial, antiviral, antioxidant, antigenotoxic, prebiotic, probiotic) that play an essential role in maintaining host physiological homeostatic condition by exerting immunomodulatory and anti-inflammatory activities. Thanks to these biological properties, lactoferrin has widely been studied as [...] Read more.
Lactoferrin is a multifunctional glycoprotein showing multiple biological properties (antimicrobial, antiviral, antioxidant, antigenotoxic, prebiotic, probiotic) that play an essential role in maintaining host physiological homeostatic condition by exerting immunomodulatory and anti-inflammatory activities. Thanks to these biological properties, lactoferrin has widely been studied as a therapeutic agent in gastroenteric diseases, neonatal sepsis and necrotizing enterocolitis, lung diseases, and COVID-19, showing very heterogeneous results based on the disease considered and the population studied. Since lactoferrin is one of the main components of neutrophils’ secondary granules, it has also been investigated as a potential disease-monitoring biomarker, especially for diseases in which inflammation is a key component. This narrative review offers updated and comprehensive insights into the available literature on lactoferrin biology, biological properties, and clinical utility. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

39 pages, 7417 KB  
Article
Development of a Collagen–Cerium Oxide Nanohydrogel for Wound Healing: In Vitro and In Vivo Evaluation
by Ekaterina Vladimirovna Silina, Natalia Evgenievna Manturova, Victor Ivanovich Sevastianov, Nadezhda Victorovna Perova, Mikhail Petrovich Gladchenko, Alexey Anatolievich Kryukov, Aleksandr Victorovich Ivanov, Victor Tarasovich Dudka, Evgeniya Valerievna Prazdnova, Sergey Alexandrovich Emelyantsev, Evgenia Igorevna Kozhukhova, Vladimir Anatolievich Parfenov, Alexander Vladimirovich Ivanov, Mikhail Alexandrovich Popov and Victor Alexandrovich Stupin
Biomedicines 2025, 13(11), 2623; https://doi.org/10.3390/biomedicines13112623 - 26 Oct 2025
Viewed by 555
Abstract
Background: Effective regenerative therapeutics for acute and chronic wounds remain a critical unmet need in biomedicine. Objectives: This study aimed to develop novel collagen–cerium oxide nanoparticle hydrogels designed to enhance cellular metabolism, proliferation, and antioxidant/antimutagenic activity, accelerating wound regeneration in vivo. [...] Read more.
Background: Effective regenerative therapeutics for acute and chronic wounds remain a critical unmet need in biomedicine. Objectives: This study aimed to develop novel collagen–cerium oxide nanoparticle hydrogels designed to enhance cellular metabolism, proliferation, and antioxidant/antimutagenic activity, accelerating wound regeneration in vivo. Methods: Collagen–nanocerium composites were synthesized by combining a collagen extract with cerium oxide nanoparticles at defined concentrations. In vitro assays using human fibroblasts identified two formulations that enhanced proliferation and metabolic activity by 42–50%. FTIR spectroscopy confirmed chemical interactions within the composite matrix. Toxicity, antioxidant, and antigenotoxic effects were evaluated using Escherichia coli MG1655 lux-biosensors to assess their general toxicity, antioxidant and pro-oxidant activities, and antigenotoxic and promutagenic effects. In vivo efficacy was tested in Wistar rats with full-thickness skin wounds. Treated groups were compared to untreated controls and Dexpanthenol-treated positive controls. On days 3, 7, and 14, healing was assessed clinically, histologically, and morphometrically. Results: Biosensor analysis demonstrated non-toxicity and antigenotoxic activity of the nanocomposites, reduced DNA damage by up to 45%, providing 31–49% protection against H2O2 and 15–23% against O2 radicals. The animal study results demonstrated significantly accelerated healing with both nanocomposites versus control and comparison groups, evidenced by improved tissue regeneration, reduced inflammation, and increased fibroblast infiltration. Conclusions: The developed hydrogels exhibit promising pharmacological profiles, including antioxidant, antimutagenic, anti-inflammatory, and pro-regenerative effects validated across in vitro and in vivo models. Full article
(This article belongs to the Special Issue Medicinal Chemistry in Drug Design and Discovery, 2nd Edition)
Show Figures

