Elderberry Hydrolate: Exploring Chemical Profile, Antioxidant Potency and Antigenotoxicity for Cosmetic Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Cells
2.2. Chemicals
2.3. Lysis Solution
2.4. Phosphate-Buffered Saline (PBS) Solution
2.5. Enzyme Reaction Buffer for Fpg
2.6. Electrophoresis Solution
2.7. Enzyme Preparation
2.8. Elderberry Harvest and Preparation
2.9. Elderberry Steam Distillation
2.10. Dried Herb-to-Hydrolate Ratio Calculation
2.11. Preparation of Hydrolate Extracts
2.12. Profile of Volatile Substances Determined by Gas Chromatography Coupled with Mass Spectrometry (GC-MS)
2.13. Elderberry Hydrolate Treatment
2.14. Genotoxic Evaluation
2.14.1. Comet Assay in Human PBMCs Using H2O2
2.14.2. Comet Assay in Human PBMCs Using SN
2.15. Hydrogen Peroxide (H2O2) Assay
2.16. Antioxidant Activity
2.16.1. ABTS Radical-Scavenging Activity
2.16.2. DPPH Radical-Scavenging Assay
2.17. Statistical Analysis
3. Results
3.1. Elderberry Steam Distillation
3.2. Chemical Characterization
3.3. Comet Assay: H2O2-Challenge
3.4. Comet Assay: SN Challenge
3.5. Hydrogen Peroxide Scavenging Activity
3.6. Antioxidant Activity
4. Discussion
4.1. Elderberry Steam Distillation
4.2. Genotoxic Evaluation
4.3. Hydrogen Peroxide Scavenging Activity
4.4. Antioxidant Activity
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Full Term |
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
C | Control group treated with PBS |
C 1, C 5, C 10, C 15 | Control groups treated with PBS and the respective elderberry hydrolate concentrations (1%, 5%, 10%, 15%) |
C + | Group subjected solely to SN treatment |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
EbH | Elderberry hydrolate |
Fpg | formamido-pyrinidine[fapy]-DNA glycosylase |
GDI | Genetic damage indicator |
HRP | Horseradish peroxidase |
HVA | Homovanillic acid |
H2O2 | Hydrogen peroxide |
PBMCs | Peripheral blood mononuclear cells |
PBS | Phosphate-buffered saline |
SN | Streptonigrin |
TEAC | Trolox equivalent antioxidant capacity |
References
- Liu, J.-K. Natural products in cosmetics. Nat. Prod. Bioprospect. 2022, 12, 40. [Google Scholar] [CrossRef]
- Maleš, I.; Pedisić, S.; Zorić, Z.; Elez-Garofulić, I.; Repajić, M.; You, L.; Vladimir-Knežević, S.; Butorac, D.; Dragović-Uzelac, V. The medicinal and aromatic plants as ingredients in functional beverage production. J. Funct. Foods 2022, 96, 105210. [Google Scholar] [CrossRef]
- Price, S.; Price, L. Aromatherapy for Health Professionals, 2nd ed.; Churchill Livingstone: London, UK, 1999. [Google Scholar]
- Xu, C.; Li, Q.; Wang, N.; Liu, D.; Guo, C. Identifying and discriminating aroma attribute and bioactive components of five commercial essential oils of celery (Apium graveolens L.) seeds using E-nose, HS-GC-IMS, and GC-MS. LWT 2023, 184, 115094. [Google Scholar] [CrossRef]
- Gonçalves, S.; Gaivão, I. Natural Ingredients Common in the Trás-os-Montes Region (Portugal) for Use in the Cosmetic Industry: A Review about Chemical Composition and Antigenotoxic Properties. Molecules 2021, 26, 5255. [Google Scholar] [CrossRef] [PubMed]
