Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (554)

Search Parameters:
Keywords = antibiotic cross-resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4784 KiB  
Article
Resilient by Design: Environmental Stress Promotes Biofilm Formation and Multi-Resistance in Poultry-Associated Salmonella
by Gabriel I. Krüger, Francisca Urbina, Coral Pardo-Esté, Valentina Salinas, Javiera Álvarez, Nicolás Avilés, Ana Oviedo, Catalina Kusch, Valentina Pavez, Rolando Vernal, Mario Tello, Luis Alvarez-Thon, Juan Castro-Severyn, Francisco Remonsellez, Alejandro Hidalgo and Claudia P. Saavedra
Microorganisms 2025, 13(8), 1812; https://doi.org/10.3390/microorganisms13081812 - 3 Aug 2025
Viewed by 221
Abstract
Salmonella is one of the main causes of food-borne illness worldwide. In most cases, Salmonella contamination can be traced back to food processing plants and/or to cross-contamination during food preparation. To avoid food-borne diseases, food processing plants use sanitizers and biocidal to reduce [...] Read more.
Salmonella is one of the main causes of food-borne illness worldwide. In most cases, Salmonella contamination can be traced back to food processing plants and/or to cross-contamination during food preparation. To avoid food-borne diseases, food processing plants use sanitizers and biocidal to reduce bacterial contaminants below acceptable levels. Despite these preventive actions, Salmonella can survive and consequently affect human health. This study investigates the adaptive capacity of the main Salmonella enterica serotypes isolated from the poultry production line, focusing on their replication, antimicrobial resistance, and biofilm formation under stressors such as acidic conditions, oxidative environment, and high osmolarity. Using growth curve analysis, crystal violet staining, and microscopy, we assessed replication, biofilm formation, and antimicrobial resistance under acidic, oxidative, and osmotic stress conditions. Disinfectant tolerance was evaluated by determining the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of sodium hypochlorite. The antibiotic resistance was assessed using the Kirby–Bauer method. The results indicate that, in general, acidic and osmotic stress reduce the growth of Salmonella. However, no significant differences were observed specifically for serotypes Infantis, Heidelberg, and Corvallis. The S. Infantis isolates were the strongest biofilm producers and showed the highest prevalence of multidrug resistance (71%). Interestingly, S. Infantis forming biofilms required up to 8-fold higher concentrations of sodium hypochlorite for eradication. Furthermore, osmotic and oxidative stress significantly induced biofilm production in industrial S. Infantis isolates compared to a reference strain. Understanding how Salmonella responds to industrial stressors is vital for designing strategies to control the proliferation of these highly adapted, multi-resistant pathogens. Full article
(This article belongs to the Section Biofilm)
Show Figures

Figure 1

16 pages, 5245 KiB  
Article
Histopathological Picture of Lung Organs Towards Combination of Java Cardamom Seed Extract and Turmeric Rhizome as Anti-Colibacillosis in Broiler Chickens
by Tyagita Hartady, Mohammad Ghozali and Charles Parsonodihardjo
Vet. Sci. 2025, 12(8), 726; https://doi.org/10.3390/vetsci12080726 - 31 Jul 2025
Viewed by 140
Abstract
Colibacillosis is a poultry disease caused by the pathogenic bacterium Escherichia coli (E. coli). This study is an experimental cross-sectional study using herbal-based test materials from Javanese cardamom and turmeric rhizome as treatments to replace the role of antibiotics that experience [...] Read more.
Colibacillosis is a poultry disease caused by the pathogenic bacterium Escherichia coli (E. coli). This study is an experimental cross-sectional study using herbal-based test materials from Javanese cardamom and turmeric rhizome as treatments to replace the role of antibiotics that experience drug resistance in several types of bacteria. A total of 32 samples were utilized in this study, separated into two control groups and six treatment groups. The analysis was carried out by an histopathological examination of the lung organs using H&E and ImageJ staining to calculate the area of the slide image. The data results were analyzed statistically with one-way ANOVA method and qualitatively. The outcome of the statistical test showed that the differences were not statistically significant p value = 0.922 [p > 0.05] in all groups, and findings from qualitative histopathology showed morphological differences in the alveoli, parabronchi, and vasculature in the lung organs. Full article
(This article belongs to the Special Issue Advancements in Livestock Histology and Morphology)
Show Figures

