Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (280)

Search Parameters:
Keywords = antibiotic penetration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 806 KiB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

12 pages, 1739 KiB  
Article
Tailored Levofloxacin Incorporated Extracellular Matrix Nanoparticles for Pulmonary Infections
by Raahi Patel, Ignacio Moyano, Masahiro Sakagami, Jason D. Kang, Phillip B. Hylemon, Judith A. Voynow and Rebecca L. Heise
Int. J. Mol. Sci. 2025, 26(15), 7453; https://doi.org/10.3390/ijms26157453 - 1 Aug 2025
Viewed by 203
Abstract
Cystic fibrosis produces viscous mucus in the lung that increases bacterial invasion, causing persistent infections and subsequent inflammation. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common infections in cystic fibrosis patients that are resistant to antibiotics. One antibiotic approved to [...] Read more.
Cystic fibrosis produces viscous mucus in the lung that increases bacterial invasion, causing persistent infections and subsequent inflammation. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common infections in cystic fibrosis patients that are resistant to antibiotics. One antibiotic approved to treat these infections is levofloxacin (LVX), which functions to inhibit bacterial replication but can be further developed into tailorable particles. Nanoparticles are an emerging inhaled therapy due to enhanced targeting and delivery. The extracellular matrix (ECM) has been shown to possess pro-regenerative and non-toxic properties in vitro, making it a promising delivery agent. The combination of LVX and ECM formed into nanoparticles may overcome barriers to lung delivery to effectively treat cystic fibrosis bacterial infections. Our goal is to advance CF care by providing a combined treatment option that has the potential to address both bacterial infections and lung damage. Two hybrid formulations of a 10:1 and 1:1 ratio of LVX to ECM have shown neutral surface charges and an average size of ~525 nm and ~300 nm, respectively. The neutral charge and size of the particles may suggest their ability to attract toward and penetrate through the mucus barrier in order to target the bacteria. The NPs have also been shown to slow the drug dissolution, are non-toxic to human airway epithelial cells, and are effective in inhibiting Pseudomonas aeruginosa and Staphylococcus aureus. LVX-ECM NPs may be an effective treatment for pulmonary CF bacterial treatments. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

32 pages, 3005 KiB  
Review
Photophysical Process of Hypocrellin-Based Photodynamic Therapy: An Efficient Antimicrobial Strategy for Overcoming Multidrug Resistance
by Pazhani Durgadevi, Koyeli Girigoswami and Agnishwar Girigoswami
Physics 2025, 7(3), 28; https://doi.org/10.3390/physics7030028 - 15 Jul 2025
Viewed by 474
Abstract
The emergence of multidrug-resistant (MDR) bacteria and biofilm-associated infections has created a significant hurdle for conventional antibiotics, prompting the exploration of alternative strategies. Photodynamic therapy (PDT), a technique that utilizes photosensitizers activated by light to produce ROS, has emerged as a beacon of [...] Read more.
The emergence of multidrug-resistant (MDR) bacteria and biofilm-associated infections has created a significant hurdle for conventional antibiotics, prompting the exploration of alternative strategies. Photodynamic therapy (PDT), a technique that utilizes photosensitizers activated by light to produce ROS, has emerged as a beacon of hope in the fight against MDR microorganisms. Among the natural photosensitizers, hypocrellins (A and B) have shown remarkable potential with their dual-mode photodynamic action, generating ROS via both Type I (electron transfer) and Type II (singlet oxygen) pathways. This unique action disrupts bacterial biofilms and inactivates MDR pathogens. The amphiphilic nature of hypocrellins further enhances their promise, enabling deep biofilm penetration and ensuring potent antibacterial effects even in hypoxic environments, surpassing the capabilities of synthetic photosensitizers. This study critically examines the antimicrobial properties of hypocrellin-based PDT, emphasizing its mechanisms, advantages over traditional antibiotics, and effectiveness against MDR pathogens. Comparative analysis with other photosensitizers, the role of nanotechnology-enhanced delivery systems, and future clinical applications are explored. Its combination with nanotechnology enhances therapeutic outcomes, providing a viable alternative to conventional antibiotics. Further clinical research is essential to optimize its application and integration into antimicrobial treatment protocols. Full article
(This article belongs to the Section Biophysics and Life Physics)
Show Figures