Figure 1

17 pages, 923 KB  
Article
Assessment of Antioxidant Activity and Dose-Dependent Effect on Genotoxicity/Antigenotoxicity of Pulmonaria officinalis Ethanolic Extract
by Ana Ignjatijević, Tamara Anđić, Marija Lješević, Biljana Nikolić, Tea Ganić, Stefana Spasović and Stefana Vuletić
Pharmaceutics 2025, 17(9), 1134; https://doi.org/10.3390/pharmaceutics17091134 - 29 Aug 2025
Viewed by 917
Abstract
Background/Objectives: Pulmonaria officinalis L., commonly known as lungwort, is a medicinal plant traditionally used for respiratory ailments, but its biological activities have not yet been sufficiently researched. The aim of this study was to investigate the antioxidant and dose-dependent genotoxic/antigenotoxic properties of [...] Read more.
Background/Objectives: Pulmonaria officinalis L., commonly known as lungwort, is a medicinal plant traditionally used for respiratory ailments, but its biological activities have not yet been sufficiently researched. The aim of this study was to investigate the antioxidant and dose-dependent genotoxic/antigenotoxic properties of a 70% ethanolic extract. Methods: Quantification of polyphenols and GC–MS analysis were performed in order to chemically characterize the extract. Antioxidant activity was evaluated through DPPH, PFRAP, total antioxidant capacity (TAC), and ferrous ion chelating assay (FIC). MTT and alkaline comet assay were used for investigation of cytotoxicity and geno/antigenotoxicity on normal fetal fibroblast cells (MRC-5). Results: The chemical analysis of the extract showed that the extract is rich in polyphenolics and that phytol is the most abundant compound, accompanied by terpenoids, fatty acids, alcohols, polyketides, and alkaloids. In addition, notable antioxidant capacity was detected in all tests applied. The extract reduced cell viability only at the highest concentration tested (33.7%). Furthermore, a dual dose-dependent effect was recorded since the genotoxic effect of the tested extract was observed at higher concentrations, while non-genotoxic concentrations showed protective effects against oxidative damage of DNA. Namely, pretreatment with lungwort extract reduced the DNA damage induced by H2O2, with the highest protective effect at the lowest tested concentration, indicating a hormetic mode of action. Conclusions: These results provide a solid foundation for future research into this medicinal plant, with the aim of its potential therapeutic use in the prevention of diseases associated with oxidative stress. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Graphical abstract

27 pages, 425 KB  
Review
Green Preservation Strategies: The Role of Essential Oils in Sustainable Food Preservatives
by Sara Diogo Gonçalves, Maria das Neves Paiva-Cardoso and Ana Caramelo
Sustainability 2025, 17(16), 7326; https://doi.org/10.3390/su17167326 - 13 Aug 2025
Cited by 2 | Viewed by 2086
Abstract
Essential oils (EOs) have gained increasing attention as natural alternatives to synthetic food preservatives due to their broad-spectrum antimicrobial, antioxidant, and antigenotoxic properties. Derived from aromatic plants, EOs possess complex chemical compositions rich in bioactive compounds such as terpenes, phenolics, and aldehydes, which [...] Read more.
Essential oils (EOs) have gained increasing attention as natural alternatives to synthetic food preservatives due to their broad-spectrum antimicrobial, antioxidant, and antigenotoxic properties. Derived from aromatic plants, EOs possess complex chemical compositions rich in bioactive compounds such as terpenes, phenolics, and aldehydes, which contribute to their effectiveness against foodborne pathogens, oxidative spoilage, and genotoxic contaminants. This review provides a comprehensive examination of the potential of EOs in food preservation, highlighting their mechanisms of action, including membrane disruption, efflux pump inhibition, and reactive oxygen species scavenging. Standard assays such as disk diffusion, MIC/MBC, time-kill kinetics, and comet and micronucleus tests are discussed as tools for evaluating efficacy and safety. Additionally, the use of EOs in diverse food matrices and the reduction in reliance on synthetic additives support cleaner-label products and improved consumer health. The review also examines the sustainability outlook, highlighting the potential for extracting EOs from agricultural byproducts, their integration into green food processing technologies, and alignment with the circular economy and the Sustainable Development Goals. Despite promising results, challenges remain in terms of sensory impact, regulatory approval, and dose optimization. Overall, EOs represent a multifunctional and sustainable solution for modern food preservation systems. Full article
(This article belongs to the Special Issue Future Trends in Food Processing and Food Preservation Techniques)
16 pages, 1011 KB  
Article
Preventive Capacity of Citrus paradisi Juice for Male Reproductive Damage Induced by Cadmium Chloride in Mice
by Isela Álvarez-González, José David García-García, Beatriz A. Espinosa-Ahedo, Luis S. Muñoz-Carrillo, José A. Morales-González, Eduardo O. Madrigal-Santillán, Felipe de Jesús Carrillo-Romo, Antonieta García-Murillo, Rogelio Paniagua-Pérez and Eduardo Madrigal-Bujaidar
Appl. Sci. 2025, 15(11), 6071; https://doi.org/10.3390/app15116071 - 28 May 2025
Viewed by 790
Abstract
Previous studies have shown mouse antigenotoxic and chemopreventive potential with the administration of Citrus paradisi juice (GJ). To evaluate another activity, the aim of the present report was to determine the beneficial effect of GJ on male mouse reproductive damage induced by cadmium [...] Read more.
Previous studies have shown mouse antigenotoxic and chemopreventive potential with the administration of Citrus paradisi juice (GJ). To evaluate another activity, the aim of the present report was to determine the beneficial effect of GJ on male mouse reproductive damage induced by cadmium chloride (CC). Seven groups of mice were intragastrically (IG) administered for 11 days. A control group was administered purified water daily, three groups were administered GJ daily (4.1, 16.6, and 33.2 µL/g), plus a single administration of CC (3 mg/kg) on the fifth day of the assay, another group was treated daily with 33.2 µL/g GJ, and a positive control group was treated with 3 mg/kg of CC on day 5 of the experiment. The results with the high GJ dose on the CC-treated mice showed a mean reduction of 88% in sperm quality endpoints (viability, motility, malformations) and a 94% sperm concentration increase. With the same dose, we also determined an 81% reduction in the DNA breaking potential and in the number of micronuclei in the spermatids. We also found an 87% decrease in lipoperoxidation and a 68% decrease in protein oxidation with respect to the CC damage, and a strong DPPH scavenging ability. Our results suggest the potential involvement of the GJ antioxidant in the observed effect. Full article
Show Figures

