Bioactive Compounds, Antioxidant, Cytotoxic, and Genotoxic Investigation of the Standardized Liquid Extract from Eugenia involucrata DC. Leaves
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization of the Liquid Extract
2.2. Screening of Phenolic Compounds in Liquid Extract Obtained by Ultrasound from Eugenia involucrata Leaf Powder and Liquid Extract by HPLC-DAD
2.3. Determination of the Antioxidant Activity of the Liquid Extract
2.4. Cytotoxic Investigation in Murine Macrophages
2.5. Cytogenotoxic Evaluation of the Liquid Extract from Eugenia involucrata Leaves
3. Materials and Methods
3.1. Plant Material
3.2. Screening of Phenolic Compounds in Liquid Extract Obtained by Ultrasound from Eugenia involucrata Leaf Powder by HPLC-DAD
3.3. Characterization of the Concentrated Liquid Extract from Eugenia involucrata Leaves
3.4. Quantification of Total Phenolics and Flavonoids
3.5. Determination of Phenolic Compounds in Liquid Extract of Eugenia involucrata by HPLC-DAD
3.6. Determination of Antioxidant Activity of the Liquid Extract
3.6.1. Sample Preparation
3.6.2. Ferric Reducing Antioxidant Power (FRAP) Method
3.6.3. ABTS+ Radical Scavenging Method
3.6.4. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Method
3.7. Cytotoxicity Investigation in Murine Macrophage Cells RAW 264.7
3.8. Determination of Cytotoxic and Genotoxic Activity in Human Lymphocytes
3.8.1. Blood Samples
3.8.2. Human Lymphocyte Culture
3.8.3. Cytotoxicity and Cytoprotective Assay
3.8.4. Genotoxicity and Genoprotective Effects (Comet Assay)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferreira, F.P.S.; Morais, S.R.; Bara, M.T.F.; Conceição, E.C.; Paula, J.R.; Carvalho, T.C.; Vaz, B.G.; Costa, H.B.; Romão, W.; Rezende, M.H. Eugenia calycina Cambess Extracts and Their Fractions: Their Antimicrobial Activity and the Identification of Major Polar Compounds Using Electrospray Ionization FT-ICR Mass Spectrometry. J. Pharm. Biomed. Anal. 2014, 99, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.V.S.G.; Silva, S.A.; Teixera, T.L.; De Oliveira, A.; Morais, S.A.L.; Da Silva, C.V.; Espindola, L.S.; Sousa, R.M.F. Essential Oil from Leaves of Eugenia calycina Cambes: Natural Larvicidal against Aedes aegypti. J. Sci. Food Agric. 2021, 101, 1202–1208. [Google Scholar] [CrossRef]
- Sousa, R.M.F.; de Morais, S.A.L.; Vieira, R.B.K.; Napolitano, D.R.; Guzman, V.B.; Moraes, T.S.; Cunha, L.C.S.; Martins, C.H.G.; Chang, R.; de Aquino, F.J.T.; et al. Chemical Composition, Cytotoxic, and Antibacterial Activity of the Essential Oil from Eugenia calycina Cambess. Leaves against Oral Bacteria. Ind. Crops Prod. 2015, 65, 71–78. [Google Scholar] [CrossRef]
- Peixoto Araujo, N.M.; Silva, E.K.; Arruda, H.S.; Rodrigues de Morais, D.; Angela, A.; Meireles, M.; Pereira, G.A.; Pastore, G.M. Recovering Phenolic Compounds from Eugenia calycina Cambess Employing High-Intensity Ultrasound Treatments: A Comparison among Its Leaves, Fruit Pulp, and Seed as Promising Sources of Bioactive Compounds. Sep. Purif. Technol. 2021, 272, 118920. [Google Scholar] [CrossRef]
- Peixoto Araujo, N.M.; Arruda, H.S.; de Paulo Farias, D.; Molina, G.; Pereira, G.A.; Pastore, G.M. Plants from the Genus Eugenia as Promising Therapeutic Agents for the Management of Diabetes Mellitus: A Review. Food Res. Int. 2021, 142, 110182. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.K.; Alasalvar, C.; Shahidi, F. Superfruits: Phytochemicals, Antioxidant Efficacies, and Health Effects—A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1580–1604. [Google Scholar] [CrossRef]
