Isolation and Characterization of Enterococcus faecalis Phage ZXL-01 and Preliminary Investigation of Its Therapeutic Effect on Periapical Periodontitis
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Bacterial Strains and Growth Conditions
2.1.2. Reagents and Instruments
2.2. Methods
2.2.1. Isolation and Purification of ZXL-01
2.2.2. Transmission Electron Microscope (TEM)
2.2.3. Titer Assay and Host Range Determination of ZXL-01
2.2.4. Optimal Multiplicity of Infection (MOI) and One-Step Growth Curve Determination of ZXL-01
2.2.5. Stability of ZXL-01 at Different Temperatures and pH
2.2.6. Sequencing and Bioinformatics Analysis of Genome
2.2.7. Effect of ZXL-01 on Bacterial Biofilm
2.2.8. Effect of ZXL-01 on In Vitro Model of Periapical Periodontitis
2.2.9. Statistical Analysis
3. Results
3.1. Antimicrobial Resistance of E. faecalis
3.2. Isolation and Morphology of ZXL-01
3.3. Host Range Analysis
3.4. Biological Characteristics of ZXL-01
3.5. Analysis of ZXL-01 Genome
3.6. Phage Treatment on Bacterial Biofilm
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siqueira, J.F., Jr.; Rocas, I.N. The microbiota of acute apical abscesses. J. Dent. Res. 2009, 88, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Sakko, M.L.; Tjaderhane, R. Rautemaa-Richardson, Microbiology of Root Canal Infections. Prim. Dent. J. 2016, 5, 84–89. [Google Scholar] [CrossRef]
- Moreira, M.S.N.A.; de FreitasArchilla, J.R.; Lascala, C.A.; Ramalho, K.M.; Gutknecht, N.; Marques, M.M. Post-Treatment Apical Periodontitis Successfully Treated with Antimicrobial Photodynamic Therapy Via Sinus Tract and Laser Phototherapy: Report of Two Cases. Photomed. Laser Surg. 2015, 33, 524–528. [Google Scholar] [CrossRef]
- Tennert, C.; Fuhrmann, M.; Wittmer, A.; Karygianni, L.; Altenburger, M.J.; Pelz, K.; Hellwig, E.; Al-Ahmad, A. New bacterial composition in primary and persistent/secondary endodontic infections with respect to clinical and radiographic findings. J. Endod. 2014, 40, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wang, H.; Lu, H.; Yi, L.; Hong, L. Effects of ClpP protease on biofilm formation of Enterococcus faecalis. J. Appl. Oral Sci. 2021, 29, e20200733. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, F.; Shakir, M. The Influence of Enterococcus faecalis as a Dental Root Canal Pathogen on Endodontic Treatment: A Systematic Review. Cureus 2020, 12, e7257. [Google Scholar] [CrossRef]
- Kutateladze, M.; Adamia, R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol. 2010, 28, 591–595. [Google Scholar] [CrossRef]
- Joshi, S.; Shallal, A.; Zervos, M. Vancomycin-Resistant Enterococci: Epidemiology, Infection Prevention, and Control. Infect. Dis. Clin. N. Am. 2021, 35, 953–968. [Google Scholar] [CrossRef]
- Bi, R.; Qin, T.; Fan, W.; Ma, P.; Gu, B. The emerging problem of linezolid-resistant enterococci. J. Glob. Antimicrob. Resist. 2018, 13, 11–19. [Google Scholar] [CrossRef]
- Agga, G.E.; Silva, P.J.; Martin, R.S. Tetracycline- and Macrolide-Resistant Enterococcus Species Isolated from a Mink Farm in the United States. Microb. Drug Resist. 2022, 28, 734–743. [Google Scholar] [CrossRef]