Figure 1

23 pages, 1563 KB  
Article
Bioactive Compounds, Antioxidant, Cytotoxic, and Genotoxic Investigation of the Standardized Liquid Extract from Eugenia involucrata DC. Leaves
by Monatha Nayara Guimarães Teófilo, Leonardo Gomes Costa, Jamira Dias Rocha, Fernando Gomes Barbosa, Anielly Monteiro de Melo, Grazzielle Guimarães de Matos, Cristiane Maria Ascari Morgado, Amanda Silva Fernandes, Lucas Barbosa Ribeiro de Carvalho, Clayson Moura Gomes, Milton Adriano Pelli de Oliveira, Joelma Abadia Marciano de Paula, Elisa Flávia Luiz Cardoso Bailão and Leonardo Luiz Borges
Pharmaceuticals 2025, 18(5), 764; https://doi.org/10.3390/ph18050764 - 21 May 2025
Cited by 1 | Viewed by 1331
Abstract
Background: Eugenia involucrata DC., a Cerrado native plant, is recognized for its medicinal properties. However, its bioactive compounds remain inadequately explored. Objectives: This study investigated bioactive compounds from a standardized liquid extract from E. involucrata leaves that can act with antioxidant, [...] Read more.
Background: Eugenia involucrata DC., a Cerrado native plant, is recognized for its medicinal properties. However, its bioactive compounds remain inadequately explored. Objectives: This study investigated bioactive compounds from a standardized liquid extract from E. involucrata leaves that can act with antioxidant, cytogenotoxic, cytoprotective, and genoprotective effects. Methods: The phenolic compounds in the standardized liquid extract from E. involucrata leaves were screened by HPLC-DAD. The capture of the free radicals DPPH, ABTS+, and the metal reduction power FRAP determined the antioxidant potential. Cytotoxicity was evaluated in RAW 264.7 macrophages (MTT assay), and (anti)cytotoxic and (anti)genotoxic effects were assessed in human lymphocytes using the Trypan blue exclusion method and comet assay, respectively. Results: The extracts present key phenolic compounds, such as ellagic acid, myricitrin, and epicatechin gallate. The standardized extract demonstrated antioxidant capacity, evidenced by its ability to reduce iron and scavenge free radicals. The liquid extract from E. involucrata leaves exhibited cytotoxic effects on RAW 264.7 macrophages at higher concentrations, while demonstrating (anti)cytotoxic activity on human lymphocytes from all tested concentrations. The highest concentration tested of the standardized liquid extract from E. involucrata leaves (250 µg/mL) showed genotoxicity against human lymphocytes compared to the negative control. In contrast, the lowest concentration (62.5 µg/mL) exhibited an antigenotoxic effect on human lymphocytes, reducing the genotoxicity of doxorubicin by approximately 27%. Conclusions: The bioactive compounds in the standardized liquid extract from E. involucrata leaves exhibited antioxidant and antigenotoxic properties, suggesting potential value for nutraceutical and pharmaceutical applications, particularly those related to oxidative stress associated withaging and disease progression. Full article
Show Figures

