Isolation and Characterization of Enterococcus faecalis Phage ZXL-01 and Preliminary Investigation of Its Therapeutic Effect on Periapical Periodontitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Bacterial Strains and Growth Conditions
2.1.2. Reagents and Instruments
2.2. Methods
2.2.1. Isolation and Purification of ZXL-01
2.2.2. Transmission Electron Microscope (TEM)
2.2.3. Titer Assay and Host Range Determination of ZXL-01
2.2.4. Optimal Multiplicity of Infection (MOI) and One-Step Growth Curve Determination of ZXL-01
2.2.5. Stability of ZXL-01 at Different Temperatures and pH
2.2.6. Sequencing and Bioinformatics Analysis of Genome
2.2.7. Effect of ZXL-01 on Bacterial Biofilm
2.2.8. Effect of ZXL-01 on In Vitro Model of Periapical Periodontitis
2.2.9. Statistical Analysis
3. Results
3.1. Antimicrobial Resistance of E. faecalis
3.2. Isolation and Morphology of ZXL-01
3.3. Host Range Analysis
3.4. Biological Characteristics of ZXL-01
3.5. Analysis of ZXL-01 Genome
3.6. Phage Treatment on Bacterial Biofilm
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siqueira, J.F., Jr.; Rocas, I.N. The microbiota of acute apical abscesses. J. Dent. Res. 2009, 88, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Sakko, M.L.; Tjaderhane, R. Rautemaa-Richardson, Microbiology of Root Canal Infections. Prim. Dent. J. 2016, 5, 84–89. [Google Scholar] [CrossRef]
- Moreira, M.S.N.A.; de FreitasArchilla, J.R.; Lascala, C.A.; Ramalho, K.M.; Gutknecht, N.; Marques, M.M. Post-Treatment Apical Periodontitis Successfully Treated with Antimicrobial Photodynamic Therapy Via Sinus Tract and Laser Phototherapy: Report of Two Cases. Photomed. Laser Surg. 2015, 33, 524–528. [Google Scholar] [CrossRef]
- Tennert, C.; Fuhrmann, M.; Wittmer, A.; Karygianni, L.; Altenburger, M.J.; Pelz, K.; Hellwig, E.; Al-Ahmad, A. New bacterial composition in primary and persistent/secondary endodontic infections with respect to clinical and radiographic findings. J. Endod. 2014, 40, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wang, H.; Lu, H.; Yi, L.; Hong, L. Effects of ClpP protease on biofilm formation of Enterococcus faecalis. J. Appl. Oral Sci. 2021, 29, e20200733. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, F.; Shakir, M. The Influence of Enterococcus faecalis as a Dental Root Canal Pathogen on Endodontic Treatment: A Systematic Review. Cureus 2020, 12, e7257. [Google Scholar] [CrossRef]
- Kutateladze, M.; Adamia, R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol. 2010, 28, 591–595. [Google Scholar] [CrossRef]
- Joshi, S.; Shallal, A.; Zervos, M. Vancomycin-Resistant Enterococci: Epidemiology, Infection Prevention, and Control. Infect. Dis. Clin. N. Am. 2021, 35, 953–968. [Google Scholar] [CrossRef]
- Bi, R.; Qin, T.; Fan, W.; Ma, P.; Gu, B. The emerging problem of linezolid-resistant enterococci. J. Glob. Antimicrob. Resist. 2018, 13, 11–19. [Google Scholar] [CrossRef]
- Agga, G.E.; Silva, P.J.; Martin, R.S. Tetracycline- and Macrolide-Resistant Enterococcus Species Isolated from a Mink Farm in the United States. Microb. Drug Resist. 2022, 28, 734–743. [Google Scholar] [CrossRef]