- Betteridge, D.J. What Is Oxidative Stress? Metabolism 2000, 49, 3–8. [Google Scholar] [CrossRef]
- Uttara, B.; Singh, A.; Zamboni, P.; Mahajan, R. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef]
- de Oliveira, F.M.G.; Rodrigues Pereira de Oliveira Borlot, J.; Kitagawa, R.R.; Gonçalves, R.d.C.R.; Batista de Oliveira Filpo, R.C.; Kuster, R.M. Characterization of Phenolic Compounds in Eugenia uniflora Leaves by ESI(-) FT-ICR MS, Analysis of Cytotoxic Activity on Gastric Adenocarcinoma (AGS Cells), and Anti- Helicobacter pylori Activity. Nat. Prod. Res. 2024, 38, 4297–4301. [Google Scholar] [CrossRef]
- Borsoi, F.T.; Bonadiman, B.d.S.R.; Marafon, F.; Fischer, D.L.d.O.; Bagatini, M.D.; Kempka, A.P. Eugenia uniflora L. Seed and Pulp Extracts: Phytochemical Profile, Cytotoxic Potential, Antitumoral Activity, and α-Amylase and α-Glucosidase Inhibition Capacity. Nat. Prod. Res. 2023, 37, 3862–3867. [Google Scholar] [CrossRef]
- Luo, M.; Zhou, L.; Huang, Z.; Li, B.; Nice, E.C.; Xu, J.; Huang, C. Antioxidant Therapy in Cancer: Rationale and Progress. Antioxidants 2022, 11, 1128. [Google Scholar] [CrossRef] [PubMed]
- El-Husseiny, W.M.; El-Sayed, M.A.A.; Abdel-Aziz, N.I.; El-Azab, A.S.; Ahmed, E.R.; Abdel-Aziz, A.A.M. Synthesis, Antitumour and Antioxidant Activities of Novel α,β-Unsaturated Ketones and Related Heterocyclic Analogues: EGFR Inhibition and Molecular Modelling Study. J. Enzym. Inhib. Med. Chem. 2018, 33, 507–518. [Google Scholar] [CrossRef] [PubMed]
- De Aguiar, A.S.N.; Da Costa Rodrigues, L.L.G.; Rocha, J.D.; Guimarães, L.M.M.; Ramos, L.C.C.; Napolitano, H.B.; Bailão, E.F.L.C.; Borges, L.L. Theoretical Exploration of the Antioxidant Activity, Chemopreventive, and Antineoplastic Potentials of Molecules Present in Morinda lucida, Momordica charantia, and Vernonanthura polyanthes. J. Comput. Biophys. Chem. 2024, 23, 657–677. [Google Scholar] [CrossRef]
- PAHO/WHO PAHO/WHO|Pan American Health Organization. Available online: https://www.paho.org/en/topics/cancer (accessed on 5 April 2025).
- Barbosa, F.G.; Silva, G.F.; de Oliveira, V.L.P.; Kubijan, L.A.C.; Costa, L.G.; de Melo, A.M.; Teófilo, M.N.G.; Morgado, C.M.A.; de Campos, A.J.; Peixoto, J.d.C.; et al. Bioinputs from Eugenia dysenterica DC. (Myrtaceae): Optimization of Ultrasound-Assisted Extraction and Assessment of Antioxidant, Antimicrobial, and Antibiofilm Activities. Molecules 2025, 30, 1115. [Google Scholar] [CrossRef]
- Smaniotto, F.A.; Dluzniewski, L.T.; Bortolazzo, P.C.; Monteiro, C.S.A.; Baranzelli, J.; da Silva, D.T.; Somacal, S.; Conterato, G.M.M.; Emanuelli, T. In Vitro Assessment of Antidiabetic, Anti-Obesogenic, and Antioxidant Potential of Pulp and Seed Extracts from Eugenia involucrata Fruits. Food Res. Int. 2025, 202, 115693. [Google Scholar] [CrossRef]
- Harmouzi, A.; Ammari, Y. EL Quality Control in the Primary Processing of Aromatic and Medicinal Plants. Sci. Afr. 2025, 27, e02519. [Google Scholar] [CrossRef]
- Kanama, S.K.; Vermaak, I.; van de Venter, M.; Koekemoer, T.C.; Viljoen, A. In Vitro Cytotoxic, Genotoxic, and Multi-Parameter Hepatotoxic Evaluation of Selected South African Medicinal Plant Extracts. S. Afr. J. Bot. 2025, 180, 625–635. [Google Scholar] [CrossRef]
- Brasil Farmacopeia Brasileira. 2024. Available online: https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2024/publicada-a-atualizacao-da-farmacopeia-brasileira-6a-edicao (accessed on 17 May 2025).