Figure 1

37 pages, 4016 KiB  
Review
Recent Trends in Bioinspired Metal Nanoparticles for Targeting Drug-Resistant Biofilms
by Devaraj Bharathi and Jintae Lee
Pharmaceuticals 2025, 18(7), 1006; https://doi.org/10.3390/ph18071006 - 5 Jul 2025
Viewed by 635
Abstract
Multidrug-resistant (MDR) biofilm infections characterized by densely packed microbial communities encased in protective extracellular matrices pose a formidable challenge to conventional antimicrobial therapies and are a major contributor to chronic, recurrent and device-associated infections. These biofilms significantly reduce antibiotic penetration, facilitate the survival [...] Read more.
Multidrug-resistant (MDR) biofilm infections characterized by densely packed microbial communities encased in protective extracellular matrices pose a formidable challenge to conventional antimicrobial therapies and are a major contributor to chronic, recurrent and device-associated infections. These biofilms significantly reduce antibiotic penetration, facilitate the survival of dormant persister cells and promote horizontal gene transfer, all of which contribute to the emergence and persistence of MDR pathogens. Metal nanoparticles (MNPs) have emerged as promising alternatives due to their potent antibiofilm properties. However, conventional synthesis methods are associated with high costs, complexity, inefficiency and negative environmental impacts. To overcome these limitations there has been a global push toward the development of sustainable and eco-friendly synthesis approaches. Recent advancements have demonstrated the successful use of various plant extracts, microbial cultures, and biomolecules for the green synthesis of MNPs, which offers biocompatibility, scalability, and environmental safety. This review provides a comprehensive overview of recent trends and the latest progress in the green synthesis of MNPs including silver (Ag), gold (Au), platinum (Pt), and selenium (Se), and also explores the mechanistic pathways and characterization techniques. Furthermore, it highlights the antibiofilm applications of these MNPs emphasizing their roles in disrupting biofilms and restoring the efficacy of existing antimicrobial strategies. Full article
Show Figures

Figure 1

10 pages, 429 KiB  
Article
Clinical Outcomes of Escherichia coli Acute Bacterial Prostatitis: A Comparative Study of Oral Sequential Therapy with β-Lactam Versus Quinolone Antibiotics
by Laura Gisbert, Beatriz Dietl, Mariona Xercavins, Aina Mateu, María López, Ana Martínez-Urrea, Lucía Boix-Palop and Esther Calbo
Antibiotics 2025, 14(7), 681; https://doi.org/10.3390/antibiotics14070681 - 5 Jul 2025
Viewed by 503
Abstract
Background/Objectives: Optimal management of acute bacterial prostatitis (ABP) remains uncertain, but the use of antibiotics with good prostatic tissue penetration is critical to prevent recurrence and chronic progression. This study aimed to describe clinical characteristics and outcomes of ABP due to Escherichia coli [...] Read more.
Background/Objectives: Optimal management of acute bacterial prostatitis (ABP) remains uncertain, but the use of antibiotics with good prostatic tissue penetration is critical to prevent recurrence and chronic progression. This study aimed to describe clinical characteristics and outcomes of ABP due to Escherichia coli (ABP-E.coli), compare effectiveness of sequential high-dose cefuroxime (ABP-CXM) versus ciprofloxacin (ABP-CIP), and identify risk factors for clinical failure. Methods: We conducted a retrospective study including men >18 years diagnosed with ABP-E. coli between January 2010 and November 2023 at a 400-bed hospital. Patients received oral cefuroxime (500 mg/8 h) or oral ciprofloxacin (500 mg/12 h). Outcomes over 90 days included clinical cure, recurrence and reinfection. Definitions: Clinical cure—resolution of symptoms without recurrences; recurrence—new ABP episode with the same E. coli strain; reinfection—ABP involving different microorganism or E. coli strain; clinical failure—lack of cure, recurrence, or reinfection. Results: Among 326 episodes (158 ABP-CXM, 168 ABP-CIP), ABP-CXM patients were younger (median 63.5 vs. 67.5 years, p = 0.005) and had fewer comorbidities. Clinical cure was higher in ABP-CIP (96.9% vs. 85.7%, p < 0.001). Recurrence occurred only in ABP-CXM (6.96% vs. 0%, p < 0.001), while reinfection and mortality were similar. Multivariable analysis showed ciprofloxacin was protective against clinical failure (OR: 0.16, 95% CI: 0.06–0.42, p < 0.001), while prior urinary tract infection (UTI) increased failure risk (OR: 2.87, 95% CI: 1.3–6.3). Conclusions: Ciprofloxacin was more effective than cefuroxime in treating ABP-E. coli. Patients with recent UTIs may need closer monitoring or alternative therapies. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Figure 1