- Munoz-Price, L.S.; Lolans, K.; Quinn, J.P. Emergence of resistance to daptomycin during treatment of vancomycin-resistant Enterococcus faecalis infection. Clin. Infect. Dis. 2005, 41, 565–566. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Davies, J.K.; Sundqvist, G.; Figdor, D. Mechanisms involved in the resistance of Enterococcus faecalis to calcium hydroxide. Int. Endod. J. 2002, 35, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Siqueirajr, J.; Rocas, I.; Santos, S.; Lima, K.; Magalhaes, F.; Deuzeda, M. Efficacy of instrumentation techniques and irrigation regimens in reducing the bacterial population within root canals. J. Endod. 2002, 28, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.; Ng, Y.-L.; Gulabivala, K.; Moles, D.R.; Spratt, D.A. Susceptibilties of two Enterococcus faecalis phenotypes to root canal medications. J. Endod. 2005, 31, 30–36. [Google Scholar] [CrossRef]
- Clokie, M.R.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in nature. Bacteriophage 2011, 1, 31–45. [Google Scholar] [CrossRef]
- Altamirano, F.L.G.; Barr, J.J. Phage Therapy in the Postantibiotic Era. Clin. Microbiol. Rev. 2019, 32, e00066-18. [Google Scholar]
- Ryan, E.M.; Gorman, S.P.; Donnelly, R.F.; Gilmore, B.F. Recent advances in bacteriophage therapy: How delivery routes, formulation, concentration and timing influence the success of phage therapy. J. Pharm. Pharmacol. 2011, 63, 1253–1264. [Google Scholar] [CrossRef]
- Dai, X.; Ma, R.; Jiang, W.; Deng, Z.; Chen, L.; Liang, Y.; Shao, L.; Zhao, W.; Abranches, J. Enterococcus faecalis-Induced Macrophage Necroptosis Promotes Refractory Apical Periodontitis. Microbiol. Spectr. 2022, 10, e0104522. [Google Scholar] [CrossRef]
- Luo, D.; Li, C.; Wu, Q.; Ding, Y.; Yang, M.; Hu, Y.; Zeng, H.; Zhang, J. Isolation and characterization of new phage vB_CtuP_A24 and application to control Cronobacter spp. in infant milk formula and lettuce. Food Res. Int. 2021, 141, 110109. [Google Scholar] [CrossRef]
- Luong, T.; Salabarria, A.-C.; Edwards, R.A.; Roach, D.R. Standardized bacteriophage purification for personalized phage therapy. Nat. Protoc. 2020, 15, 2867–2890. [Google Scholar] [CrossRef]
- Uchiyama, J.; Rashel, M.; Takemura, I.; Kato, S.-I.; Ujihara, T.; Muraoka, A.; Matsuzaki, S.; Daibata, M. Genetic characterization of Pseudomonas aeruginosa bacteriophage KPP10. Arch. Virol. 2012, 157, 733–738. [Google Scholar] [CrossRef]
- Kropinski, A.M.; Mazzocco, A.; Waddell, T.E.; Lingohr, E.; Johnson, R.P. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol. Biol. 2009, 501, 69–76. [Google Scholar]
- Pajunen, M.; Kiljunen, S.; Skurnik, M. Bacteriophage phiYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. J. Bacteriol. 2000, 182, 5114–5120. [Google Scholar] [CrossRef]
- Zhao, F.; Sun, H.; Zhou, X.; Liu, G.; Li, M.; Wang, C.; Liu, S.; Zhuang, Y.; Tong, Y.; Ren, H. Characterization and genome analysis of a novel bacteriophage vB_SpuP_Spp16 that infects Salmonella enterica serovar pullorum. Virus Genes 2019, 55, 532–540. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef]
- Duan, X.; Jiang, L.; Guo, M.; Li, C.; Dinamarca, M.A. Isolation, characterization and application of a lytic phage vB_VspM_VS1 against Vibrio splendidus biofilm. PLoS ONE 2023, 18, e0289895. [Google Scholar] [CrossRef]
- Li, M.; Wong, W.; Xiong, H.; Chen, K. In vitro antibacterial effects of photodynamic therapy against Enterococcus faecalis in root canals of deciduous teeth. BMC Oral Health 2022, 22, 554. [Google Scholar] [CrossRef]