- Choudhury, A.; Singh, P.A.; Bajwa, N.; Dash, S.; Bisht, P. Pharmacovigilance of Herbal Medicines: Concerns and Future Prospects. J. Ethnopharmacol. 2023, 309, 116383. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Wang, L.; Liu, Q.; Yang, S.; Wang, C. Advancing Herbal Medicine: Enhancing Product Quality and Safety through Robust Quality Control Practices. Front. Pharmacol. 2023, 14, 1265178. [Google Scholar] [CrossRef]
- de Oliveira, M.G.; Moreira, G.G.; Paz, A.T.S.; Oliveira, T.L.S.; Silva, L.A.D.; da Conceição, E.C.; Borges, L.L.; da Silva, V.B.; de Paula, J.R. Process Optimization of Physicochemical Properties of Spray-Dried Hydrocotyle umbellata L. Extract. Braz. J. Pharm. Sci. 2023, 59, e21211. [Google Scholar] [CrossRef]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Morais, S.M.; Sampaio, C.G.; Pérez-Jiménez, J.; Saura-Calixto, F.D. Metodologia Científica: Determinação da Atividade Antioxidante Total Em Frutas Pelo Método de Redução Do Ferro (FRAP); Comunicado Técnico; Embrapa Agroindústria Tropical: Fortaleza, Brazil, 2006. [Google Scholar]
- Fidelis, A.A.G.; de Oliveira Fernandes, G.; Melo, F.R.; de Oliveira Leme, L.; Adona, P.R.; Kawamoto, T.S.; Dode, M.A.N. Ethanolic Extract of Dried Leaves from the Cerrado Biome Increases the Cryotolerance of Bovine Embryos Produced In Vitro. Oxid. Med. Cell Longev. 2020, 2020, 6046013. [Google Scholar] [CrossRef] [PubMed]
- Peixoto Araujo, N.M.; Arruda, H.S.; dos Santos, F.N.; de Morais, D.R.; Pereira, G.A.; Pastore, G.M. LC-MS/MS Screening and Identification of Bioactive Compounds in Leaves, Pulp and Seed from Eugenia calycina Cambess. Food Res. Int. 2020, 137, 109556. [Google Scholar] [CrossRef] [PubMed]
- Wolfender, J.L. HPLC in Natural Product Analysis: The Detection Issue. Planta Med. 2009, 75, 719–734. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.G.; Laquete de Barros, G.; Pegoraro, C.; Vizzotto, M.; Soldi, C.; Conterato, G.; Heiden, G.; dos Santos, K.L.; Barbieri, R.L. Phytochemistry and Pharmacology of the Brazilian Cherry (Eugenia involucrata, Myrtaceae): A Systematic Review. Phytochem. Rev. 2025, 1, 1–21. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, S.; Zhang, L.; Han, B.; Yao, X.; Chen, W.; Hu, Y. Preparation of Ellagic Acid Molecularly Imprinted Polymeric Microspheres Based on Distillation–Precipitation Polymerization for the Efficient Purification of a Crude Extract. J. Sep. Sci. 2016, 39, 3098–3104. [Google Scholar] [CrossRef]
- Xie, J.; Chen, M.; Ren, T.; Zheng, Q. Optimization of Ellagic Acid Extraction from Blueberry Pulp through Enzymatic Hydrolysis Combined with Ultrasound-Assisted Organic Solvent. Environ. Technol. Innov. 2023, 31, 103147. [Google Scholar] [CrossRef]