Figure 1

14 pages, 2636 KiB  
Article
Self-Perception and Assessment of Antibiotic Therapy Knowledge in Dental Students in Spain: A Cross-Sectional Observational Study
by Ángel-Orión Salgado-Peralvo, Naresh Kewalramani, Irene-Alexandra Boullosa-Bernárdez, Carlos Oteo-Morilla, Ana-Leticia Lenguas-Silva, María-Rosario Garcillán-Izquierdo and María-Victoria Mateos-Moreno
Antibiotics 2025, 14(8), 755; https://doi.org/10.3390/antibiotics14080755 - 27 Jul 2025
Viewed by 306
Abstract
Background: The development of antimicrobial resistance is a major public health issue, in which dentists play a significant role by prescribing 7–11% of worldwide antibiotics. The aim of this study is to evaluate the self-perception and knowledge of antibiotic therapy in fifth-year [...] Read more.
Background: The development of antimicrobial resistance is a major public health issue, in which dentists play a significant role by prescribing 7–11% of worldwide antibiotics. The aim of this study is to evaluate the self-perception and knowledge of antibiotic therapy in fifth-year undergraduate dental students. Methods: This is a cross-sectional observational study based on the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines. An electronic survey consisting of 18 questions was conducted with fifth-year students enrolled in the 2022/23 and 2023/24 academic years. The data were analyzed using descriptive and inferential statistical methods. Results: A total of 139 students (76.4%) completed the questionnaire. A total of 71.9% of students considered that they had received adequate education in antibiotic therapy, particularly in Oral Surgery (89.2%) and Periodontics (86.3%). The theoretical classes (3.50 ± 0.98) and practical sessions (3.18 ± 1.29) provided the knowledge that had the greatest influence on their education. They showed high self-confidence in diagnosing an infection (3.49 ± 0.73) and in choosing the appropriate antibiotic and dosage (3.26 ± 0.73). Over 76% of students answered correctly regarding the need for antibiotic prescriptions in various practical scenarios, except in the replantation of avulsed permanent teeth (54%). Conclusions: Dental students’ knowledge of antibiotics should be reinforced, as a high percentage answered correctly regarding the indications for antibiotics in pulpal and periapical diseases, but students performed less well regarding the choice of antibiotic and dosage in patients without sensitivity to β-lactams. Full article
Show Figures

Figure 1

19 pages, 9109 KiB  
Article
Metformin Enhances Doxycycline Efficacy Against Pasteurella multocida: Evidence from In Vitro, In Vivo, and Morphological Studies
by Nansong Jiang, Weiwei Wang, Qizhang Liang, Qiuling Fu, Rongchang Liu, Guanghua Fu, Chunhe Wan, Longfei Cheng, Yu Huang and Hongmei Chen
Microorganisms 2025, 13(8), 1724; https://doi.org/10.3390/microorganisms13081724 - 23 Jul 2025
Viewed by 265
Abstract
Pasteurella multocida (Pm) is a zoonotic pathogen that poses a significant threat to animal health and causes substantial economic losses, further aggravated by rising tetracycline resistance. To restore the efficacy of tetracyclines to Pm, we evaluated the synergistic antibacterial activity [...] Read more.
Pasteurella multocida (Pm) is a zoonotic pathogen that poses a significant threat to animal health and causes substantial economic losses, further aggravated by rising tetracycline resistance. To restore the efficacy of tetracyclines to Pm, we evaluated the synergistic antibacterial activity of doxycycline combined with metformin, an FDA-approved antidiabetic agent. Among several non-antibiotic adjuvant candidates, metformin exhibited the most potent in vitro synergy with doxycycline, especially against capsular serogroup A strain (PmA). The combination demonstrated minimal cytotoxicity and hemolysis in both mammalian and avian cells and effectively inhibited resistance development under doxycycline pressure. At 50 mg/kg each, the combination of metformin and doxycycline significantly reduced mortality in mice and ducks acutely infected with PmA (from 100% to 60%), decreased pulmonary bacterial burdens, and alleviated tissue inflammation and damage. Mechanistic validation confirmed that metformin enhances membrane permeability in Pm without compromising membrane integrity, dissipates membrane potential, increases intracellular doxycycline accumulation, and downregulates the transcription of the tetracycline efflux gene tet(B). Morphological analyses further revealed pronounced membrane deformation and possible leakage of intracellular contents. These findings highlight metformin as a potent, low-toxicity tetracycline adjuvant with cross-species efficacy, offering a promising therapeutic approach for managing tetracycline-resistant Pm infections. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