- Subramanian, K.; Mickel, A.K. Molecular analysis of persistent periradicular lesions and root ends reveals a diverse microbial profile. J. Endod. 2009, 35, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Merabishvili, M.; Pirnay, J.-P.; Verbeken, G.; Chanishvili, N.; Tediashvili, M.; Lashkhi, N.; Glonti, T.; Krylov, V.; Mast, J.; Van Parys, L.; et al. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS ONE 2009, 4, e4944. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hon, K.; Bouras, G.S.; Psaltis, A.J.; Shearwin, K.; Wormald, P.-J.; Vreugde, S. APTC-C-SA01: A Novel Bacteriophage Cocktail Targeting Staphylococcus aureus and MRSA Biofilms. Int. J. Mol. Sci. 2022, 23, 6116. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Huang, Z.; Ju, Y.; Tang, X. Bactericidal efficacy of three parameters of Nd:YAP laser irradiation against Enterococcus faecalis compared with NaOCl irrigation. Lasers Med. Sci. 2019, 34, 359–366. [Google Scholar] [CrossRef] [PubMed]
- El-Telbany, M.; El-Didamony, G.; Askora, A.; Ariny, E.; Abdallah, D.; Connerton, I.F.; El-Shibiny, A. Bacteriophages to Control Multi-Drug Resistant Enterococcus faecalis Infection of Dental Root Canals. Microorganisms 2021, 9, 517. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Ma, C.; Yin, S.; Song, F.; Qin, K.; Ding, Y.; Yang, X.; Song, P.; Ji, X.; Wei, Y. Phage therapy for refractory periapical periodontitis caused by Enterococcus faecalis in vitro and in vivo. Appl. Microbiol. Biotechnol. 2022, 106, 2121–2131. [Google Scholar] [CrossRef]
- Moryl, M.; Palatyńska-Ulatowska, A.; Maszewska, A.; Grzejdziak, I.; Dias de Oliveira, S.; Pradebon, M.C.; Steier, L.; Różalski, A.; Poli de Figueiredo, J.A. Benefits and Challenges of the Use of Two Novel vB_Efa29212_2e and vB_Efa29212_3e Bacteriophages in Biocontrol of the Root Canal Enterococcus faecalis Infections. J. Clin. Med. 2022, 11, 6494. [Google Scholar] [CrossRef]
No. | TGC | AMP | PEN-G | LZD | VAN | LVX | HLG | ERY |
---|---|---|---|---|---|---|---|---|
HZB-01 | S | S | S | S | S | S | S | R |
HZB-02 | S | S | S | S | S | S | R | R |
HZB-03 | S | S | S | S | S | R | R | R |
HZB-04 | S | S | S | S | S | S | S | R |
HZB-05 | S | S | S | S | S | R | S | R |
HZB-06 | S | S | S | S | S | S | S | R |
HZB-07 | S | S | S | S | S | R | S | I |
HZB-08 | S | S | S | S | S | S | S | R |
HZB-09 | S | S | S | S | S | S | S | R |
HZB-10 | S | S | S | S | S | S | R | R |
HZB-11 | S | S | S | S | S | S | S | R |
HZB-12 | S | S | S | R | S | R | S | I |
HZB-13 | S | S | S | S | S | R | R | R |
HZB-14 | S | S | S | S | S | R | R | R |
HZB-15 | S | S | S | I | S | S | R | R |
HZB-16 | S | S | S | S | S | R | R | R |
HZB-17 | S | S | S | S | S | S | R | R |
HZB-18 | S | S | S | S | S | R | S | R |
HZB-19 | S | S | S | S | S | R | S | R |
HZB-20 | S | S | S | I | S | R | R | R |
HZB-21 | S | S | S | S | S | S | R | R |
HZB-22 | S | S | S | S | S | S | S | R |
HZB-23 | S | S | S | S | S | R | S | I |
HZB-24 | S | S | S | S | S | S | R | I |
HZB-25 | S | S | S | S | S | R | R | R |
HZB-26 | S | S | S | S | S | R | R | R |
HZB-27 | S | S | S | S | S | R | S | R |
HZB-28 | S | S | S | S | S | S | R | R |
HZB-29 | S | S | S | R | S | R | S | I |