- Prakash, M.; Basavaraj, B.V.; Chidambara Murthy, K.N. Biological Functions of Epicatechin: Plant Cell to Human Cell Health. J. Funct. Foods 2019, 52, 14–24. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef]
- Tian, X.; Schaich, K.M. Effects of Molecular Structure on Kinetics and Dynamics of the Trolox Equivalent Antioxidant Capacity Assay with ABTS+•. J. Agric. Food Chem. 2013, 61, 5511–5519. [Google Scholar] [CrossRef]
- Lang, Y.; Gao, N.; Zang, Z.; Meng, X.; Lin, Y.; Yang, S.; Yang, Y.; Jin, Z.; Li, B. Classification and Antioxidant Assays of Polyphenols: A Review. J. Future Foods 2024, 4, 193–204. [Google Scholar] [CrossRef]
- Becker, E.M.; Nissen, L.R.; Skibsted, L.H. Antioxidant Evaluation Protocols: Food Quality or Health Effects. Eur. Food Res. Technol. 2004, 219, 561–571. [Google Scholar] [CrossRef]
- Ferreira, M.R.A.; Lima, L.B.; Santos, E.C.F.; Machado, J.C.B.; Silva, W.A.V.; Paiva, P.M.G.; Napoleão, T.H.; Soares, L.A.L. Eugenia uniflora: A Promising Natural Alternative against Multidrug-Resistant Bacteria. Braz. J. Biol. 2023, 83, e274084. [Google Scholar] [CrossRef]
- Victoria, F.N.; Lenardão, E.J.; Savegnago, L.; Perin, G.; Jacob, R.G.; Alves, D.; da Silva, W.P.; da Motta, A.d.S.; Nascente, P.d.S. Essential Oil of the Leaves of Eugenia uniflora L.: Antioxidant and Antimicrobial Properties. Food Chem. Toxicol. 2012, 50, 2668–2674. [Google Scholar] [CrossRef]
- Julianus Sohilait, H.; Kainama, H. Free Radical Scavenging Activity of Essential Oil of Eugenia caryophylata from Amboina Island and Derivatives of Eugenol. Open Chem. 2019, 17, 422–428. [Google Scholar] [CrossRef]
- Galeno, D.M.L.; Carvalho, R.P.; De Araújo Boleti, A.P.; Lima, A.S.; De Almeida, P.D.O.; Pacheco, C.C.; De Souza, T.P.; Lima, E.S. Extract from Eugenia punicifolia Is an Antioxidant and Inhibits Enzymes Related to Metabolic Syndrome. Appl. Biochem. Biotechnol. 2014, 172, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Neri-Numa, I.A.; Carvalho-Silva, L.B.; Morales, J.P.; Malta, L.G.; Muramoto, M.T.; Ferreira, J.E.M.; de Carvalho, J.E.; Ruiz, A.L.T.G.; Maróstica Junior, M.R.; Pastore, G.M. Evaluation of the Antioxidant, Antiproliferative and Antimutagenic Potential of Araçá-Boi Fruit (Eugenia stipitata Mc Vaugh—Myrtaceae) of the Brazilian Amazon Forest. Food Res. Int. 2013, 50, 70–76. [Google Scholar] [CrossRef]
- Gupta, S.; Saha, B.; Giri, A.K. Comparative Antimutagenic and Anticlastogenic Effects of Green Tea and Black Tea: A Review. Mutat. Res. Rev. Mutat. Res. 2002, 512, 37–65. [Google Scholar] [CrossRef] [PubMed]
- Bueno, E.C.; Hermes Zandonai, R.; Coelho, F.; Ferreira, J.; Karla, A.; Mendes, B.; Biavatti, M.W.; Niero, R.; Filho, V.C.; Casagranda Bueno, E.; et al. Evaluation of the Proliferative Activity of Methanol Extracts from Six Medicinal Plants in Murine Spleen Cells. Braz. J. Pharm. Sci. 2010, 46, 323–333. [Google Scholar] [CrossRef]