13 pages, 482 KiB  
Article
In Vitro Antimicrobial Activity of the Novel Antimicrobial Peptide OMN51 Against Multi-Drug-Resistant Pseudomonas aeruginosa Isolated from People with Cystic Fibrosis
by Moshe Heching, Moshe Cohen-Kutner, Haim Ben-Zvi, Liora Slomianksy, Elital Chass Maurice, Noa Nur Maymon, Shira Mandel, Michal Oholy, Rony Moses, Michal Lavon, Katherine Kaufman, Orel Mayost Lev-Ari, Tamar Shachar, Joel Weinberg, Mordechai R. Kramer and Niv Bachnoff
J. Clin. Med. 2025, 14(15), 5208; https://doi.org/10.3390/jcm14155208 - 23 Jul 2025
Viewed by 338
Abstract
Background: People with cystic fibrosis (pwCF) frequently suffer from chronic lung infections, with Pseudomonas aeruginosa being the predominant pathogen contributing to disease progression and morbidity. The increasing prevalence of multi-drug-resistant (MDR) P. aeruginosa has diminished treatment options. Antimicrobial peptides (AMPs) have emerged as [...] Read more.
Background: People with cystic fibrosis (pwCF) frequently suffer from chronic lung infections, with Pseudomonas aeruginosa being the predominant pathogen contributing to disease progression and morbidity. The increasing prevalence of multi-drug-resistant (MDR) P. aeruginosa has diminished treatment options. Antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics due to their unique membrane-targeting mechanisms. OMN51, a novel bioengineered AMP derived from capitellacin, was evaluated for antimicrobial activity against P. aeruginosa in sputum samples from pwCF. This study aimed to compare the bactericidal effects of OMN51 with those of a range of conventional antibiotics known to have activity against P. aeruginosa clinical isolates derived from pwCF. Methods:P. aeruginosa clinical isolates were obtained from fifty-six unique sputum cultures of pwCF at a tertiary-university-affiliated hospital. Minimum inhibitory concentrations (MICs) of OMN51 and comparator antibiotics were determined using broth microdilution. Antimicrobial susceptibility was evaluated using the Kirby–Bauer disc diffusion method. Results: OMN51 demonstrated in vitro bactericidal activity across all P. aeruginosa isolates, including MDR strains. MIC values for OMN51 ranged from 4 to 16 µg/mL, with no observed resistance or cross-resistance. Comparative analysis revealed the superior efficacy of OMN51 compared with conventional antibiotics. Conclusions: OMN51 exhibits robust in vitro activity against MDR P. aeruginosa, supporting its candidacy as a therapeutic agent for MDR P. aeruginosa- associated infections. Further studies are warranted to assess pharmacokinetics and in vivo safety and efficacy. OMN51 represents a first-in-class, membrane-targeting therapeutic showing promise against MDR P. aeruginosa. Full article
(This article belongs to the Special Issue Cystic Fibrosis: Novel Strategies of Diagnosis and Treatments)
Show Figures

Figure 1

24 pages, 3099 KiB  
Article
Comprehensive Assessment of Health Risks Associated with Gram-Negative Bacterial Contamination on Healthcare Personnel Gowns in Clinical Settings
by Daniela Moreno-Torres, Carlos Alberto Jiménez-Zamarripa, Sandy Mariel Munguía-Mogo, Claudia Camelia Calzada-Mendoza, Clemente Cruz-Cruz, Emilio Mariano Durán-Manuel, Antonio Gutiérrez-Ramírez, Graciela Castro-Escarpulli, Madeleine Edith Vélez-Cruz, Oscar Sosa-Hernández, Araceli Rojas-Bernabé, Beatriz Leal-Escobar, Omar Agni García-Hernández, Enzo Vásquez-Jiménez, Gustavo Esteban Lugo-Zamudio, María Concepción Tamayo-Ordóñez, Yahaira de Jesús Tamayo-Ordóñez, Dulce Milagros Razo Blanco-Hernández, Benito Hernández-Castellanos, Julio César Castañeda-Ortega, Marianela Paredes-Mendoza, Miguel Ángel Loyola-Cruz and Juan Manuel Bello-Lópezadd Show full author list remove Hide full author list
Microorganisms 2025, 13(7), 1687; https://doi.org/10.3390/microorganisms13071687 - 18 Jul 2025
Viewed by 838
Abstract
Microbiological contamination of healthcare workers’ gowns represents a critical risk for the transmission of healthcare-associated infections (HAIs). Despite their use as protective equipment, gowns can act as reservoirs of antibiotic-resistant bacteria, favouring the spread of pathogens between healthcare workers and patients. The presence [...] Read more.
Microbiological contamination of healthcare workers’ gowns represents a critical risk for the transmission of healthcare-associated infections (HAIs). Despite their use as protective equipment, gowns can act as reservoirs of antibiotic-resistant bacteria, favouring the spread of pathogens between healthcare workers and patients. The presence of these resistant bacteria on healthcare workers’ gowns highlights the urgent need to address this risk as part of infection control strategies. The aim of this work was to assess the microbiological risks associated with the contamination of healthcare staff gowns with Gram-negative bacteria, including the ESKAPE group, and their relationship with antimicrobial resistance. An observational, cross-sectional, prospective study was conducted in 321 hospital workers. The imprinting technique was used to quantify the bacterial load on the gowns, followed by bacterial identification by MALDI-TOF mass spectrometry. In addition, antimicrobial resistance profiles were analysed, and tests for carbapenemases and BLEE production were performed. The ERIC-PCR technique was also used for molecular analysis of Pantoea eucrina clones. Several Gram-negative bacteria were identified, including bacteria of the ESKAPE group. The rate of microbiological contamination of the gowns was 61.05% with no association with the sex of the healthcare personnel. It was observed that critical areas of the hospital, such as intensive care units and operating theatres, showed contamination by medically important bacteria. In addition, some strains of P. eucrina showed resistance to carbapenemics and cephalosporins. ERIC-PCR analysis of P. eucrina isolates showed genetic heterogeneity, indicating absence of clonal dissemination. Healthcare personnel gowns are a significant reservoir of pathogenic bacteria, especially in critical areas of Hospital Juárez de México. It is essential to implement infection control strategies that include improving the cleaning and laundering of gowns and ideally eliminating them from clothing to reduce the risk of transmission of nosocomial infections. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