- Munoz-Price, L.S.; Lolans, K.; Quinn, J.P. Emergence of resistance to daptomycin during treatment of vancomycin-resistant Enterococcus faecalis infection. Clin. Infect. Dis. 2005, 41, 565–566. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Davies, J.K.; Sundqvist, G.; Figdor, D. Mechanisms involved in the resistance of Enterococcus faecalis to calcium hydroxide. Int. Endod. J. 2002, 35, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Siqueirajr, J.; Rocas, I.; Santos, S.; Lima, K.; Magalhaes, F.; Deuzeda, M. Efficacy of instrumentation techniques and irrigation regimens in reducing the bacterial population within root canals. J. Endod. 2002, 28, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.; Ng, Y.-L.; Gulabivala, K.; Moles, D.R.; Spratt, D.A. Susceptibilties of two Enterococcus faecalis phenotypes to root canal medications. J. Endod. 2005, 31, 30–36. [Google Scholar] [CrossRef]
- Clokie, M.R.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in nature. Bacteriophage 2011, 1, 31–45. [Google Scholar] [CrossRef]
- Altamirano, F.L.G.; Barr, J.J. Phage Therapy in the Postantibiotic Era. Clin. Microbiol. Rev. 2019, 32, e00066-18. [Google Scholar]
- Ryan, E.M.; Gorman, S.P.; Donnelly, R.F.; Gilmore, B.F. Recent advances in bacteriophage therapy: How delivery routes, formulation, concentration and timing influence the success of phage therapy. J. Pharm. Pharmacol. 2011, 63, 1253–1264. [Google Scholar] [CrossRef]
- Dai, X.; Ma, R.; Jiang, W.; Deng, Z.; Chen, L.; Liang, Y.; Shao, L.; Zhao, W.; Abranches, J. Enterococcus faecalis-Induced Macrophage Necroptosis Promotes Refractory Apical Periodontitis. Microbiol. Spectr. 2022, 10, e0104522. [Google Scholar] [CrossRef]
- Luo, D.; Li, C.; Wu, Q.; Ding, Y.; Yang, M.; Hu, Y.; Zeng, H.; Zhang, J. Isolation and characterization of new phage vB_CtuP_A24 and application to control Cronobacter spp. in infant milk formula and lettuce. Food Res. Int. 2021, 141, 110109. [Google Scholar] [CrossRef]
- Luong, T.; Salabarria, A.-C.; Edwards, R.A.; Roach, D.R. Standardized bacteriophage purification for personalized phage therapy. Nat. Protoc. 2020, 15, 2867–2890. [Google Scholar] [CrossRef]
- Uchiyama, J.; Rashel, M.; Takemura, I.; Kato, S.-I.; Ujihara, T.; Muraoka, A.; Matsuzaki, S.; Daibata, M. Genetic characterization of Pseudomonas aeruginosa bacteriophage KPP10. Arch. Virol. 2012, 157, 733–738. [Google Scholar] [CrossRef]
- Kropinski, A.M.; Mazzocco, A.; Waddell, T.E.; Lingohr, E.; Johnson, R.P. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol. Biol. 2009, 501, 69–76. [Google Scholar]
- Pajunen, M.; Kiljunen, S.; Skurnik, M. Bacteriophage phiYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. J. Bacteriol. 2000, 182, 5114–5120. [Google Scholar] [CrossRef]
- Zhao, F.; Sun, H.; Zhou, X.; Liu, G.; Li, M.; Wang, C.; Liu, S.; Zhuang, Y.; Tong, Y.; Ren, H. Characterization and genome analysis of a novel bacteriophage vB_SpuP_Spp16 that infects Salmonella enterica serovar pullorum. Virus Genes 2019, 55, 532–540. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef]
- Duan, X.; Jiang, L.; Guo, M.; Li, C.; Dinamarca, M.A. Isolation, characterization and application of a lytic phage vB_VspM_VS1 against Vibrio splendidus biofilm. PLoS ONE 2023, 18, e0289895. [Google Scholar] [CrossRef]
- Li, M.; Wong, W.; Xiong, H.; Chen, K. In vitro antibacterial effects of photodynamic therapy against Enterococcus faecalis in root canals of deciduous teeth. BMC Oral Health 2022, 22, 554. [Google Scholar] [CrossRef]