- Ghica, A.; Tănase, M.L.; Niculițe, C.M.; Tocilă, A.; Popescu, L.; Luță, E.A.; Olaru, O.T.; Popovici, V.; Balaci, T.D.; Duțu, L.E.; et al. In Vitro Toxicity Evaluation of Some Plant Extracts and Their Potential Application in Xerosis Cutis. Cosmetics 2024, 11, 124. [Google Scholar] [CrossRef]
- Madić, V.; Stojanović-Radić, Z.; Jušković, M.; Jugović, D.; Žabar Popović, A.; Vasiljević, P. Genotoxic and Antigenotoxic Potential of Herbal Mixture and Five Medicinal Plants Used in Ethnopharmacology. S. Afr. J. Bot. 2019, 125, 290–297. [Google Scholar] [CrossRef]
- Shin, H.K.; Park, S.M.; Choi, M.S.; Oh, J.H.; Kim, S.K.; Yoon, S.; Park, H.R.; Han, H.Y. Enhancing Toxicity Prediction for Natural Products in Herbal Medicine and Dietary Supplements: Integrating (Q)STR Models and in Vitro Assays. Toxicol. Appl. Pharmacol. 2025, 495, 117220. [Google Scholar] [CrossRef] [PubMed]
- Tice, R.R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; Ryu, J.-C.; Sasaki, Y.F. Single Cell Gel/Comet Assay: Guidelines for In Vitro and In Vivo Genetic Toxicology Testing. Environ. Mol. Mutagen. 2000, 35, 206–221. [Google Scholar] [CrossRef]
- Priyadarshini, T.; Aravindhababu, N.; Masthan, K.M.K. Cell Culture: An Insight View. Biomed. Pharmacol. J. 2015, 8, 27–31. [Google Scholar] [CrossRef]
- Azqueta, A.; Stopper, H.; Zegura, B.; Dusinska, M.; Møller, P. Do Cytotoxicity and Cell Death Cause False Positive Results in the in Vitro Comet Assay? Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2022, 881, 503520. [Google Scholar] [CrossRef] [PubMed]
- Silva Fernandes, A.; Hollanda Véras, J.; Silva, L.S.; Puga, S.C.; Luiz Cardoso Bailão, E.F.; de Oliveira, M.G.; Cardoso, C.G.; Carneiro, C.C.; Da Costa Santos, S.; Chen-Chen, L. Pedunculagin Isolated from Plinia cauliflora Seeds Exhibits Genotoxic, Antigenotoxic and Cytotoxic Effects in Bacteria and Human Lymphocytes. J. Toxicol. Environ. Health A 2022, 85, 353–363. [Google Scholar] [CrossRef]
- da Cunha, F.A.B.; Waczuk, E.P.; Duarte, A.E.; Barros, L.M.; Elekofehinti, O.O.; Matias, E.F.F.; da Costa, J.G.M.; Sanmi, A.A.; Boligon, A.A.; da Rocha, J.B.T.; et al. Cytotoxic and Antioxidative Potentials of Ethanolic Extract of Eugenia uniflora L. (Myrtaceae) Leaves on Human Blood Cells. Biomed. Pharmacother. 2016, 84, 614–621. [Google Scholar] [CrossRef]
- Girardelo, J.R.; Munari, E.L.; Dallorsoleta, J.C.S.; Cechinel, G.; Goetten, A.L.F.; Sales, L.R.; Reginatto, F.H.; Chaves, V.C.; Smaniotto, F.A.; Somacal, S.; et al. Bioactive Compounds, Antioxidant Capacity and Antitumoral Activity of Ethanolic Extracts from Fruits and Seeds of Eugenia involucrata DC. Food Res. Int. 2020, 137, 109615. [Google Scholar] [CrossRef]