15 pages, 633 KiB  
Article
Performance of Early Sepsis Screening Tools for Timely Diagnosis and Antibiotic Stewardship in a Resource-Limited Thai Community Hospital
by Wisanu Wanlumkhao, Duangduan Rattanamongkolgul and Chatchai Ekpanyaskul
Antibiotics 2025, 14(7), 708; https://doi.org/10.3390/antibiotics14070708 - 15 Jul 2025
Viewed by 619
Abstract
Background: Early identification of sepsis is critical for improving outcomes, particularly in low-resource emergency settings. In Thai community hospitals, where physicians may not always be available, triage is often nurse-led. Selecting accurate and practical sepsis screening tools is essential not only for timely [...] Read more.
Background: Early identification of sepsis is critical for improving outcomes, particularly in low-resource emergency settings. In Thai community hospitals, where physicians may not always be available, triage is often nurse-led. Selecting accurate and practical sepsis screening tools is essential not only for timely clinical decision-making but also for timely diagnosis and promoting appropriate antibiotic use. Methods: This cross-sectional study analyzed 475 adult patients with suspected sepsis who presented to the emergency department of a Thai community hospital, using retrospective data from January 2021 to December 2022. Six screening tools were evaluated: Systemic Inflammatory Response Syndrome (SIRS), Quick Sequential Organ Failure Assessment (qSOFA), Modified Early Warning Score (MEWS), National Early Warning Score (NEWS), National Early Warning Score version 2 (NEWS2), and Search Out Severity (SOS). Diagnostic accuracy was assessed using International Classification of Diseases, Tenth Revision (ICD-10) codes as the reference standard. Performance metrics included sensitivity, specificity, predictive values, likelihood ratios, and the area under the receiver operating characteristic (AUROC) curve, all reported with 95% confidence intervals. Results: SIRS had the highest sensitivity (84%), while qSOFA demonstrated the highest specificity (91%). NEWS2, NEWS, and MEWS showed moderate and balanced diagnostic accuracy. SOS also demonstrated moderate accuracy. Conclusions: A two-step screening approach—using SIRS for initial triage followed by NEWS2 for confirmation—is recommended. This strategy enhances nurse-led screening and optimizes limited resources in emergency care. Early sepsis detection through accurate screening tools constitutes a feasible public health intervention to support appropriate antibiotic use and mitigate antimicrobial resistance, especially in resource-limited community hospital settings. Full article
Show Figures

Figure 1

13 pages, 1576 KiB  
Article
Trends of Antibiotic Resistance Patterns and Bacteriological Profiles of Pathogens Associated with Genitourinary Infections in Secondary Healthcare Facilities in the Volta Region of Ghana
by Hayford Odoi, Naodiah Opoku, Brigham Adusei, Kenneth Danquah, Gilbert Vordzogbe, Divine Mayer, Araba Hutton-Nyameaye, Jonathan Jato, Samuel O. Somuah, Emmanuel Orman, Inemesit O. Ben, Thelma A. Aku, Rita Sewornu, Preet Panesar, Yogini H. Jani and Cornelius C. Dodoo
Pathogens 2025, 14(7), 696; https://doi.org/10.3390/pathogens14070696 - 15 Jul 2025
Viewed by 444
Abstract
Urogenital infections contribute greatly to both hospital- and community-acquired infections. In Ghana, the prevalence of resistance to commonly used antibiotics is relatively high. This study sought to evaluate the antibiotic sensitivity of bacterial urogenital pathogens from patient samples in a regional and district [...] Read more.
Urogenital infections contribute greatly to both hospital- and community-acquired infections. In Ghana, the prevalence of resistance to commonly used antibiotics is relatively high. This study sought to evaluate the antibiotic sensitivity of bacterial urogenital pathogens from patient samples in a regional and district hospital in the Volta Region of Ghana. A retrospective cross-sectional study was conducted using data obtained between January and December 2023 from Volta Regional Hospital and Margret Marquart Catholic Hospital. Bacteria were isolated from urine, urethral swabs, and vaginal swabs from 204 patients. Data on culture and sensitivity assays performed using the Kirby–Bauer disc diffusion method were extracted and analyzed using WHONET. The most prevalent organisms isolated from the samples from both facilities were Escherichia coli (24.9%), Staphylococcus aureus (21.5%), and Klebsiella oxytoca (8.8%). The isolates were mostly resistant to amoxicillin/clavulanic acid (n = 75, 95% CI [91.8–99.9]), meropenem (n = 61, 95% CI [87.6–99.4]), cefuroxime (n = 54, 95% CI [78.9–96.5]), ampicillin (n = 124, 95% CI [61.2–77.9]), and piperacillin (n = 43, 95% CI [82.9–99.2]). Multidrug-resistant (MDR, 70 (34.1%)), extensively drug-resistant (XDR, 63 (30.7%)), and pandrug-resistant (PDR, 9 (4.3%)) strains of S. aureus, E. coli, and Pseudomonas aeruginosa were identified from the patient samples. The study highlights the presence of high-priority resistant urogenital pathogens of public health significance to varied antibiotic groups. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