- Subramanian, K.; Mickel, A.K. Molecular analysis of persistent periradicular lesions and root ends reveals a diverse microbial profile. J. Endod. 2009, 35, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Merabishvili, M.; Pirnay, J.-P.; Verbeken, G.; Chanishvili, N.; Tediashvili, M.; Lashkhi, N.; Glonti, T.; Krylov, V.; Mast, J.; Van Parys, L.; et al. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS ONE 2009, 4, e4944. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hon, K.; Bouras, G.S.; Psaltis, A.J.; Shearwin, K.; Wormald, P.-J.; Vreugde, S. APTC-C-SA01: A Novel Bacteriophage Cocktail Targeting Staphylococcus aureus and MRSA Biofilms. Int. J. Mol. Sci. 2022, 23, 6116. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Huang, Z.; Ju, Y.; Tang, X. Bactericidal efficacy of three parameters of Nd:YAP laser irradiation against Enterococcus faecalis compared with NaOCl irrigation. Lasers Med. Sci. 2019, 34, 359–366. [Google Scholar] [CrossRef] [PubMed]
- El-Telbany, M.; El-Didamony, G.; Askora, A.; Ariny, E.; Abdallah, D.; Connerton, I.F.; El-Shibiny, A. Bacteriophages to Control Multi-Drug Resistant Enterococcus faecalis Infection of Dental Root Canals. Microorganisms 2021, 9, 517. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Ma, C.; Yin, S.; Song, F.; Qin, K.; Ding, Y.; Yang, X.; Song, P.; Ji, X.; Wei, Y. Phage therapy for refractory periapical periodontitis caused by Enterococcus faecalis in vitro and in vivo. Appl. Microbiol. Biotechnol. 2022, 106, 2121–2131. [Google Scholar] [CrossRef]
- Moryl, M.; Palatyńska-Ulatowska, A.; Maszewska, A.; Grzejdziak, I.; Dias de Oliveira, S.; Pradebon, M.C.; Steier, L.; Różalski, A.; Poli de Figueiredo, J.A. Benefits and Challenges of the Use of Two Novel vB_Efa29212_2e and vB_Efa29212_3e Bacteriophages in Biocontrol of the Root Canal Enterococcus faecalis Infections. J. Clin. Med. 2022, 11, 6494. [Google Scholar] [CrossRef]
No. | TGC | AMP | PEN-G | LZD | VAN | LVX | HLG | ERY |
---|---|---|---|---|---|---|---|---|
HZB-01 | S | S | S | S | S | S | S | R |
HZB-02 | S | S | S | S | S | S | R | R |
HZB-03 | S | S | S | S | S | R | R | R |
HZB-04 | S | S | S | S | S | S | S | R |
HZB-05 | S | S | S | S | S | R | S | R |
HZB-06 | S | S | S | S | S | S | S | R |
HZB-07 | S | S | S | S | S | R | S | I |
HZB-08 | S | S | S | S | S | S | S | R |
HZB-09 | S | S | S | S | S | S | S | R |
HZB-10 | S | S | S | S | S | S | R | R |
HZB-11 | S | S | S | S | S | S | S | R |
HZB-12 | S | S | S | R | S | R | S | I |
HZB-13 | S | S | S | S | S | R | R | R |
HZB-14 | S | S | S | S | S | R | R | R |
HZB-15 | S | S | S | I | S | S | R | R |
HZB-16 | S | S | S | S | S | R | R | R |
HZB-17 | S | S | S | S | S | S | R | R |
HZB-18 | S | S | S | S | S | R | S | R |
HZB-19 | S | S | S | S | S | R | S | R |
HZB-20 | S | S | S | I | S | R | R | R |
HZB-21 | S | S | S | S | S | S | R | R |
HZB-22 | S | S | S | S | S | S | S | R |
HZB-23 | S | S | S | S | S | R | S | I |
HZB-24 | S | S | S | S | S | S | R | I |
HZB-25 | S | S | S | S | S | R | R | R |
HZB-26 | S | S | S | S | S | R | R | R |
HZB-27 | S | S | S | S | S | R | S | R |
HZB-28 | S | S | S | S | S | S | R | R |
HZB-29 | S | S | S | R | S | R | S | I |