Figure 1

16 pages, 2229 KB  
Article
Bioactivity Assessment of Functionalized TiO2 Powder with Dihydroquercetin
by Valentina Nikšić, Andrea Pirković, Biljana Spremo-Potparević, Lada Živković, Dijana Topalović, Jovan M. Nedeljković and Vesna Lazić
Int. J. Mol. Sci. 2025, 26(4), 1475; https://doi.org/10.3390/ijms26041475 - 10 Feb 2025
Viewed by 1170
Abstract
Biological activities, including cell viability, oxidative stress, genotoxicity/antigenotoxicity, and antimicrobial activity, were evaluated for a visible-light-responsive TiO2-based ICT complex with dihydroquercetin (DHQ) and compared with pristine TiO2, its inorganic component. Pristine TiO2 did not induce cytotoxicity in MRC-5 [...] Read more.
Biological activities, including cell viability, oxidative stress, genotoxicity/antigenotoxicity, and antimicrobial activity, were evaluated for a visible-light-responsive TiO2-based ICT complex with dihydroquercetin (DHQ) and compared with pristine TiO2, its inorganic component. Pristine TiO2 did not induce cytotoxicity in MRC-5 or HeLa cells within the tested concentration range (1–20 mg/mL), while TiO2/DHQ displayed a significant reduction in cell viability in both cell lines at higher concentrations (≥10 mg/mL). The analysis of reactive oxygen species (ROS) production revealed that TiO2/DHQ significantly reduced ROS levels in both cell types (MRC-5 and HeLa), with HeLa cells showing a more substantial reduction at lower concentrations. Genotoxicity assessment using the comet assay demonstrated that TiO2 induced DNA damage in MRC-5 cells, while TiO2/DHQ did not, indicating that DHQ mitigates the genotoxic potential of TiO2. Furthermore, TiO2/DHQ exhibited antigenotoxic effects by reducing H2O2-induced DNA damage in MRC-5 cells, supporting its protective role against oxidative stress. Preliminary antimicrobial tests revealed that TiO2/DHQ exhibits antimicrobial activity against E. coli under visible-light excitation, while TiO2 does not. These findings suggest that the TiO2-based ICT complex with DHQ with enhanced antioxidant properties can potentially serve as a safe, non-toxic biocide agent. Full article
(This article belongs to the Special Issue Novel Nanoparticle Composites: Functionalization and Application)
Show Figures

Figure 1

19 pages, 1676 KB  
Article
In Vivo and In Vitro Studies Assessing the Safety of Monosodium Glutamate
by Tania Merinas-Amo, Rocío Merinas-Amo, Ángeles Alonso-Moraga, Rafael Font and Mercedes Del Río Celestino
Foods 2024, 13(23), 3981; https://doi.org/10.3390/foods13233981 - 9 Dec 2024
Viewed by 5446
Abstract
The controversial results of research on monosodium glutamate demand a new data corpus for the overall safety evaluation. Both animal and cellular model systems have been used to add a multilevel scope on its biological effects. The Drosophila melanogaster animal model has been [...] Read more.
The controversial results of research on monosodium glutamate demand a new data corpus for the overall safety evaluation. Both animal and cellular model systems have been used to add a multilevel scope on its biological effects. The Drosophila melanogaster animal model has been used to test a wide range of concentrations for safety purposes: toxicity, genotoxicity, longevity and health span. Medium concentrations corresponding to the human acceptable daily intake (ADI) (0.06 mg/mL) were not toxic nor genotoxic for Drosophila and safe for the lifespan parameters. Once safety was determined, the possible nutraceutical effects of monosodium glutamate was monitored in terms of antitoxicity, antigenotoxicity assays and health span. The results for protective activity against hydrogen peroxide were positive in terms of the medium concentration, antitoxic and antigenotoxic in terms of inhibiting the genotoxicity induced by the oxidative toxin up to 43.7% and increasing the health span expectancy by 32% in terms of days. Monosodium glutamate has been demonstrated to be cytotoxic against the model tumour cell line HL-60, not only in a necrotic way but through internucleosomal DNA fragmentation antitumour activity. The significant LINE1 DNA sequence methylation of HL-60 tumour cells induced by monosodium glutamate is a molecular marker for chemoprevention. Conclusions: the slight or non-significant positive nutraceutical and chemo preventive potential showed by monosodium glutamate at its ADI concentration can be considered as a safe dose for a moderate consumption. Full article
(This article belongs to the Special Issue The Health Benefits of Fruits and Vegetables—3rd Edition)
Show Figures