50 pages, 3939 KiB  
Review
Targeting Gram-Negative Bacterial Biofilm with Innovative Therapies: Communication Silencing Strategies
by Milka Malešević and Branko Jovčić
Future Pharmacol. 2025, 5(3), 35; https://doi.org/10.3390/futurepharmacol5030035 - 3 Jul 2025
Viewed by 621
Abstract
Biofilm-associated infections caused by Gram-negative bacteria, especially multidrug-resistant strains, frequently occur in intensive care units and represent a major therapeutic challenge. The economic burden of biofilm-associated infections is considerable, making the search for new treatment approaches a focal point for policymakers and scientific [...] Read more.
Biofilm-associated infections caused by Gram-negative bacteria, especially multidrug-resistant strains, frequently occur in intensive care units and represent a major therapeutic challenge. The economic burden of biofilm-associated infections is considerable, making the search for new treatment approaches a focal point for policymakers and scientific funding bodies. Biofilm formation is regulated by quorum sensing (QS), a population density-dependent communication mechanism between cells mediated by small diffusible signaling molecules. QS modulates various intracellular processes, and some features of QS are common to all Gram-negative bacteria. While there are differences in the QS regulatory networks of different Gram-negative bacterial species, a common feature of most Gram-negative bacteria is the ability of N-acylhomoserine lactones (AHL) as inducers to diffuse across the bacterial membrane and interact with receptors located either in the cytoplasm or on the inner membrane. Targeting QS by inhibiting the synthesis, transport, or perception of signaling molecules using small molecules, quorum quenching enzymes, antibodies, combinatorial therapies, or nanoparticles is a promising strategy to combat virulence. In-depth knowledge of biofilm biology, antibiotic susceptibility, and penetration mechanisms, as well as a deep understanding of anti-QS agents, will contribute to the development of antimicrobial therapies to combat biofilm infections. Advancing antimicrobial therapies against biofilm infections requires a deep understanding of biofilm biology, antibiotic susceptibility, penetration mechanisms, and anti-QS strategies. This can be achieved through in vivo and clinical studies, supported by state-of-the-art tools such as machine learning and artificial intelligence. Full article
Show Figures