HZB-30 | S | S | S | S | S | S | R | S |
No. | Plaque Formation | No. | Plaque Formation | No. | Plaque Formation |
---|---|---|---|---|---|
HZB-01 | + | HZB-11 | + | HZB-21 | + |
HZB-02 | + | HZB-12 | + | HZB-22 | − |
HZB-03 | + | HZB-13 | + | HZB-23 | − |
HZB-04 | + | HZB-14 | − | HZB-24 | + |
HZB-05 | − | HZB-15 | − | HZB-25 | + |
HZB-06 | − | HZB-16 | − | HZB-26 | − |
HZB-07 | − | HZB-17 | − | HZB-27 | − |
HZB-08 | − | HZB-18 | + | HZB-28 | − |
HZB-09 | + | HZB-19 | − | HZB-29 | + |
HZB-10 | + | HZB-20 | − | HZB-30 | + |
CDS | Function | Strand | Start (bp) | End (bp) | Accession No. |
---|---|---|---|---|---|
1 | hypothetical protein | − | 25 | 204 | UVA48295.1 |
2 | HNH endonuclease domain protein | − | 205 | 576 | NC_042125.1 |
3 | hypothetical protein | − | 576 | 779 | YP_009624666.1 |
4 | hypothetical protein | − | 862 | 1053 | YP_009624667.1 |
5 | hypothetical protein | + | 1717 | 1929 | YP_009624668.1 |
6 | hypothetical protein | + | 1942 | 2337 | YP_009624669.1 |
7 | hypothetical protein | + | 2315 | 2563 | YP_009624670.1 |
8 | hypothetical protein | + | 2567 | 2944 | YP_009624671.1 |
9 | hypothetical protein | + | 3100 | 3294 | YP_009624672.1 |
10 | hypothetical protein | + | 3475 | 3633 | YP_009624674.1 |
11 | hypothetical protein | + | 3645 | 3866 | YP_009624675.1 |
12 | hypothetical protein | + | 3859 | 4077 | YP_009624676.1 |
13 | hypothetical protein | + | 4074 | 4313 | YP_009624677.1 |
14 | hypothetical protein | + | 4310 | 4507 | YP_009624678.1 |
15 | hypothetical protein | + | 4602 | 6188 | YP_009624679.1 |
16 | hypothetical protein | + | 6277 | 6465 | YP_009624680.1 |
17 | hypothetical protein | + | 6538 | 6999 | YP_009624681.1 |
18 | hypothetical protein | + | 7048 | 7320 | YP_009624682.1 |
19 | hypothetical protein | + | 7322 | 7483 | YP_009624683.1 |
20 | hypothetical protein | + | 7485 | 7694 | YP_009624684.1 |
21 | hypothetical protein | + | 7697 | 7888 | YP_009624685.1 |
22 | hypothetical protein | + | 7914 | 8288 | YP_009624686.1 |
23 | HNH endonuclease domain protein | + | 8281 | 8544 | YP_009624687.1 |
24 | hypothetical protein | + | 8534 | 9832 | QOI67902.1 |
25 | hypothetical protein | + | 9829 | 10,005 | YP_009624689.1 |
26 | hypothetical protein | + | 10,065 | 10,259 | YP_009624690.1 |
27 | HNH endonuclease domain protein | + | 10,273 | 10,806 | AWY03188.1 |
28 | hypothetical protein | + | 10,787 | 11,530 | YP_009624692.1 |
29 | hypothetical protein | + | 11,523 | 11,729 | YP_009624693.1 |
30 | hypothetical protein | + | 11,886 | 12,392 | AXC33931.1 |
31 | hypothetical protein | + | 12,373 | 12,600 | QOI67895.1 |
32 | hypothetical protein | + | 12,597 | 13,076 | YP_009624696.1 |
33 | hypothetical protein | + | 13,087 | 13,866 | QOI67893.1 |
34 | hypothetical protein | + | 13,839 | 14,000 | YP_009624820.1 |
35 | hypothetical protein | + | 13,993 | 14,175 | YP_009624699.1 |
36 | hypothetical protein | + | 14,165 | 14,983 | YP_009624700.1 |
37 | hypothetical protein | + | 14,984 | 15,238 | YP_009624701.1 |
38 | hypothetical protein | + | 15,316 | 16,023 | YP_009624702.1 |
39 | hypothetical protein | + | 16,094 | 16,318 | YP_009624703.1 |
40 | hypothetical protein | + | 16,353 | 17,081 | QOI67887.1 |
41 | hypothetical protein | + | 17,117 | 19,408 | QOI67886.1 |
42 | hypothetical protein | + | 19,472 | 19,741 | YP_009624706.1 |