Figure 1

10 pages, 1322 KB  
Article
Cytotoxic, Antioxidant, and Anti-Genotoxic Properties of Combretastatin A4 in Human Peripheral Blood Mononuclear Cells: A Comprehensive In Vitro Study
by Petar Popović, Andrea Pirković, Dijana Topalović, Lada Živković, Milica Marković and Biljana Spremo-Potparević
Biomolecules 2024, 14(12), 1535; https://doi.org/10.3390/biom14121535 - 30 Nov 2024
Viewed by 1413
Abstract
Despite significant advances in drug discovery and the promising antitumor potential of combretastatin A4 (CA-4), which selectively targets rapidly dividing cancer cells, CA-4’s effects on non-dividing human cells, such as peripheral blood mononuclear cells (PBMCs), remain unclear. The aim of this study is [...] Read more.
Despite significant advances in drug discovery and the promising antitumor potential of combretastatin A4 (CA-4), which selectively targets rapidly dividing cancer cells, CA-4’s effects on non-dividing human cells, such as peripheral blood mononuclear cells (PBMCs), remain unclear. The aim of this study is to evaluate the in vitro bioactivity of CA-4 in human PBMCs, focusing on its antigenotoxic and antioxidant properties, while comparing its cytotoxic potency against PBMCs, cancer cell lines (JAR and HeLa), and the normal trophoblast cell line HTR-8/SVneo. Cell viability and metabolic activity were evaluated using the MTT assay. ROS production in PBMCs was measured using the H2DCFDA assay, and DNA damage was assessed using the Comet assay. CA-4 showed cytotoxicity in PBMCs and HTR-8/SVneo cells at concentrations above 200 µM, while cancer cells, JAR and HeLa, showed cytotoxicity at 100 µM and 1 µM, respectively. CA-4 also reduced ROS levels in PBMCs under oxidative stress and showed antioxidant effects at concentrations from 1 to 200 µM. In addition, CA-4 showed antigenotoxic effects against H2O2-induced DNA damage in PBMCs at concentrations of up to 1 µM. CA-4 exhibited lower cytotoxicity in human PBMCs compared to cancer cells, inhibited ROS production, and showed antioxidant and antigenotoxic properties, providing insight into its potential therapeutic efficacy and safety. Full article
(This article belongs to the Special Issue DNA Damage, Mutagenesis, and Repair Mechanisms)
Show Figures