Graphical abstract

16 pages, 637 KiB  
Review
Structural Innovations in Vancomycin: Overcoming Resistance and Expanding the Antibacterial Spectrum
by Ricardo Cartes-Velásquez, Felipe Morales-León, Franco Valdebenito-Maturana, Pablo Sáez-Riquelme, Nicolás Rodríguez-Ortíz and Hernán Carrillo-Bestagno
Organics 2025, 6(3), 28; https://doi.org/10.3390/org6030028 - 23 Jun 2025
Viewed by 837
Abstract
Vancomycin, a cornerstone antibiotic against severe Gram-positive infections, is increasingly challenged by resistance in Methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin Enterococcus spp. (VRE), necessitating the development of novel therapeutic strategies. This review examines how structural modifications to vancomycin can enhance its antibacterial activity [...] Read more.
Vancomycin, a cornerstone antibiotic against severe Gram-positive infections, is increasingly challenged by resistance in Methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin Enterococcus spp. (VRE), necessitating the development of novel therapeutic strategies. This review examines how structural modifications to vancomycin can enhance its antibacterial activity and explores the critical role of computational approaches in designing the next generation of analogs. By analyzing the existing literature, we highlight how strategic alterations, such as the introduction of lipophilic side chains, substitutions on the sugar moieties, and modifications to the aglycone core, have yielded derivatives with improved antibacterial potency. Notably, certain analogs (e.g., Vanc-83, Dipi-Van-Zn) have demonstrated expanded activity against Gram-negative bacteria and exhibited enhanced pharmacokinetic profiles, including prolonged half-lives and improved tissue penetration, crucial for effective treatment. Semisynthetic glycopeptides like telavancin, dalbavancin, and oritavancin exemplify successful translation of structural modifications, offering sustained plasma concentrations and simplified dosing regimens that improve patient compliance. Complementing these experimental efforts, computational methods, including molecular docking and molecular dynamics simulations, provide valuable insights into drug–target interactions, guiding the rational design of more effective analogs. Furthermore, physiologically based pharmacokinetic modeling aids in predicting the in vivo behavior and optimizing the pharmacokinetic properties of these novel compounds. This review highlights a critical path forward in the fight against multidrug-resistant infections. By meticulously examining the previously carried out structural refinement of vancomycin, guided by computational predictions and validated through rigorous experimental testing, we underscore its immense potential. Full article
Show Figures

Figure 1

16 pages, 3913 KiB  
Article
Isolation and Characterization of Enterococcus faecalis Phage ZXL-01 and Preliminary Investigation of Its Therapeutic Effect on Periapical Periodontitis
by Hailin Jiang, Xueli Zhao, Chuhan Wang, Hongyan Shi, Jinghua Li, Chunyan Zhao and Honglan Huang
Curr. Issues Mol. Biol. 2025, 47(6), 469; https://doi.org/10.3390/cimb47060469 - 18 Jun 2025
Viewed by 382
Abstract
Enterococcus faecalis (E. faecalis) is a major pathogen responsible for refractory apical periodontitis (RAP). It can penetrate deep into dentinal tubules, form persistent biofilms, and exhibit antibiotic resistance, thereby limiting the efficacy of conventional antimicrobial treatments. Bacteriophages (phages), due to their [...] Read more.
Enterococcus faecalis (E. faecalis) is a major pathogen responsible for refractory apical periodontitis (RAP). It can penetrate deep into dentinal tubules, form persistent biofilms, and exhibit antibiotic resistance, thereby limiting the efficacy of conventional antimicrobial treatments. Bacteriophages (phages), due to their strong lytic activity and host specificity, have emerged as promising alternatives. In this study, a novel strictly lytic phage, ZXL-01, was isolated from lake water in Jilin, China. ZXL-01 demonstrated remarkable stability under extreme conditions, including thermal tolerance at 60 °C for 1 h and a wide pH range (4–11). Whole-genome sequencing (GenBank accession number: ON113334) revealed a genome of 40,804 bp with no virulence or tRNA genes, confirming its identity as an E. faecalis phage. Importantly, ZXL-01 exhibited potent antibiofilm activity, reducing biofilm biomass by approximately 69.4% in the inhibition group and 68.4% in the lysis group (both p < 0.001). In an in vitro root canal infection model induced by E. faecalis, scanning electron microscope (SEM) observations confirmed that ZXL-01 effectively inhibited biofilm formation and disrupted mature biofilms. These findings highlight the potential of ZXL-01 as a novel antimicrobial agent for the treatment of E. faecalis-associated apical periodontitis. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