HZB-30 | S | S | S | S | S | S | R | S |
No. | Plaque Formation | No. | Plaque Formation | No. | Plaque Formation |
---|---|---|---|---|---|
HZB-01 | + | HZB-11 | + | HZB-21 | + |
HZB-02 | + | HZB-12 | + | HZB-22 | − |
HZB-03 | + | HZB-13 | + | HZB-23 | − |
HZB-04 | + | HZB-14 | − | HZB-24 | + |
HZB-05 | − | HZB-15 | − | HZB-25 | + |
HZB-06 | − | HZB-16 | − | HZB-26 | − |
HZB-07 | − | HZB-17 | − | HZB-27 | − |
HZB-08 | − | HZB-18 | + | HZB-28 | − |
HZB-09 | + | HZB-19 | − | HZB-29 | + |
HZB-10 | + | HZB-20 | − | HZB-30 | + |
CDS | Function | Strand | Start (bp) | End (bp) | Accession No. |
---|---|---|---|---|---|
1 | hypothetical protein | − | 25 | 204 | UVA48295.1 |
2 | HNH endonuclease domain protein | − | 205 | 576 | NC_042125.1 |
3 | hypothetical protein | − | 576 | 779 | YP_009624666.1 |
4 | hypothetical protein | − | 862 | 1053 | YP_009624667.1 |
5 | hypothetical protein | + | 1717 | 1929 | YP_009624668.1 |
6 | hypothetical protein | + | 1942 | 2337 | YP_009624669.1 |
7 | hypothetical protein | + | 2315 | 2563 | YP_009624670.1 |
8 | hypothetical protein | + | 2567 | 2944 | YP_009624671.1 |
9 | hypothetical protein | + | 3100 | 3294 | YP_009624672.1 |
10 | hypothetical protein | + | 3475 | 3633 | YP_009624674.1 |
11 | hypothetical protein | + | 3645 | 3866 | YP_009624675.1 |
12 | hypothetical protein | + | 3859 | 4077 | YP_009624676.1 |
13 | hypothetical protein | + | 4074 | 4313 | YP_009624677.1 |
14 | hypothetical protein | + | 4310 | 4507 | YP_009624678.1 |
15 | hypothetical protein | + | 4602 | 6188 | YP_009624679.1 |
16 | hypothetical protein | + | 6277 | 6465 | YP_009624680.1 |
17 | hypothetical protein | + | 6538 | 6999 | YP_009624681.1 |
18 | hypothetical protein | + | 7048 | 7320 | YP_009624682.1 |
19 | hypothetical protein | + | 7322 | 7483 | YP_009624683.1 |
20 | hypothetical protein | + | 7485 | 7694 | YP_009624684.1 |
21 | hypothetical protein | + | 7697 | 7888 | YP_009624685.1 |
22 | hypothetical protein | + | 7914 | 8288 | YP_009624686.1 |
23 | HNH endonuclease domain protein | + | 8281 | 8544 | YP_009624687.1 |
24 | hypothetical protein | + | 8534 | 9832 | QOI67902.1 |
25 | hypothetical protein | + | 9829 | 10,005 | YP_009624689.1 |
26 | hypothetical protein | + | 10,065 | 10,259 | YP_009624690.1 |
27 | HNH endonuclease domain protein | + | 10,273 | 10,806 | AWY03188.1 |
28 | hypothetical protein | + | 10,787 | 11,530 | YP_009624692.1 |
29 | hypothetical protein | + | 11,523 | 11,729 | YP_009624693.1 |
30 | hypothetical protein | + | 11,886 | 12,392 | AXC33931.1 |
31 | hypothetical protein | + | 12,373 | 12,600 | QOI67895.1 |
32 | hypothetical protein | + | 12,597 | 13,076 | YP_009624696.1 |
33 | hypothetical protein | + | 13,087 | 13,866 | QOI67893.1 |
34 | hypothetical protein | + | 13,839 | 14,000 | YP_009624820.1 |
35 | hypothetical protein | + | 13,993 | 14,175 | YP_009624699.1 |
36 | hypothetical protein | + | 14,165 | 14,983 | YP_009624700.1 |
37 | hypothetical protein | + | 14,984 | 15,238 | YP_009624701.1 |
38 | hypothetical protein | + | 15,316 | 16,023 | YP_009624702.1 |
39 | hypothetical protein | + | 16,094 | 16,318 | YP_009624703.1 |
40 | hypothetical protein | + | 16,353 | 17,081 | QOI67887.1 |
41 | hypothetical protein | + | 17,117 | 19,408 | QOI67886.1 |
42 | hypothetical protein | + | 19,472 | 19,741 | YP_009624706.1 |