- Tiralongo, E.; Wee, S.; Lea, R. Elderberry Supplementation Reduces Cold Duration and Symptoms in Air-Travellers: A Randomized, Double-Blind Placebo-Controlled Clinical Trial. Nutrients 2016, 8, 182. [Google Scholar] [CrossRef]
- Liu, D.; He, X.-Q.; Wu, D.-T.; Li, H.-B.; Feng, Y.-B.; Zou, L.; Gan, R.Y. Elderberry (Sambucus nigra L.): Bioactive Compounds, Health Functions, and Applications. J. Agric. Food Chem. 2022, 70, 4202–4220. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, S.; Gaivão, I. The Beauty and the Toxic Beast: Use of Comet Assay to Study Antigenotoxicity of Natural Ingredients. In Cosmetic Products and Industry-New Advances and Applications; Ahmad, D.U., Akhtar, P.J., Eds.; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar] [CrossRef]
- Proença da Cunha, A.; Pereira da Silva, A.; Costa, M.d.C.; Rodrigues Roque, O.; Proença da Cunha, H.; Proença Portugal, M. Manual de Plantas Medicinais—Bases Farmacológicas e Clínicas; Dinalivro: Lisbon, Portugal, 2017. [Google Scholar]
- Tisserand, R.; Young, R. Essential Oil Safety—A Guide for Health Care Professionals, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Sierra, L.M.; Gaivão, I. (Eds.) Genotoxicity and DNA Repair; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Collins, A.R. The Comet Assay for DNA Damage and Repair: Principles, Applications, and Limitations. Mol. Biotechnol. 2004, 26, 249–261. [Google Scholar] [CrossRef]
- Olive, P.L.; Banáth, J.P. The comet assay: A method to measure DNA damage in individual cells. Nat. Protoc. 2006, 1, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Benhusein, G.M.; Mutch, E.; Aburawi, S.; Williams, F.M. Genotoxic effect induced by hydrogen peroxide in human hepatoma cells using comet assay. Libyan J. Med. 2010, 5, 4637. [Google Scholar] [CrossRef]
- Fairbairn, D.W.; Olive, P.L.; O’Neill, K.L. The comet assay: A comprehensive review. Mutat. Res. Genet. Toxicol. 1995, 339, 37–59. [Google Scholar] [CrossRef]
- Hartmann, A. Recommendations for conducting the in vivo alkaline Comet assay. Mutagenesis 2003, 18, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.P.; Stephens, R.E. Microgel electrophoresis: Sensitivity, mechanisms, and DNA electrostretching. Mutat. Res. Repair 1997, 383, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Valletta, E.A.; Berton, G. Desensitization of macrophage oxygen metabolism on immobilized ligands: Different effect of immunoglobulin G and complement. J. Immunol. 1987, 138, 4366–4373. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-S.; Towantakavanit, K.; Kowalska, T.; Jung, S.-T.; Ham, K.-S.; Heo, B.-G.; Cho, J.-Y.; Yun, J.-G.; Kim, H.-J.; Gorinstein, S. Bioactive compounds and antioxidant and antiproliferative activities of Korean white lotus cultivars. J. Med. Food 2009, 12, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.C.; Duh, P.D. Scavenging Effect of Methanolic Extracts of Peanut Hulls on Free-Radical and Active-Oxygen Species. J. Agric. Food Chem. 1994, 42, 629–632. [Google Scholar] [CrossRef]
- Hale, A. The Volatile Compounds of Elderberries (Sambucus nigra L.). Nat. Volatiles Essent. Oils 2014, 1, 51–54. [Google Scholar]