19 pages, 1281 KiB  
Article
Phenotypic and Genotypic Characterization of ESBL and AmpC β-Lactamase-Producing E. coli Isolates from Poultry in Northwestern Romania
by Anca Rus, Iulia-Maria Bucur, Kalman Imre, Andreea Talida Tirziu, Andrei Alexandru Ivan, Radu Valentin Gros, Alex Cristian Moza, Sebastian Alexandru Popa, Alexandra Ban-Cucerzan and Emil Tirziu
Antibiotics 2025, 14(6), 578; https://doi.org/10.3390/antibiotics14060578 - 5 Jun 2025
Viewed by 592
Abstract
Background/Objectives: The widespread use of antibiotics in animal husbandry has led to an increase in antimicrobial-resistant Escherichia coli, particularly strains producing extended-spectrum β-lactamases (ESBL) and AmpC β-lactamases. This study aimed to isolate and characterize such strains from fecal samples of broiler [...] Read more.
Background/Objectives: The widespread use of antibiotics in animal husbandry has led to an increase in antimicrobial-resistant Escherichia coli, particularly strains producing extended-spectrum β-lactamases (ESBL) and AmpC β-lactamases. This study aimed to isolate and characterize such strains from fecal samples of broiler chickens (n = 71) and slaughtered turkeys (n = 31) in northwestern Romania. Methods: Antimicrobial susceptibility testing and PCR were used to evaluate phenotypic resistance patterns and detect the presence of resistance genes (AmpC, blaZ, and blaTEM). Results: The results showed that 55% of turkey and 61% of broiler isolates were presumptive ESBL/AmpC producers. Among all isolates, 50% were classified as extensively drug-resistant (XDR), 44% as multidrug-resistant (MDR), and only 6% were fully susceptible. Gene detection revealed an overall prevalence of 44.2% for AmpC, 72.7% for blaZ, and 58.1% for blaTEM, yielding a total penetrance of 51.09%. The diagnostic odds ratio (DOR) values, ranging from 0.67 to 81, suggest the efficacy of the antibiotic susceptibility testing method used in detecting the presence of these resistance genes. Conclusion: Overall, these findings highlight a significant burden of antimicrobial-resistant, poultry-associated E. coli strains, warranting stricter antimicrobial stewardship. Full article
Show Figures

Figure 1

26 pages, 2852 KiB  
Article
Synergy of Tetracyclines and Potassium Azeloyl Diglycinate (Azeloglycine) in Hydrogels: Evaluation of Stability, Antimicrobial Activity, and Physicochemical Properties
by Agnieszka Kostrzębska, Adam Junka and Witold Musiał
Int. J. Mol. Sci. 2025, 26(11), 5239; https://doi.org/10.3390/ijms26115239 - 29 May 2025
Viewed by 735
Abstract
Acne vulgaris is one of the most common dermatological diseases and has a complex etiology. Despite the wide range of available therapeutic options, modern and effective solutions are still being sought, particularly in the area of topical therapy. The aim of this study [...] Read more.
Acne vulgaris is one of the most common dermatological diseases and has a complex etiology. Despite the wide range of available therapeutic options, modern and effective solutions are still being sought, particularly in the area of topical therapy. The aim of this study was to develop hydrogel formulations that provide stability for the antibiotics they contain—tetracycline or chlortetracycline enriched with azeloglycine—the latter an ingredient supporting acne-prone skin care. The physicochemical parameters, stability, and antimicrobial activity of the obtained formulations were analyzed. HPLC analysis showed that tetracycline exhibited greater stability than chlortetracycline, especially in mildly acidic and neutral environments. The addition of azeloglycine improved the rheological properties of the hydrogels, reduced tetracycline degradation under alkaline conditions, and enhanced the penetration of active ingredients into the model sebum. All tested formulations demonstrated antimicrobial activity against Staphylococcus aureus. In the artificial sebum biofilm model, hydrogels containing azeloglycine more effectively reduced staphylococcal biofilm mass. No formulations showed toxicity towards Galleria mellonella larvae. The results indicate the potential usefulness of the developed hydrogels as modern multifunctional formulations for topical acne treatment. Hydrogel formulations containing tetracycline and azeloglycine may represent a promising future anti-acne preparation exhibiting synergistic antibacterial, anti-inflammatory, and sebum-cleansing effects. Full article
(This article belongs to the Special Issue Drug Treatment for Bacterial Infections)
Show Figures