- Korga, A.; Józefczyk, A.; Zgórka, G.; Homa, M.; Ostrowska, M.; Burdan, F.; Dudka, J. Evaluation of the Phytochemical Composition and Protective Activities of Methanolic Extracts of Centaurea borysthenica and Centaurea daghestanica (Lipsky) Wagenitz on Cardiomyocytes Treated with Doxorubicin. Food Nutr. Res. 2017, 61, 1344077. [Google Scholar] [CrossRef]
- Shah, S.R.; Ukaegbu, C.I.; Hamid, H.A.; Alara, O.R. Evaluation of Antioxidant and Antibacterial Activities of the Stems of Flammulina velutipes and Hypsizygus tessellatus (White and Brown Var.) Extracted with Different Solvents. J. Food Meas. Charact. 2018, 12, 1947–1961. [Google Scholar] [CrossRef]
- Ayoub, M.; De Camargo, A.C.; Shahidi, F. Antioxidants and Bioactivities of Free, Esterified and Insoluble-Bound Phenolics from Berry Seed Meals. Food Chem. 2016, 197, 221–232. [Google Scholar] [CrossRef]
- Sanz-Serrano, J.; Vettorazzi, A.; Muruzabal, D.; López de Cerain, A.; Azqueta, A. In Vitro Genotoxicity Assessment of Functional Ingredients: DHA, Rutin and α-Tocopherol. Food Chem. Toxicol. 2021, 153, 112237. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Abul Qais, F.; Ahmad, I.; Hussain, A.; Alajmi, M.F. Genotoxicity Inhibition by Syzygium cumini (L.) Seed Fraction and Rutin: Understanding the Underlying Mechanism of DNA Protection. Toxicol. Res. 2018, 7, 156. [Google Scholar] [CrossRef]
- de Oliveira, A.M.; de Freitas, A.F.S.; Costa, W.K.; Machado, J.C.B.; Bezerra, I.C.F.; Ferreira, M.R.A.; Paiva, P.M.G.; Napoleão, T.H.; Soares, L.A.L. Flavonoid-Rich Fraction of Croton blanchetianus Baill. (Euphorbiaceae) Leaves: Chemical Profile, Acute and Subacute Toxicities, Genotoxicity and Antioxidant Potential. South. Afr. J. Bot. 2022, 144, 238–249. [Google Scholar] [CrossRef]
- Sanzovo, T.O.R.; Lima, N.M.; Marqui, S.R.; Andrade, T.J.A.S.; Navegante, G.; Serafim, R.B.; Sorbo, J.M.; Valente, V.; Silva, D.H.S.; Soares, C.P. Chemoprevention Assessment, Genotoxicity and Cytotoxicity of Flavonoids from Inga laurina Leaves (FABACEAE). Nat. Prod. Res. 2019, 35, 3089–3094. [Google Scholar] [CrossRef]
- Cristina Marcarini, J.; Ferreira Tsuboy, M.S.; Cabral Luiz, R.; Regina Ribeiro, L.; Beatriz Hoffmann-Campo, C.; Ségio Mantovani, M. Investigation of Cytotoxic, Apoptosis-Inducing, Genotoxic and Protective Effects of the Flavonoid Rutin in HTC Hepatic Cells. Exp. Toxicol. Pathol. 2011, 63, 459–465. [Google Scholar] [CrossRef]
- Haza, A.I.; Morales, P. Effects of (+)Catechin and (−)Epicatechin on Heterocyclic Amines-Induced Oxidative DNA Damage. J. Appl. Toxicol. 2011, 31, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Minotti, G.; Recalcati, S.; Menna, P.; Salvatorelli, E.; Corna, G.; Cairo, G. Doxorubicin Cardiotoxicity and the Control of Iron Metabolism: Quinone-Dependent and Independent Mechanisms. Methods Enzymol. 2004, 378, 340–361. [Google Scholar] [CrossRef] [PubMed]