14 pages, 355 KiB  
Article
Distribution and Determinants of Antibiotic Self-Medication: A Cross-Sectional Study in Chinese Residents
by Guo Huang, Pu Ge, Mengyun Sui, He Zhu, Sheng Han and Luwen Shi
Antibiotics 2025, 14(7), 701; https://doi.org/10.3390/antibiotics14070701 - 12 Jul 2025
Viewed by 475
Abstract
Antimicrobial resistance (AMR) represents a critical global health threat, with inappropriate antibiotic self-medication (ASM) being a key contributor. China—as the world’s largest antibiotic consumer—faces significant challenges despite regulatory efforts, compounded by limited contemporary data during the COVID-19 pandemic. A nationwide cross-sectional study was [...] Read more.
Antimicrobial resistance (AMR) represents a critical global health threat, with inappropriate antibiotic self-medication (ASM) being a key contributor. China—as the world’s largest antibiotic consumer—faces significant challenges despite regulatory efforts, compounded by limited contemporary data during the COVID-19 pandemic. A nationwide cross-sectional study was conducted using the 2021 China Family Health Index Survey (n = 11,031 participants across 120 cities). Trained investigators administered face-to-face questionnaires assessing ASM practices, decision-making factors, and sociodemographic characteristics. Multivariate logistic regression identified determinants of ASM. Overall, ASM prevalence was 33.7% (n = 3717), with no urban-rural difference (p > 0.05). Physician advice (78.2%), drug safety (67.1%), and efficacy (64.2%) were primary selection criteria; rural residents prioritized drug price and salesperson recommendations more than their urban counterparts (p < 0.01). Key predictors included higher ASM odds among females (OR = 1.30, 95%CI:1.18–1.43), middle-aged adults (46–59 years; OR = 1.20, 95%CI:1.02–1.42), those with health insurance (resident: OR = 1.33; commercial: OR = 1.62), and individuals with drinking histories (OR = 1.20, 95%CI:1.10–1.31). Lower odds were associated with primary education (OR = 0.69, 95%CI:0.58–0.81), unemployment (OR = 0.88, 95%CI:0.79–0.98), and absence of chronic diseases (OR = 0.56, 95%CI:0.47–0.67). One-third of Chinese residents engaged in ASM during the pandemic, driven by intersecting demographic and behavioral factors. Despite converging urban-rural prevalence rates, distinct decision-making drivers necessitate context-specific interventions, including strengthened pharmacy regulation in rural areas, tailored education programs for high-risk groups, and insurance system reforms to disincentivize self-medication. Full article
(This article belongs to the Special Issue Antibiotic Use in the Communities—2nd Edition)
Show Figures

Figure 1

26 pages, 888 KiB  
Review
Current Trends in Approaches to Prevent and Control Antimicrobial Resistance in Aquatic Veterinary Medicine
by Dongqing Zhao, Konrad Wojnarowski, Paulina Cholewińska and Dušan Palić
Pathogens 2025, 14(7), 681; https://doi.org/10.3390/pathogens14070681 - 10 Jul 2025
Viewed by 511
Abstract
The growth of aquaculture production in recent years has revealed multiple challenges, including the rise of antimicrobial resistance (AMR) in aquatic animal production, which is currently attracting significant attention from multiple one-health stakeholders. While antibiotics have played a major role in the treatment [...] Read more.
The growth of aquaculture production in recent years has revealed multiple challenges, including the rise of antimicrobial resistance (AMR) in aquatic animal production, which is currently attracting significant attention from multiple one-health stakeholders. While antibiotics have played a major role in the treatment of bacterial infections for almost a century, a major consequence of their use is the increase in AMR, including the emergence of AMR in aquaculture. The AMR phenomenon creates a situation where antibiotic use in one system (e.g., aquaculture) may impact another system (e.g., terrestrial–human). Non-prudent use of antibiotics in aquaculture and animal farming increases the risk of AMR emergence, since bacteria harboring antibiotic resistance genes can cross between compartments such as wastewater or other effluents to aquatic environments, including intensive aquaculture. Transferable antimicrobial resistance gene (AMG) elements (plasmids, transposons, integrons, etc.) have already been detected in varying degrees from pathogenic bacteria that are often causing infections in farmed fish (Aeromonas, Vibrio, Streptococcus, Pseudomonas, Edwardsiella, etc.). This review of current veterinary approaches for the prevention and control of AMR emergence in aquaculture focuses on the feasibility of alternatives to antimicrobials and supplemental treatment applications during on-farm bacterial disease control and prevention. The use of vaccines, bacteriophages, biosurfactants, probiotics, bacteriocins, and antimicrobial peptides is discussed. Full article
Show Figures