Figure 1

21 pages, 3182 KiB  
Article
Efficacy Study of Propolis Eutectic Extract in Gel Formulations for the Treatment of Bacterial Skin Diseases in Dogs
by Dovilė Svetikienė, Monika Jokubaite, Gintaras Zamokas, Lina Babickaite, Rita Šiugždiniene and Kristina Ramanauskiene
Animals 2025, 15(10), 1434; https://doi.org/10.3390/ani15101434 - 15 May 2025
Viewed by 668
Abstract
Skin infections are common in veterinary practice and are often treated with topical agents. Superficial pyoderma (superficial bacterial folliculitis) is a common cause of skin disease in dogs and a reason for treatment, most caused by Staphylococcus spp. strains. The frequent use of [...] Read more.
Skin infections are common in veterinary practice and are often treated with topical agents. Superficial pyoderma (superficial bacterial folliculitis) is a common cause of skin disease in dogs and a reason for treatment, most caused by Staphylococcus spp. strains. The frequent use of antibiotics contributes to the emergence of resistant bacterial strains, making antimicrobial resistance (AMR) one of the most important threats to human and animal health. For this reason, active natural compounds are increasingly being explored as alternative therapies. To contribute to the development of effective treatments for bacterial infectious diseases, researchers are looking for new antimicrobial agents. Topical drug action has many advantages as it avoids systemic reactions and ensures that the active substance reaches the site of the lesion directly. This study aimed to develop gelled dosage forms with propolis extract and to evaluate their antibacterial activity and the release of the active substances. Hydrogels, oleogels, and bigels enriched with eutectic propolis extract were produced. Deep eutectic solvents (DESs) were chosen as an effective tool to extract the active compounds of propolis and to improve their penetration into the skin. The pH values of the semi-solid pharmaceutical forms tested ranged from 3.3 to 6.4. Using modified Franz-type diffusion cells, the release of phenolic compounds from gels, oleogels, and bigels was assessed and quantified spectrophotometrically using the Folin–Ciocalteu method. The highest amount of active compounds was released from the hydrogels, while the lowest amount was released from the castor oil-based oleogel. The study used clinical and reference strains of bacteria. The antimicrobial activity of the gelled dosage forms with propolis extract was tested against six pathogenic bacterial species (S. aureus, S. agalactiae, B. cereus, E. faecalis, E. coli, Ps. aeruginosa) and one pathogenic fungus (C. albicans). The study’s results suggest that the propolis extract obtained by DES has significant antibacterial activity and is a promising component in skin formulations for the treatment of bacterial infections. Full article
Show Figures

Figure 1

13 pages, 2089 KiB  
Article
Synergistic Activity of Vancomycin and Gentamicin Against Staphylococcus aureus Biofilms on Polyurethane Surface
by Nicolas Henrique Borges, Paula Hansen Suss, Gabriel Burato Ortis, Leticia Ramos Dantas and Felipe Francisco Tuon
Microorganisms 2025, 13(5), 1119; https://doi.org/10.3390/microorganisms13051119 - 13 May 2025
Cited by 1 | Viewed by 997
Abstract
Staphylococcus aureus are frequently associated with biofilm formation on intravascular devices. Biofilms limit antimicrobial penetration and promote phenotypic resistance, challenging conventional treatment strategies. Vancomycin (VAN) and gentamicin (GEN) have been used clinically, but their combined antibiofilm activity remains underexplored. This study evaluates the [...] Read more.
Staphylococcus aureus are frequently associated with biofilm formation on intravascular devices. Biofilms limit antimicrobial penetration and promote phenotypic resistance, challenging conventional treatment strategies. Vancomycin (VAN) and gentamicin (GEN) have been used clinically, but their combined antibiofilm activity remains underexplored. This study evaluates the efficacy of VAN and GEN, alone and in combination, against biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) on polyurethane. MICs were determined for VAN and GEN. Biofilm biomass and metabolic activity were quantified using crystal violet and MTT assays, respectively. Biofilm viability was assessed through fluorescence microscopy and a modified Calgary Biofilm Device. A continuous-flow peristaltic model was developed to test treatment under simulated catheter conditions. While monotherapy with VAN or GEN had modest effects, their combination significantly reduced biomass and metabolic activity. VAN 20 mg/L + GEN 8 mg/L and VAN 40 mg/L + GEN 8 mg/L achieved over 70% reduction in MRSA biofilm viability and complete eradication in MBEC assays. Dynamic model assays confirmed biofilm reduction with combination therapy. The combination of VAN/GEN exhibits synergistic antibiofilm activity against S. aureus, particularly MRSA. These findings support its potential application in catheter salvage strategies, including antibiotic lock therapy. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