- Seçilmiş Canbay, H. Effectiveness of Liquid-Liquid Extraction, Solid Phase Extraction, and Headspace Technique for Determination of Some Volatile Water-Soluble Compounds of Rose Aromatic Water. Int. J. Anal. Chem. 2017, 2017, 4870671. [Google Scholar] [CrossRef]
- Clough, S.R. Hexane. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 900–904. [Google Scholar] [CrossRef]
- Silva, P.; Ferreira, S.; Nunes, F.M. Elderberry (Sambucus nigra L.) by-products a source of anthocyanins and antioxidant polyphenols. Ind. Crops Prod. 2017, 95, 227–234. [Google Scholar] [CrossRef]
- Kobayakawa, T.; Tamamura, H. Chapter Seven—Chloroalkene dipeptide isosteres as peptidomimetics. In Methods in Enzymology; Petersson, E.J., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 656, pp. 191–239. [Google Scholar]
- Pan, H.; Xiao, Y.; Xie, A.; Li, Z.; Ding, H.; Yuan, X.; Sun, R.; Peng, Q. The antibacterial mechanism of phenylacetic acid isolated from Bacillus megaterium L2 against Agrobacterium tumefaciens. PeerJ 2022, 10, e14304. [Google Scholar] [CrossRef]
- Choi, H.S.; Kim, S.-L.; Kim, J.-H.; Ko, Y.-C.; Lee, D.-S. Plant Volatile, Phenylacetaldehyde Targets Breast Cancer Stem Cell by Induction of ROS and Regulation of Stat3 Signal. Antioxidants 2020, 9, 1119. [Google Scholar] [CrossRef]
- Lasekan, O.; Teoh, L.S. Contribution of aroma compounds to the antioxidant properties of roasted white yam (Dioscorea rotundata). BMC Chem. 2019, 13, 133. [Google Scholar] [CrossRef] [PubMed]
- Yanagimoto, K.; Lee, K.-G.; Ochi, H.; Shibamoto, T. Antioxidative activity of heterocyclic compounds found in coffee volatiles produced by Maillard reaction. J. Agric. Food Chem. 2002, 50, 5480–5484. [Google Scholar] [CrossRef] [PubMed]
- Elisia, I.; Kitts, D.D. Quantification of hexanal as an index of lipid oxidation in human milk and association with antioxidant components. J. Clin. Biochem. Nutr. 2011, 49, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Pigatto, P.D.; Diani, M. Beneficial Effects of Antioxidant Furfuryl Palmitate in Non-pharmacologic Treatments (Prescription Emollient Devices, PEDs) for Atopic Dermatitis and Related Skin Disorders. Dermatol. Ther. 2018, 8, 339–347. [Google Scholar] [CrossRef]
- Jurišić Grubešić, R.; Nazlić, M.; Miletić, T.; Vuko, E.; Vuletić, N.; Ljubenkov, I.; Dunkić, V. Antioxidant Capacity of Free Volatile Compounds from Olea europaea L. cv. Oblica Leaves Depending on the Vegetation Stage. Antioxidants 2021, 10, 1832. [Google Scholar] [CrossRef] [PubMed]
- Nandi, A.; Yan, L.-J.; Jana, C.K.; Das, N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 9613090. [Google Scholar] [CrossRef] [PubMed]
- Chanwun, T.; Muhamad, N.; Chirapongsatonkul, N.; Churngchow, N. Hevea brasiliensis cell suspension peroxidase: Purification, characterisation and application for dye decolorisation. AMB Express 2013, 3, 14. [Google Scholar] [CrossRef]
- Lee, K.J.; Oh, Y.C.; Cho, W.K.; Ma, J.Y. Antioxidant and Anti-Inflammatory Activity Determination of One Hundred Kinds of Pure Chemical Compounds Using Offline and Online Screening HPLC Assay. Evid.-Based Complement. Altern. Med. ECAM 2015, 2015, 165457. [Google Scholar] [CrossRef]