- Elfadadny, A.; Ragab, R.F.; Hamada, R.; Al Jaouni, S.K.; Fu, J.; Mousa, S.A.; El-Far, A.H. Natural Bioactive Compounds-Doxorubicin Combinations Targeting Topoisomerase II-Alpha: Anticancer Efficacy and Safety. Toxicol. Appl. Pharmacol. 2023, 461, 116405. [Google Scholar] [CrossRef]
- Kciuk, M.; Gielecińska, A.; Mujwar, S.; Kołat, D.; Kałuzińska-Kołat, Ż.; Celik, I.; Kontek, R. Doxorubicin-An Agent with Multiple Mechanisms of Anticancer Activity. Cells 2023, 12, 659. [Google Scholar] [CrossRef]
- López-Romero, D.; Izquierdo-Vega, J.A.; Morales-González, J.A.; Madrigal-Bujaidar, E.; Chamorro-Cevallos, G.; Sánchez-Gutiérrez, M.; Betanzos-Cabrera, G.; Alvarez-Gonzalez, I.; Morales-González, Á.; Madrigal-Santillán, E. Evidence of Some Natural Products with Antigenotoxic Effects. Part 2: Plants, Vegetables, and Natural Resin. Nutrients 2018, 10, 1954. [Google Scholar] [CrossRef]
- Bailon-Moscoso, N.; Tinitana, F.; Martínez-Espinosa, R.; Jaramillo-Velez, A.; Palacio-Arpi, A.; Aguilar-Hernandez, J.; Romero-Benavides, J.C. Cytotoxic, Antioxidative, Genotoxic and Antigenotoxic Effects of Horchata, Beverage of South Ecuador. BMC Complement. Altern. Med. 2017, 17, 539. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhang, P.; Wu, H.; Wang, J.; Liu, F.; Wang, W. Natural Flavonoids Function as Chemopreventive Agents from Gancao (Glycyrrhiza inflata Batal). J. Funct. Foods 2015, 19, 563–574. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Li, N.; Zhang, X.; Zhao, W.; Li, J.; Si, Y. Chemopreventive Flavonoids from Millettia pulchra Kurz Var-Laxior (Dunn) Z.Wei (Yulangsan) Function as Michael Reaction Acceptors. Bioorg Med. Chem. Lett. 2015, 25, 1078–1081. [Google Scholar] [CrossRef] [PubMed]
- Flora e Funga do Brasil. Jardim Botânico do Rio de Janeiro. Available online: http://floradobrasil.jbrj.gov.br/ (accessed on 17 May 2025).
- Waterman, P.G.; Mole, S. A Critical Analysis of Techniques for Measuring Tannins in Ecological Studies I: Techniques for Chemically Defining Tannins. Oecologia 1987, 72, 137–147. [Google Scholar]
- Hagerman, A.E.; Butler, L.G. Protein Precipitation Method for the Quantitative Determination of Tannins. J. Agric. Food Chem. 1978, 26, 809–812. [Google Scholar] [CrossRef]
- Rolim, A.; Maciel, C.P.M.; Kaneko, T.M.; Consiglieri, V.O.; Salgado-Santos, I.M.N.; Velasco, M.V.R. Validation Assay for Total Flavonoids, as Rutin Equivalents, from Trichilia catigua Adr. Juss (Meliaceae) and Ptychopetalum olacoides Bentham (Olacaceae) Commercial Extract. J. AOAC Int. 2005, 88, 1015–1019. [Google Scholar] [CrossRef]
- Guidelines for Dietary Supplements and Botanicals; AOAC International: Rockville, MD, USA, 2019.
- Brasil Resolução Da Diretoria Colegiada-RDC No 166; Ministério da Saúde Agência Nacional de Vigilância Sanitária: Brasília, Brazil, 2017.