13 pages, 2366 KiB  
Article
A New Bromelain-Based Polyenzymatic Complex Plus N-Acetylcysteine: A Promising Approach for the Treatment of Urinary Tract Infections
by Lucia Recinella, Morena Pinti, Silvia Di Lodovico, Andrea Brenciani, Eleonora Giovanetti, Firas Diban, Mara Di Giulio, Luigi Brunetti and Sheila Leone
Int. J. Mol. Sci. 2025, 26(10), 4639; https://doi.org/10.3390/ijms26104639 - 13 May 2025
Viewed by 700
Abstract
Biofilm plays a crucial role in the pathogenesis and chronicity of urinary tract infections (UTIs). The present work aimed to evaluate the anti-biofilm effects of Formulation (DIF17BRO® plus NAC) in combination with ciprofloxacin (CPX) on Escherichia coli strains. The antimicrobial activity of [...] Read more.
Biofilm plays a crucial role in the pathogenesis and chronicity of urinary tract infections (UTIs). The present work aimed to evaluate the anti-biofilm effects of Formulation (DIF17BRO® plus NAC) in combination with ciprofloxacin (CPX) on Escherichia coli strains. The antimicrobial activity of ciprofloxacin was evaluated by minimum inhibitory concentration (MIC) determination, and the antibiofilm effects of ciprofloxacin alone and combined with Formulation were evaluated on E. coli ATCC700926, E. coli ATCC10536, E. coli PNT, and E. coli PCA mature biofilms in terms of CFU/mL and biomass quantifications. Moreover, the potential protective effects of Formulation plus ciprofloxacin was tested in a Galleria mellonella in vivo infection assay. Our results underlined the increased microbial reduction in the mature biofilm in the presence of the combination Formulation and CPX, even at a lower concentration of CPX. Formulation increased the percentage of biofilm biomass reduction, inducing a disruption of the biofilm structure itself. Our present findings confirm that MIC CPX combined with Formulation also induced an antimicrobial effect in the G. mellonella assay. Formulation facilitated the perturbation of the biofilm polymeric matrix, enhancing the antibiotic penetration and its antimicrobial action on bacteria, underlining Formulation’s role as an enhancer of ciprofloxacin antibacterial action. Full article
Show Figures