Figure 1

15 pages, 324 KiB  
Article
Determinants of Public Knowledge, Attitude, and Practice on Antibiotic Use in Saudi Arabia: A Regional Cross-Sectional Study
by Wadia S. Alruqayb, Fahad H. Baali, Manar Althbiany, Alanoud Alharthi, Sara Alnefaie, Raghad Alhaji, Reem Alshehri, Wael Y. Khawagi, Monther A. Alshahrani, Hassan Arida and Abdullah A. Alshehri
Healthcare 2025, 13(14), 1666; https://doi.org/10.3390/healthcare13141666 - 10 Jul 2025
Viewed by 373
Abstract
Background: Antibiotic resistance (AMR) is a critical global and national health challenge, largely driven by the misuse and overuse of antibiotics. Understanding the public′s knowledge and practices regarding antibiotic use is essential for informing effective interventions. This study aimed to assess the levels [...] Read more.
Background: Antibiotic resistance (AMR) is a critical global and national health challenge, largely driven by the misuse and overuse of antibiotics. Understanding the public′s knowledge and practices regarding antibiotic use is essential for informing effective interventions. This study aimed to assess the levels of knowledge, attitude, and practice (KAP) related to antibiotic use among adults in Saudi Arabia’s Western Region and to identify the demographic and behavioral determinants of these outcomes. Methods: A regional cross-sectional survey was conducted from March to June 2025 using a 40-item self-administered online questionnaire. Adults aged ≥ 18 years residing in the Western Region of Saudi Arabia were recruited via social media using snowball sampling. Descriptive statistics and Chi-square tests were used to examine associations, while multivariate logistic regression was employed to identify determinants of high knowledge and good practices, presented as adjusted odds ratios (aOR) with 95% confidence intervals (CI). Results: A total of 891 participants were included; most were female (63.6%) and aged 18–30 years (56.2%). Moderate knowledge of antibiotic use was observed in 54.0% of participants, while 30.8% had high knowledge. In terms of attitude and practice, 55.6% demonstrated good performance and 42.8% average performance. High knowledge was significantly associated with the female gender (aOR = 1.90; 95% CI: 1.34–2.70), age of 41–50 years (aOR = 2.22; 95% CI: 1.42–3.48), and a postgraduate education (aOR = 15.37; 95% CI: 1.84–128.13). Good practices were associated with the female gender (aOR = 2.32; 95% CI: 1.66–3.24) and being married (aOR = 1.99; 95% CI: 1.43–2.77). A moderate positive correlation was found between knowledge and practice scores (r = 0.406, p < 0.001). Conclusions: Significant variability in public KAP regarding antibiotic use was identified. Female gender, older age, and higher education were key determinants of better KAP. These findings emphasize the need for targeted educational strategies focusing on high-risk groups to support rational antibiotic use and mitigate antimicrobial resistance. Full article
Show Figures

Figure 1

17 pages, 3221 KiB  
Article
An mRNA Vaccine Targeting the C-Terminal Region of P1 Protein Induces an Immune Response and Protects Against Mycoplasma pneumoniae
by Fenglian Zhang, Chengwei Li, Yanan Wu, Hongyun Chuan, Shaohui Song, Yun Xie, Qi Zhu, Qianqian Chen, Fei Tong, Runfang Zhang, Guangbo Yuan, Xiaoyan Wu, Jian Zhou and Guoyang Liao
Int. J. Mol. Sci. 2025, 26(13), 6536; https://doi.org/10.3390/ijms26136536 - 7 Jul 2025
Viewed by 537
Abstract
Mycoplasma pneumoniae, a cell wall-deficient pathogen, primarily affects children and adolescents, causing Mycoplasma pneumoniae pneumonia (MPP). Following the relaxation of non-pharmaceutical interventions (NPIs) post COVID-19, there has been a global increase in MPP cases and macrolide-resistant strains. Vaccination against M. pneumoniae is [...] Read more.
Mycoplasma pneumoniae, a cell wall-deficient pathogen, primarily affects children and adolescents, causing Mycoplasma pneumoniae pneumonia (MPP). Following the relaxation of non-pharmaceutical interventions (NPIs) post COVID-19, there has been a global increase in MPP cases and macrolide-resistant strains. Vaccination against M. pneumoniae is being explored as a promising approach to reduce infections, limit antibiotic misuse, and prevent the emergence of drug-resistant variants. We developed an mRNA vaccine, mRNA-SP+P1, incorporating a eukaryotic signal peptide (tissue-type plasminogen activator signal peptide) fused to the C-terminal region of the P1 protein. Targeting amino acids 1288 to 1518 of the P1 protein, the vaccine was administered intramuscularly to BALB/c mice in a three-dose regimen. To evaluate immunogenicity, we quantified anti-P1 IgG antibody titers using enzyme-linked immunosorbent assays (ELISAs) and assessed cellular immune responses by analyzing effector memory T cell populations using flow cytometry. We also tested the functional activity of vaccine-induced sera for their ability to inhibit adhesion of the ATCC M129 strain to KMB17 cells. The vaccine’s protective efficacy was assessed against the ATCC M129 strain and its cross-protection against the ST3-resistant strain. Transcriptomic analysis was conducted to investigate gene expression changes in peripheral blood, aiming to uncover mechanisms of immune modulation. The mRNA-SP+P1 vaccine induces P1 protein-specific IgG antibodies and an effector memory T-cell response in BALB/c mice. Adhesion inhibition assays demonstrated that serum from vaccinated mice attenuatesthe adhesion ability of ATCC M129 to KMB17 cells. Furthermore, three doses of the vaccine confer significant and long-lasting, though partial, protection against the ATCC M129 strain and partial cross-protection against the ST3 drug-resistant strain. Transcriptome analysis revealed significant gene expression changes in peripheral blood, confirming the vaccine’s capacity to elicit an immune response from the molecular level. Our results indicate that the mRNA-SP+P1 vaccine appears to be an effective vaccine candidate against the prevalence of Mycoplasma pneumoniae. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