Graphical abstract

21 pages, 7918 KB  
Article
Genotoxic and Anti-Genotoxic Assessments of Fermented Houttuynia cordata Thunb. Leaf Ethanolic Extract and Its Anti-Cancer Effect in a Dual-Organ Carcinogenesis Model of Colon and Liver in Rats
by Chonikarn Singai, Pornsiri Pitchakarn, Sirinya Taya, Rawiwan Wongpoomchai and Ariyaphong Wongnoppavich
Foods 2024, 13(22), 3645; https://doi.org/10.3390/foods13223645 - 15 Nov 2024
Cited by 1 | Viewed by 3171
Abstract
The incidence of multiple-organ cancers has recently increased due to simultaneous exposure to various environmental carcinogens. Houttuynia cordata Thunb. (H. cordata) is recognized for its many health benefits, including its anti-cancer properties. The fermentation of its leaves has been shown to [...] Read more.
The incidence of multiple-organ cancers has recently increased due to simultaneous exposure to various environmental carcinogens. Houttuynia cordata Thunb. (H. cordata) is recognized for its many health benefits, including its anti-cancer properties. The fermentation of its leaves has been shown to significantly enhance the bioflavonoid content and its bioactivities. This study aimed to evaluate the effectiveness of fermented H.cordata leaf (FHCL) extracts against combined carcinogens and investigate the underlying mechanisms. The crude ethanolic extract of FHCL was partitioned to obtain hexane- (HEX), dichloromethane- (DCM), ethyl acetate- (ETAC), butanol- (nBA), and residue fractions. The crude ethanolic extract (200–250 μg/mL) and the DCM fraction (50 μg/mL) significantly reduced NO production in RAW264.7 macrophages. In addition, the crude extract and the DCM and ETAC fractions showed anti-genotoxicity against aflatoxin B1 and 2-amino-3,4-dimethylimidazo [4,5-f]quinoline (MeIQ) in Salmonella typhimurium assays (S9+). Despite demonstrating genotoxicity in the Salmonella mutation assay (with and without S9 activation), oral administration of the crude extract at 500 mg/kg of body weight (bw) for 40 days in rats did not induce micronucleated hepatocytes, indicating that the extract is non-genotoxic in vivo. Moreover, the crude extract significantly decreased Phase I but increased Phase II xenobiotic-metabolizing enzyme activities in the rats. Next, the anti-cancer effects of FHCL were evaluated in a dual-organ carcinogenesis model of the colon and liver in rats induced by 1,2-dimethylhydrazine (DMH) and diethylnitrosamine (DEN), respectively. The crude extract significantly reduced not only the number and size of glutathione S-transferase placental form positive foci in the liver (at doses of 100 and 500 mg/kg bw) but also the number of aberrant crypt foci in rat colons (at 500 mg/kg bw). Furthermore, FHCL significantly reduced the expression of proliferating cell nuclear antigen (PCNA) in the colon (at 100 and 500 mg/kg bw) and liver (at 500 mg/kg bw) of the treated rats. In conclusion, FHCL exhibits significant preventive properties against colon and liver cancers in this dual-organ carcinogenesis model. Its mechanisms of action may involve anti-inflammatory effects, the prevention of genotoxicity, the modulation of xenobiotic-metabolizing enzymes, and the inhibition of cancer cell proliferation. These findings support the use of FHCL as a natural supplement for preventing cancer. Full article
Show Figures

Figure 1

13 pages, 1789 KB  
Article
Olive Mill Wastewater Extract: In Vitro Genotoxicity/Antigenotoxicity Assessment on HepaRG Cells
by Tommaso Rondini, Raffaella Branciari, Edoardo Franceschini, Mattia Acito, Cristina Fatigoni, Rossana Roila, David Ranucci, Milena Villarini, Roberta Galarini and Massimo Moretti
Int. J. Environ. Res. Public Health 2024, 21(8), 1050; https://doi.org/10.3390/ijerph21081050 - 9 Aug 2024
Cited by 3 | Viewed by 1963
Abstract
Olive mill wastewater (OMWW), with its high level of phenolic compounds, simultaneously represents a serious environmental challenge and a great resource with potential nutraceutical activities. To increase the knowledge of OMWW’s biological effects, with an aim to developing a food supplement, we performed [...] Read more.
Olive mill wastewater (OMWW), with its high level of phenolic compounds, simultaneously represents a serious environmental challenge and a great resource with potential nutraceutical activities. To increase the knowledge of OMWW’s biological effects, with an aim to developing a food supplement, we performed a chemical characterisation of the extract using the Liquid Chromatography–Quadrupole Time-of-flight spectrometry (LC–QTOF) and an in vitro genotoxicity/antigenotoxicity assessment on HepaRG ™ cells. Chemical analysis revealed that the most abundant phenolic compound was hydroxytyrosol. Biological tests showed that the extract was not cytotoxic at the lowest tested concentrations (from 0.25 to 2.5 mg/mL), unlike the highest concentrations (from 5 to 20 mg/mL). Regarding genotoxic activity, when tested at non-cytotoxic concentrations, the extract did not display any effect. Additionally, the lowest tested OMWW concentrations showed antigenotoxic activity (J-shaped dose–response effect) against a known mutagenic substance, reducing the extent of DNA damage in the co-exposure treatment. The antigenotoxic effect was also obtained in the post-exposure procedure, although only at the extract concentrations of 0.015625 and 0.03125 mg/mL. This behaviour was not confirmed in the pre-exposure protocol. In conclusion, the present study established a maximum non-toxic OMWW extract dose for the HepaRG cell model, smoothing the path for future research. Full article
Show Figures