Figure 1

12 pages, 697 KiB  
Review
Co-Occurrence of Helicobacter pylori and Candida spp. Infections in the Pathogenesis of Gastrointestinal Diseases
by Joanna Braksator, Anna Kofla-Dłubacz, Katarzyna Antosz-Popiołek, Hubert Szyller, Joanna Koga-Batko, Martyna Wrześniewska, Maciej Dyda and Tomasz Pytrus
Biomedicines 2025, 13(5), 1172; https://doi.org/10.3390/biomedicines13051172 - 11 May 2025
Viewed by 1172
Abstract
Helicobacter pylori and Candida spp. are widespread microorganisms found in the human gastrointestinal tract, often coexisting in the same ecological niche. H. pylori, a Gram-negative bacterium, is a well-known pathogen responsible for gastritis, peptic ulcers, and gastric cancer. In contrast, Candida fungi, [...] Read more.
Helicobacter pylori and Candida spp. are widespread microorganisms found in the human gastrointestinal tract, often coexisting in the same ecological niche. H. pylori, a Gram-negative bacterium, is a well-known pathogen responsible for gastritis, peptic ulcers, and gastric cancer. In contrast, Candida fungi, often detected in food, particularly Candida albicans, are generally considered commensal organisms, but can become opportunistic pathogens under certain conditions. Recent studies suggest a possible link between these microorganisms, highlighting a new survival strategy of H. pylori, that is, its ability to internalize in Candida vacuoles. This phenomenon, confirmed by various microscopic and molecular techniques, may provide H. pylori with protection against adverse environmental conditions, especially clinically important antibiotic therapy. The basic premise of this theory is the ability of H. pylori to penetrate vacuoles in fungal cells, which then become a reservoir of infection, allowing the infection to recur. Understanding the interaction between H. pylori and Candida may offer new insights into the pathogenesis of gastrointestinal diseases and may lead to the development of treatments targeting both organisms simultaneously. The purpose of this article is to review the literature, considering the first observations on this problem in the literature and the current state of knowledge, and to suggest a direction for further research. Full article
Show Figures

Figure 1

15 pages, 1311 KiB  
Article
In Vitro Activity of Imipenem/Relebactam Alone and in Combination Against Cystic Fibrosis Isolates of Mycobacterium abscessus
by Madeline Sanders, Sun Woo Kim, Aditi Shinde, Danielle Fletcher-Williams, Eric Quach and Paul Beringer
Antibiotics 2025, 14(5), 486; https://doi.org/10.3390/antibiotics14050486 - 10 May 2025
Viewed by 714
Abstract
Background: Mycobacterium abscessus (MABS) is an opportunistic pathogen that causes chronic, difficult-to-treat pulmonary infections, particularly in people with cystic fibrosis (PwCF), leading to rapid lung function decline and increased morbidity and mortality. Treatment is particularly challenging due to the pathogen’s resistance mechanisms and [...] Read more.
Background: Mycobacterium abscessus (MABS) is an opportunistic pathogen that causes chronic, difficult-to-treat pulmonary infections, particularly in people with cystic fibrosis (PwCF), leading to rapid lung function decline and increased morbidity and mortality. Treatment is particularly challenging due to the pathogen’s resistance mechanisms and the need for prolonged multidrug therapy, which is characterized by poor clinical outcomes and highlights the urgent need for novel therapeutic strategies. Imipenem/relebactam, a novel β-lactam-β-lactamase inhibitor combination, demonstrates in vitro activity against resistant MABS strains and effective pulmonary penetration. Prior research indicates synergistic activity of imipenem with various antibiotics against M. abscessus. Objectives: This study aims to evaluate the in vitro activity of imipenem/relebactam, alone and in combination with various antibiotics, against MABS clinical isolates from PwCF (n = 28). Methods: Susceptibility and synergy were assessed using broth microdilution and checkerboard assays. Extracellular time-kill assays were performed to evaluate the bactericidal activity of synergistic three-drug combinations containing imipenem/relebactam. Results: Imipenem/relebactam demonstrated potent in vitro activity against clinical MABS isolates, exhibiting substantial synergy with cefuroxime, cefdinir, amoxicillin, and cefoxitin. Rifabutin, azithromycin, moxifloxacin, clofazimine, and minocycline also demonstrated additive effects with imipenem/relebactam. Extracellular time-kill assays identified imipenem/relebactam + cefoxitin + rifabutin and imipenem/relebactam + cefoxitin + moxifloxacin as the most effective combinations. Conclusions: These findings suggest that imipenem/relebactam may offer a significant advancement in the management of MABS infections in PwCF. The promising efficacy of multidrug regimens combining imipenem/relebactam with agents like cefoxitin, azithromycin, moxifloxacin, clofazimine, and rifabutin highlights potential therapeutic strategies. Full article
Show Figures

Figure 1

Back to TopTop