Ingredient | g |
---|---|
Distilled Water | 4050 |
Elderberries | 1350 |
Procedure | |
|
Unprocessed Samples | Area % | |
26.7% | Phenylacetaldehyde | |
13.7% | 2-acetyl-pyrrole | |
59.7% | MS: 43 (100) 44 (72) 144 (60) | |
Phenylacetaldehyde quantification | ||
0.5 μL, split 1:5 | 0.096 ± 0.049 mg/mL | |
0.5 μL, split 1:10 | 0.160 ± 0.074 mg/mL | |
1 μL, split 1:5 | 0.063 ± 0.083 mg/mL | |
1 μL, split 1:10 | 0.068 ± 0.047 mg/mL | |
Hexane Extracts | Area % | |
3.1% | n-hexanal | |
4.5% | Furfural | |
82.6% | Phenylacetaldehyde | |
2.2% | (E)-beta-damascenone | |
Phenylacetaldehyde quantification | ||
1 μL, split 1:5 | 0.025 ± 0.001 mg/mL | |
Ethyl acetate extracts | Phenylacetaldehyde quantification | |
1 μL, split 1:5 | 0.069 ± 0.003 mg/mL |
Treatment | GDI | % DNA in Tail |
---|---|---|
Basal Damage | ||
C | 15.00 | 3.75 |
C 1 | 7.50 | 1.88 |
C 5 | 9.50 | 2.38 |
C 10 | 17.00 | 4.25 |
C 15 | 13.50 | 3.38 |
C+ | 137.41 | 34.35 |
EbH 1 | 14.75 | 3.69 |
EbH 5 | 17.00 | 4.25 |
EbH 10 | 19.25 | 4.81 |
EbH 15 | 20.50 | 5.13 |
Basal and Oxidative Damage | ||
C | 44.25 | 11.06 |
C 1 | 15.00 | 3.75 |
C 5 | 21.75 | 5.44 |
C 10 | 23.75 | 5.94 |
C 15 | 25.25 | 6.31 |
C+ | 182.50 | 45.63 |
EbH 1 | 25.75 | 6.44 |
EbH 5 | 30.50 | 7.67 |
EbH 10 | 31.50 | 7.88 |
EbH 15 | 37.50 | 9.38 |
Treatment | GDI | % DNA in Tail |
---|---|---|
Basal Damage | ||
C | 15.00 | 3.75 |
C 1 | 7.50 | 1.88 |
C 5 | 9.50 | 2.38 |
C 10 | 17.00 | 4.25 |
C 15 | 13.50 | 3.38 |
C+ | 137.41 | 34.35 |
EbH 1 | 21.00 | 5.25 |
EbH 5 | 31.75 | 7.94 |
EbH 10 | 54.00 | 13.50 |
EbH 15 | 58.75 | 14.69 |
Basal and Oxidative Damage | ||
C | 44.25 | 11.06 |
C 1 | 15.00 | 3.75 |
C 5 | 21.75 | 5.44 |
C 10 | 23.75 | 5.94 |
C 15 | 25.25 | 6.31 |
C+ | 182.50 | 45.63 |
EbH 1 | 62.50 | 15.63 |
EbH 5 | 59.50 | 14.88 |
EbH 10 | 72.50 | 18.13 |
EbH 15 | 87.00 | 21.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, S.; Peixoto, F.; Schoss, K.; Glavač, N.K.; Gaivão, I. Elderberry Hydrolate: Exploring Chemical Profile, Antioxidant Potency and Antigenotoxicity for Cosmetic Applications. Appl. Sci. 2024, 14, 6338. https://doi.org/10.3390/app14146338
Gonçalves S, Peixoto F, Schoss K, Glavač NK, Gaivão I. Elderberry Hydrolate: Exploring Chemical Profile, Antioxidant Potency and Antigenotoxicity for Cosmetic Applications. Applied Sciences. 2024; 14(14):6338. https://doi.org/10.3390/app14146338
Chicago/Turabian StyleGonçalves, Sara, Francisco Peixoto, Katja Schoss, Nina Kočevar Glavač, and Isabel Gaivão. 2024. "Elderberry Hydrolate: Exploring Chemical Profile, Antioxidant Potency and Antigenotoxicity for Cosmetic Applications" Applied Sciences 14, no. 14: 6338. https://doi.org/10.3390/app14146338
APA StyleGonçalves, S., Peixoto, F., Schoss, K., Glavač, N. K., & Gaivão, I. (2024). Elderberry Hydrolate: Exploring Chemical Profile, Antioxidant Potency and Antigenotoxicity for Cosmetic Applications. Applied Sciences, 14(14), 6338. https://doi.org/10.3390/app14146338