Figure 1

14 pages, 959 KB  
Article
Evaluation of the Antigenotoxic Potential of Two Types of Chayote (Sechium edule) Juices
by Eduardo Madrigal-Santillán, Jacqueline Portillo-Reyes, José A. Morales-González, Luis F. Garcia-Melo, Estrella Serra-Pérez, Kristijan Vidović, Manuel Sánchez-Gutiérrez, Isela Álvarez-González and Eduardo Madrigal-Bujaidar
Plants 2024, 13(15), 2132; https://doi.org/10.3390/plants13152132 - 1 Aug 2024
Cited by 1 | Viewed by 3702
Abstract
Sechium edule (Jacq.) Swartz is a perennial herbaceous climbing plant with tendrils and tuberous roots belonging to the Cucurbitaceae family. Its fruits (“chayote”), stems, roots, and leaves are edible and are commonly ingested by humans. It has shown medicinal properties attributed to its [...] Read more.
Sechium edule (Jacq.) Swartz is a perennial herbaceous climbing plant with tendrils and tuberous roots belonging to the Cucurbitaceae family. Its fruits (“chayote”), stems, roots, and leaves are edible and are commonly ingested by humans. It has shown medicinal properties attributed to its bioactive compounds (vitamins, phenolic acids, flavonoids, carotenoids, triterpenoids, polyphenolic compounds, phytosterols, and cucurbitacins), which together have been associated with the control and prevention of chronic and infectious diseases, highlighting its antibacterial, anti-cardiovascular/antihypertensive, antiepileptic, anti-inflammatory, hepatoprotective, antiproliferative, and antioxidant activities. The objective of the study was to determine the antigenotoxic potential of two types of fresh chayote juice (filtered (FChJ) and unfiltered (UFChJ)) against DNA damage produced by benzo[a]pyrene (B[a]P) using an in vivo mouse peripheral blood micronucleus assay (MN). The juices were consumed freely for 2 weeks. A negative control, a control group of each juice, a positive batch [B[a]P], and two combined batches (B[a]P plus FChJ or UFChJ) were included. Blood smears were stained and observed under a microscope to quantify the number of micronucleated normochromic erythrocytes (MNNEs). The results indicate: (a) B[a]P increased the frequency of MNNEs and reduced the rate of PEs; and (b) no juice produced toxic effects or induced MN. On the contrary, both juices were genoprotective. However, the most significant effect was presented by UFChJ at the end of the experiment (70%). It is suggested that UFChJ has a greater amount of fiber and/or phytochemicals that favor the therapeutic effect. Possibly, the genoprotection is also related to its antioxidant capacity. Full article
Show Figures

Figure 1

21 pages, 2877 KB  
Article
Elderberry Hydrolate: Exploring Chemical Profile, Antioxidant Potency and Antigenotoxicity for Cosmetic Applications
by Sara Gonçalves, Francisco Peixoto, Katja Schoss, Nina Kočevar Glavač and Isabel Gaivão
Appl. Sci. 2024, 14(14), 6338; https://doi.org/10.3390/app14146338 - 20 Jul 2024
Cited by 4 | Viewed by 1732
Abstract
Elderberry (Sambucus nigra L.) hydrolate, derived from domestic steam distillation, holds promise as a multifunctional ingredient for skincare and cosmetic applications. This study investigates the chemical composition and biological activities of elderberry hydrolate obtained through steam distillation. Despite the growing interest in [...] Read more.
Elderberry (Sambucus nigra L.) hydrolate, derived from domestic steam distillation, holds promise as a multifunctional ingredient for skincare and cosmetic applications. This study investigates the chemical composition and biological activities of elderberry hydrolate obtained through steam distillation. Despite the growing interest in elderberry hydrolate, there has been a lack of comprehensive studies elucidating its chemical composition and potential bioactive constituents. To address this gap, we conducted a detailed analysis of elderberry hydrolate’s composition, antioxidant activity, and antigenotoxicity. Genotoxic evaluation and antioxidant assays (ABTS, DPPH) were conducted to assess its biological properties. We obtained elderberry hydrolate with a notable transfer of aromatic compounds through the steam distillation process, highlighting its efficacy and sustainability. The chemical characterization identified vital compounds, including phenylacetaldehyde, 2-acetyl-pyrrole, and an unidentified major component, collectively contributing to the hydrolate’s aromatic and biological properties. The genotoxic evaluation using the Comet assay demonstrated the hydrolate’s protective effects against DNA damage induced by hydrogen peroxide and streptonigrin. The optimal DNA protection was observed at 10% (w/v), attributed to the antioxidant activity of the identified compounds. The hydrolate exhibited significant antioxidant potential, demonstrating concentration-dependent responses and correlating higher concentrations with increased antioxidant activity. These findings underscore the multifaceted attributes of elderberry hydrolate, positioning it as a promising natural ingredient for skincare. This study supports elderberry hydrolate as a valuable natural and sustainable product development resource. Full article
(This article belongs to the Special Issue Antioxidants in Natural Products III)
Show Figures