29 pages, 1254 KiB  
Review
Microbial Food Safety and Antimicrobial Resistance in Foods: A Dual Threat to Public Health
by Ayman Elbehiry, Eman Marzouk, Adil Abalkhail, Husam M. Edrees, Abousree T. Ellethy, Abdulaziz M. Almuzaini, Mai Ibrahem, Abdulrahman Almujaidel, Feras Alzaben, Abdullah Alqrni and Akram Abu-Okail
Microorganisms 2025, 13(7), 1592; https://doi.org/10.3390/microorganisms13071592 - 6 Jul 2025
Viewed by 1063
Abstract
The intersection of microbial food safety and antimicrobial resistance (AMR) represents a mounting global threat with profound implications for public health, food safety, and sustainable development. This review explores the complex pathways through which foodborne pathogens—such as Salmonella spp., Escherichia coli (E. [...] Read more.
The intersection of microbial food safety and antimicrobial resistance (AMR) represents a mounting global threat with profound implications for public health, food safety, and sustainable development. This review explores the complex pathways through which foodborne pathogens—such as Salmonella spp., Escherichia coli (E. coli), Listeria monocytogenes (L. monocytogenes), and Campylobacter spp.—acquire and disseminate resistance within human, animal, and environmental ecosystems. Emphasizing a One Health framework, we examine the drivers of AMR across sectors, including the misuse of antibiotics in agriculture, aquaculture, and clinical settings, and assess the role of environmental reservoirs in sustaining and amplifying resistance genes. We further discuss the evolution of surveillance systems, regulatory policies, and antimicrobial stewardship programs (ASPs) designed to mitigate resistance across the food chain. Innovations in next-generation sequencing, metagenomics, and targeted therapeutics such as bacteriophage therapy, antimicrobial peptides (AMPs), and CRISPR-based interventions offer promising alternatives to conventional antibiotics. However, the translation of these advances into practice remains uneven, particularly in low- and middle-income countries (LMICs) facing significant barriers to diagnostic access, laboratory capacity, and equitable treatment availability. Our analysis underscores the urgent need for integrated, cross-sectoral action—anchored in science, policy, and education—to curb the global spread of AMR. Strengthening surveillance, investing in research, promoting responsible antimicrobial use, and fostering global collaboration are essential to preserving the efficacy of existing treatments and ensuring the microbiological safety of food systems worldwide. Full article
(This article belongs to the Special Issue Microbial Safety and Beneficial Microorganisms in Foods)
Show Figures