- Larrauri, J.A.; Rupérez, P.; Saura-Calixto, F. Effect of Drying Temperature on the Stability of Polyphenols and Antioxidant Activity of Red Grape Pomace Peels. J. Agric. Food Chem. 1997, 45, 1390–1393. [Google Scholar] [CrossRef]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Morais, S.M.; Sampaio, C.G.; Pérez-Jiménez, J.; Saura-Calixto, F.D. Metodologia Científica: Determinação da Atividade Antioxidante Total Em Frutas Pela Captura Do Radical Livre ABTS+; Comunicado Técnico; Embrapa Agroindústria Tropical: Fortaleza, Brazil, 2007. [Google Scholar]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Morais, S.M.; Sampaio, C.G.; Pérez-Jiménez, J.; Saura-Calixto, F.D. Metodologia Científica: Determinação da Atividade Antioxidante Totalem Frutaspela Captura do Radical Livre DPPH; Embrapa Agroindústria Tropical: Fortaleza, Brazil, 2007. [Google Scholar]
- Rocha, J.D.; da Silva Ferreira, J.; Vieira Silva, J.G.; Silva Fernandes, A.; Hollanda Véras, J.; Madureira de Almeida, L.; Magalhães Teles, A.; Luiz Borges, L.; Chen-Chen, L.; Luiz Cardoso Bailão, E.F. In vitro hematotoxicity of Vernonanthura polyanthes leaf aqueous extract and its fractions. Drug Chem Toxicol. 2022, 45, 1026–1034. [Google Scholar] [CrossRef]
Antioxidant Activity | Mean | Coefficient of Variation |
---|---|---|
DPPH (g extract/g DPPH) | 75.0 | 11% |
FRAP (μM ferrous sulfate/g extract) | 1490.79 | 1.2% |
ABTS+ (μM Trolox/g extract) | 2701.67 | 8% |
Time (min) | A (%) | B (%) |
---|---|---|
0–5 | 2 | 98 |
5–8 | 5 | 95 |
8–11 | 20 | 80 |
11–14 | 25 | 75 |
14–21 | 40 | 60 |
21–24 | 80 | 20 |
24–27 | 90 | 10 |
27–30 | 5 | 95 |
30–35 | 2 | 98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teófilo, M.N.G.; Costa, L.G.; Rocha, J.D.; Barbosa, F.G.; Melo, A.M.d.; de Matos, G.G.; Morgado, C.M.A.; Fernandes, A.S.; de Carvalho, L.B.R.; Gomes, C.M.; et al. Bioactive Compounds, Antioxidant, Cytotoxic, and Genotoxic Investigation of the Standardized Liquid Extract from Eugenia involucrata DC. Leaves. Pharmaceuticals 2025, 18, 764. https://doi.org/10.3390/ph18050764
Teófilo MNG, Costa LG, Rocha JD, Barbosa FG, Melo AMd, de Matos GG, Morgado CMA, Fernandes AS, de Carvalho LBR, Gomes CM, et al. Bioactive Compounds, Antioxidant, Cytotoxic, and Genotoxic Investigation of the Standardized Liquid Extract from Eugenia involucrata DC. Leaves. Pharmaceuticals. 2025; 18(5):764. https://doi.org/10.3390/ph18050764
Chicago/Turabian StyleTeófilo, Monatha Nayara Guimarães, Leonardo Gomes Costa, Jamira Dias Rocha, Fernando Gomes Barbosa, Anielly Monteiro de Melo, Grazzielle Guimarães de Matos, Cristiane Maria Ascari Morgado, Amanda Silva Fernandes, Lucas Barbosa Ribeiro de Carvalho, Clayson Moura Gomes, and et al. 2025. "Bioactive Compounds, Antioxidant, Cytotoxic, and Genotoxic Investigation of the Standardized Liquid Extract from Eugenia involucrata DC. Leaves" Pharmaceuticals 18, no. 5: 764. https://doi.org/10.3390/ph18050764
APA StyleTeófilo, M. N. G., Costa, L. G., Rocha, J. D., Barbosa, F. G., Melo, A. M. d., de Matos, G. G., Morgado, C. M. A., Fernandes, A. S., de Carvalho, L. B. R., Gomes, C. M., de Oliveira, M. A. P., Paula, J. A. M. d., Bailão, E. F. L. C., & Borges, L. L. (2025). Bioactive Compounds, Antioxidant, Cytotoxic, and Genotoxic Investigation of the Standardized Liquid Extract from Eugenia involucrata DC. Leaves. Pharmaceuticals, 18(5), 764. https://doi.org/10.3390/ph18050764