43 | HNH endonuclease domain protein | + | 19,744 | 20,274 | YP_009624707.1 |
44 | N-acetylmuramoyl-L-alanine amidase | − | 20,316 | 21,311 | BCU01267.1 |
45 | holin | − | 21,314 | 21,547 | YP_009624709.1 |
46 | holin | − | 21,562 | 21,807 | YP_009624710.1 |
47 | putative host interaction protein | − | 21,986 | 24,340 | QOI67880.1 |
48 | hypothetical protein | − | 24,352 | 26,433 | WAX15190.1 |
49 | tail tape measure protein | − | 26,508 | 30,878 | AXC33914.1 |
50 | hypothetical protein | − | 31,135 | 31,446 | QBZ69822.1 |
51 | major tail protein | − | 31,626 | 32,192 | YP_004306651.1 |
52 | head–tail joining protein | − | 32,271 | 32,636 | AXC33940.1 |
53 | hypothetical protein | − | 33,040 | 32,633 | YP_009613291.1 |
54 | putative head–tail adaptor | − | 33,037 | 33,372 | AXC33942.1 |
55 | DNA packaging protein | − | 33,344 | 33,646 | BCU01280.1 |
56 | hypothetical protein | − | 33,684 | 33,884 | AXC33965.1 |
57 | major capsid protein | − | 34,014 | 35,257 | AWY03218.1 |
58 | prohead protease | − | 35,327 | 35,914 | AWY03219.1 |
59 | portal protein | − | 35,877 | 37,028 | YP_009624723.1 |
60 | hypothetical protein | − | 37,033 | 37,221 | YP_004306642.1 |
61 | terminase large subunit | − | 37,267 | 38,988 | YP_009624725.1 |
62 | terminase small subunit | − | 39,409 | 39,882 | YP_009624726.1 |
63 | HNH homing endonucleases | − | 39,883 | 40,395 | QOI67925.1 |
Function | Feature ID |
---|---|
structural protein module | tail tape measure protein (ORF49), major tail protein (ORF51), head–tail joining protein (ORF52), head–tail adaptor (ORF54), major capsid protein (ORF57), prohead protease (ORF58), portal protein (ORF59) |
DNA regulation protein module | HNH homing endonuclease (ORF2, ORF23, ORF27, ORF43, ORF63), DNA packaging protein (ORF55), terminase large subnit (ORF61), terminase small subnit (ORF62) |
cleavage protein module | N-acetylmuramoyl-L-alanine amidase (ORF44), holin (ORF45, ORF46) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Zhao, X.; Wang, C.; Shi, H.; Li, J.; Zhao, C.; Huang, H. Isolation and Characterization of Enterococcus faecalis Phage ZXL-01 and Preliminary Investigation of Its Therapeutic Effect on Periapical Periodontitis. Curr. Issues Mol. Biol. 2025, 47, 469. https://doi.org/10.3390/cimb47060469
Jiang H, Zhao X, Wang C, Shi H, Li J, Zhao C, Huang H. Isolation and Characterization of Enterococcus faecalis Phage ZXL-01 and Preliminary Investigation of Its Therapeutic Effect on Periapical Periodontitis. Current Issues in Molecular Biology. 2025; 47(6):469. https://doi.org/10.3390/cimb47060469
Chicago/Turabian StyleJiang, Hailin, Xueli Zhao, Chuhan Wang, Hongyan Shi, Jinghua Li, Chunyan Zhao, and Honglan Huang. 2025. "Isolation and Characterization of Enterococcus faecalis Phage ZXL-01 and Preliminary Investigation of Its Therapeutic Effect on Periapical Periodontitis" Current Issues in Molecular Biology 47, no. 6: 469. https://doi.org/10.3390/cimb47060469
APA StyleJiang, H., Zhao, X., Wang, C., Shi, H., Li, J., Zhao, C., & Huang, H. (2025). Isolation and Characterization of Enterococcus faecalis Phage ZXL-01 and Preliminary Investigation of Its Therapeutic Effect on Periapical Periodontitis. Current Issues in Molecular Biology, 47(6), 469. https://doi.org/10.3390/cimb47060469