Figure 1

19 pages, 2925 KB  
Article
Genotoxic and Anti-Genotoxic Potential of Hydrosols from Water–Steam Distillation of Oil-Bearing Roses Rosa centifolia L. and Rosa gallica L. from Bulgaria
by Svetla Gateva, Gabriele Jovtchev, Tsveta Angelova, Tsvetelina Gerasimova, Ana Dobreva and Milka Mileva
Pharmaceuticals 2024, 17(5), 657; https://doi.org/10.3390/ph17050657 - 20 May 2024
Cited by 5 | Viewed by 2519
Abstract
Rosa centifolia L. and Rosa gallica L. (Rosaceae) are grown as raw materials for valuable essential oils and hydrosols. There are scarce data about the biological activities and the genoprotective potential of the hydrosols of these roses. The aim of the study was [...] Read more.
Rosa centifolia L. and Rosa gallica L. (Rosaceae) are grown as raw materials for valuable essential oils and hydrosols. There are scarce data about the biological activities and the genoprotective potential of the hydrosols of these roses. The aim of the study was to provide information on their cytotoxic/genotoxic activity and anti-cytotoxic/anti-genotoxic capacity against mutagenic N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). The evaluation was performed using classical tests for chromosomal aberrations and micronuclei in the higher plant Hordeum vulgare and human lymphocyte test systems. The experimental schemes included combined hydrosol and mutagen treatment. Both hydrosols (6, 14, 20%) had no cytotoxic effect on barley and showed low genotoxicity in both test systems as the injuries were enhanced to a lesser extent compared to the controls. Lymphocytes were more susceptible than H. vulgare. Under the conditions of combined treatment, it was found that the two hydrosols possessed good anti-cytotoxic and anti-genotoxic potential against MNNG. Both rose products exerted genoprotective potential to a similar extent, decreasing the frequencies of aberrations in chromosomes and micronuclei to a significant degree in both types of cells when non-toxic concentrations of hydrosols were applied before MNNG. This was performed both with and without any inter-treatment time. The observed cytoprotective/genoprotective potential suggests that these hydrosols are promising for further application in phytotherapy and medicine. Full article
Show Figures

Figure 1

27 pages, 1109 KB  
Review
Health Benefits of the Alkaloids from Lobeira (Solanum lycocarpum St. Hill): A Comprehensive Review
by Felipe Tecchio Borsoi, Glaucia Maria Pastore and Henrique Silvano Arruda
Plants 2024, 13(10), 1396; https://doi.org/10.3390/plants13101396 - 17 May 2024
Cited by 5 | Viewed by 3052
Abstract
Solanum is the largest genus within the Solanaceae family and has garnered considerable attention in chemical and biological investigations over the past 30 years. In this context, lobeira or “fruta-do-lobo” (Solanum lycocarpum St. Hill), a species predominantly found in the Brazilian Cerrado, [...] Read more.
Solanum is the largest genus within the Solanaceae family and has garnered considerable attention in chemical and biological investigations over the past 30 years. In this context, lobeira or “fruta-do-lobo” (Solanum lycocarpum St. Hill), a species predominantly found in the Brazilian Cerrado, stands out. Beyond the interesting nutritional composition of the fruits, various parts of the lobeira plant have been used in folk medicine as hypoglycemic, sedative, diuretic, antiepileptic, and antispasmodic agents. These health-beneficial effects have been correlated with various bioactive compounds found in the plant, particularly alkaloids. In this review, we summarize the alkaloid composition of the lobeira plant and its biological activities that have been reported in the scientific literature in the last decades. The compiled data showed that lobeira plants and fruits contain a wide range of alkaloids, with steroidal glycoalkaloid solamargine and solasonine being the major ones. These alkaloids, but not limited to them, contribute to different biological activities verified in alkaloid-rich extracts/fractions from the lobeira, including antioxidant, anti-inflammatory, anticancer, antigenotoxic, antidiabetic, antinociceptive, and antiparasitic effects. Despite the encouraging results, additional research, especially toxicological, pre-clinical, and clinical trials, is essential to validate these human health benefits and ensure consumers’ safety and well-being. Full article
(This article belongs to the Special Issue Alkaloids: Chemical Structures with Pharmaceutical Potential)
Show Figures

Figure 1

Back to TopTop