43 | HNH endonuclease domain protein | + | 19,744 | 20,274 | YP_009624707.1 |
44 | N-acetylmuramoyl-L-alanine amidase | − | 20,316 | 21,311 | BCU01267.1 |
45 | holin | − | 21,314 | 21,547 | YP_009624709.1 |
46 | holin | − | 21,562 | 21,807 | YP_009624710.1 |
47 | putative host interaction protein | − | 21,986 | 24,340 | QOI67880.1 |
48 | hypothetical protein | − | 24,352 | 26,433 | WAX15190.1 |
49 | tail tape measure protein | − | 26,508 | 30,878 | AXC33914.1 |
50 | hypothetical protein | − | 31,135 | 31,446 | QBZ69822.1 |
51 | major tail protein | − | 31,626 | 32,192 | YP_004306651.1 |
52 | head–tail joining protein | − | 32,271 | 32,636 | AXC33940.1 |
53 | hypothetical protein | − | 33,040 | 32,633 | YP_009613291.1 |
54 | putative head–tail adaptor | − | 33,037 | 33,372 | AXC33942.1 |
55 | DNA packaging protein | − | 33,344 | 33,646 | BCU01280.1 |
56 | hypothetical protein | − | 33,684 | 33,884 | AXC33965.1 |
57 | major capsid protein | − | 34,014 | 35,257 | AWY03218.1 |
58 | prohead protease | − | 35,327 | 35,914 | AWY03219.1 |
59 | portal protein | − | 35,877 | 37,028 | YP_009624723.1 |
60 | hypothetical protein | − | 37,033 | 37,221 | YP_004306642.1 |
61 | terminase large subunit | − | 37,267 | 38,988 | YP_009624725.1 |
62 | terminase small subunit | − | 39,409 | 39,882 | YP_009624726.1 |
63 | HNH homing endonucleases | − | 39,883 | 40,395 | QOI67925.1 |
Function | Feature ID |
---|---|
structural protein module | tail tape measure protein (ORF49), major tail protein (ORF51), head–tail joining protein (ORF52), head–tail adaptor (ORF54), major capsid protein (ORF57), prohead protease (ORF58), portal protein (ORF59) |
DNA regulation protein module | HNH homing endonuclease (ORF2, ORF23, ORF27, ORF43, ORF63), DNA packaging protein (ORF55), terminase large subnit (ORF61), terminase small subnit (ORF62) |
cleavage protein module | N-acetylmuramoyl-L-alanine amidase (ORF44), holin (ORF45, ORF46) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Zhao, X.; Wang, C.; Shi, H.; Li, J.; Zhao, C.; Huang, H. Isolation and Characterization of Enterococcus faecalis Phage ZXL-01 and Preliminary Investigation of Its Therapeutic Effect on Periapical Periodontitis. Curr. Issues Mol. Biol. 2025, 47, 469. https://doi.org/10.3390/cimb47060469
Jiang H, Zhao X, Wang C, Shi H, Li J, Zhao C, Huang H. Isolation and Characterization of Enterococcus faecalis Phage ZXL-01 and Preliminary Investigation of Its Therapeutic Effect on Periapical Periodontitis. Current Issues in Molecular Biology. 2025; 47(6):469. https://doi.org/10.3390/cimb47060469
Chicago/Turabian StyleJiang, Hailin, Xueli Zhao, Chuhan Wang, Hongyan Shi, Jinghua Li, Chunyan Zhao, and Honglan Huang. 2025. "Isolation and Characterization of Enterococcus faecalis Phage ZXL-01 and Preliminary Investigation of Its Therapeutic Effect on Periapical Periodontitis" Current Issues in Molecular Biology 47, no. 6: 469. https://doi.org/10.3390/cimb47060469
APA StyleJiang, H., Zhao, X., Wang, C., Shi, H., Li, J., Zhao, C., & Huang, H. (2025). Isolation and Characterization of Enterococcus faecalis Phage ZXL-01 and Preliminary Investigation of Its Therapeutic Effect on Periapical Periodontitis. Current Issues in Molecular Biology, 47(6), 469. https://doi.org/10.3390/cimb47060469