Figure 1

8 pages, 278 KiB  
Article
Antibiotic Prescription in Dentistry: Trends, Patient Demographics, and Drug Preferences in Germany
by Lisa Lotta Cirkel, Jens Martin Herrmann, Claudia Ringel, Bernd Wöstmann and Karel Kostev
Antibiotics 2025, 14(7), 676; https://doi.org/10.3390/antibiotics14070676 - 3 Jul 2025
Viewed by 449
Abstract
Background and objectives: ABs are widely used in dental practice in the treatment of odontogenic infections and as systemic prophylaxis in high-risk patients. However, AB overuse contributes to antimicrobial resistance (AMR), which is a major global concern. This study examined dental AB prescribing [...] Read more.
Background and objectives: ABs are widely used in dental practice in the treatment of odontogenic infections and as systemic prophylaxis in high-risk patients. However, AB overuse contributes to antimicrobial resistance (AMR), which is a major global concern. This study examined dental AB prescribing trends in Germany in 2024, focusing on the share of overall AB prescriptions, patient demographics, and commonly used agents. Methods: This retrospective cross-sectional study used data from the IQVIA Longitudinal Prescription Database (LRx), covering approximately 80% of prescriptions reimbursed by statutory health insurance funds in Germany. Patients with at least one AB prescription (ATC code: J01) issued by a dentist in 2024 were analyzed. Descriptive statistics covered age, sex, and prescribed substances. Results: In 2024, German dentists prescribed ABs to 2,325,500 patients, accounting for 13.9% of all patients in the database who received AB prescriptions. Dentists were the second-largest group of AB prescribers, surpassed only by general physicians. Amoxicillin (54.2%) was most frequently prescribed, followed by amoxicillin with clavulanic acid (24.5%) and clindamycin (21.0%). Dental patients receiving AB prescriptions were older (mean age: 49.8 years) than the general antibiotic patient population (44.7 years). Interestingly, dental AB prescriptions increased during the COVID-19 pandemic, in contrast to the sharp overall decline in AB prescriptions. Between 2015 and 2019, the proportion of dental antibiotic prescriptions showed a moderate upward tendency, followed by a marked increase during the COVID-19 pandemic and a subsequent decline. In contrast, the number of patients receiving antibiotic prescriptions from other medical disciplines decreased over the same period. One particularly notable finding was the extended use of clindamycin, a reserve AB with known side effects and resistance risks, in dentistry. Conclusions: Dentists are responsible for a significant share of AB prescriptions in Germany. The rise in dental AB prescriptions, particularly the frequent prescription of clindamycin, underscores the need for interventions such as updated clinical guidelines and awareness campaigns concerning AB-related risks and their mitigation directed at dentists. These could focus on microbial culture and sensitivity testing and patient adherence education and control for targeted AB interventions. Emphasizing preventive and alternative anti-infective treatment strategies in dentistry may also help to contain AMR. Full article
(This article belongs to the Special Issue Managing Appropriate Antibiotic Prescribing and Use in Primary Care)
Show Figures

Figure 1

10 pages, 358 KiB  
Article
Evaluation of a Hub-and-Spoke Model to Enhance Healthcare Professionals’ Practice of Antimicrobial Stewardship (AMS) Programmes in the Volta Region of Ghana
by Mairead McErlean, Eneyi Kpokiri, Preet Panesar, Emily E. Cooper, Jonathan Jato, Emmanuel Orman, Hayford Odoi, Araba Hutton-Nyameaye, Samuel O. Somuah, Isaac Folitse, Thelma A. Aku, Inemesit O. Ben, Melissa Farragher, Leila Hail, Cornelius C. Dodoo and Yogini H. Jani
Antibiotics 2025, 14(7), 672; https://doi.org/10.3390/antibiotics14070672 - 2 Jul 2025
Viewed by 412
Abstract
Background: Antimicrobial resistance (AMR) poses a critical global health challenge, particularly in resource-limited settings. A hub-and-spoke model, decentralising expertise and distributing resources to peripheral facilities, has been proposed as a strategy to enhance the antimicrobial stewardship (AMS) capacity in low- and middle-income [...] Read more.
Background: Antimicrobial resistance (AMR) poses a critical global health challenge, particularly in resource-limited settings. A hub-and-spoke model, decentralising expertise and distributing resources to peripheral facilities, has been proposed as a strategy to enhance the antimicrobial stewardship (AMS) capacity in low- and middle-income countries. Aim: This study sought to understand healthcare professionals’ experiences of a hub-and-spoke AMS model in the Volta Region of Ghana and its influence on clinical practice, leadership, and collaborative endeavours to address AMR. Methods: A qualitative descriptive design was adopted. In-depth interviews were conducted with 11 healthcare professionals who participated in the AMS program. Thematic analysis was used to identify key themes related to the knowledge and skills that were gained, clinical and leadership practice changes, capacity building, and challenges. Results: Participants reported an increased awareness of AMR, particularly regarding the scale and clinical implications of antimicrobial misuse. The clinical practice improvements included more judicious prescribing and enhanced adherence to infection prevention and control measures. Many respondents highlighted stronger leadership skills and a commitment to capacity building through AMS committees, multidisciplinary collaboration, and cross-organisational knowledge exchange. Despite resource constraints and logistical hurdles, participants expressed optimism, citing data-driven approaches such as point prevalence surveys to track progress and inform policy. Engagement with hospital management and public outreach were viewed as essential to sustaining AMS efforts and curbing over-the-counter antibiotic misuse. Conclusions: The hub-and-spoke model caused observable improvements in AMS knowledge, clinical practice, and leadership capacity among healthcare professionals in Ghana. While challenges remain, particularly in securing sustainable resources and shifting community behaviours, these findings underscore the potential of network-based programs to catalyse systemic changes in tackling AMR. Future research should explore long-term outcomes and strategies for embedding AMS practices more deeply within healthcare systems and communities. Full article
(This article belongs to the Special Issue Antibiotics Stewardship in Low and Middle-Income Countries)
Show Figures

Figure 1

Back to TopTop