Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = anti-xanthine oxidase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3187 KiB  
Article
Green Extract from Pre-Harvest Tobacco Waste as a Non-Conventional Source of Anti-Aging Ingredients for Cosmetic Applications
by Mariana Leal, María A. Moreno, María E. Orqueda, Mario Simirgiotis, María I. Isla and Iris C. Zampini
Plants 2025, 14(14), 2189; https://doi.org/10.3390/plants14142189 - 15 Jul 2025
Viewed by 497
Abstract
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the [...] Read more.
The cigarette production from Nicotiana tabacum generates significant amounts of waste, with an estimated 68.31 million tons of pre- and post-harvest waste discarded annually. The pre-harvest waste includes the upper parts of the plant, inflorescences, and bracts, which are removed to help the growth of the lower leaves. This study explores the potential of apical leaves from Nicotiana tabacum var. Virginia, discarded during the budding stage (pre-harvest waste). The leaves were extracted using environmentally friendly solvents (green solvents), including distilled water (DW) and two natural deep eutectic solvents (NaDESs), one consisting of simple sugars, fructose, glucose, and sucrose (FGS) and the other consisting of choline chloride and urea (CU). The anti-inflammatory and anti-aging potential of these green extracts was assessed by the inhibition of key enzymes related to skin aging. The xanthine oxidase and lipoxygenase activities were mostly inhibited by CU extracts with IC50 values of 63.50 and 8.0 μg GAE/mL, respectively. The FGS extract exhibited the greatest hyaluronidase inhibition (49.20%), followed by the CU extract (33.20%) and the DW extract (20.80%). Regarding elastase and collagenase inhibition, the CU extract exhibited the highest elastase inhibition, while all extracts inhibited collagenase activity, with values exceeding 65%. Each extract had a distinct chemical profile determined by LC-ESI-QTOF-MS/MS and spectrophotometric methods, with several shared compounds present in different proportions. CU extract is characterized by high concentrations of rutin, nicotiflorin, and azelaic acid, while FGS and DW extracts share major compounds such as quinic acid, fructosyl pyroglutamate, malic acid, and gluconic acid. Ames test and Caenorhabditis elegans assay demonstrated that at the concentrations at which the green tobacco extracts exhibit biological activities, they did not show toxicity. The results support the potential of N. tabacum extracts obtained with NaDESs as antiaging and suggest their promising applications in the cosmetic and cosmeceutical industries. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

22 pages, 2794 KiB  
Article
Triple-Probiotic-Fermented Goji (Lycium barbarum L.) Ameliorates Metabolic Disorders Associated with Hyperuricemia in Mice
by Lu Ren, Yuechan Li, Shiting Liu, Xiaoke Jia, Hongpeng He, Feiliang Zhong, Fuping Lu and Xuegang Luo
Microorganisms 2025, 13(6), 1367; https://doi.org/10.3390/microorganisms13061367 - 12 Jun 2025
Viewed by 587
Abstract
Hyperuricemia (HUA) is a metabolic disorder characterized by excessive uric acid (UA) production and impaired excretion. Goji, as a representative medicinal food, holds significant research and development value, while probiotic fermentation technology is finding increasingly widespread applications in the functional food sector. This [...] Read more.
Hyperuricemia (HUA) is a metabolic disorder characterized by excessive uric acid (UA) production and impaired excretion. Goji, as a representative medicinal food, holds significant research and development value, while probiotic fermentation technology is finding increasingly widespread applications in the functional food sector. This study developed a novel goji fermented with three probiotic strains (Lactoplantibacillus plantarum CGMCC8198, Lactococcus lactis LTJ28, and Lactocaseibacillus casei YR2-2) and investigated its anti-HUA effects. Optimal fermentation conditions (7.913 material–liquid ratio, 3.92% inoculation, 7.49 h at 37 °C with 1:1:2 strain ratio) yielded a beverage with enhanced flavor profiles (19 aroma compounds) and high viable counts. In HUA cell models, the 15% fermented goji juice significantly reduced UA levels by 56% (p < 0.01). In potassium oxonate-induced HUA mice, the beverage effectively lowered serum UA, xanthine oxidase activity, and renal function markers (blood urea nitrogen and creatinine, p < 0.0001) while improving hepatic parameters (alanine aminotransferase, aspartate Aminotransferase). The goji-fermented juice significantly reduced the expression of renal UA transporters GLUT9 and URAT1 (p < 0.0001) while improving gut microbiota composition, as evidenced by increased beneficial SCFAs (acetic acid, butyric acid, p < 0.0001) and elevated Lactobacillus abundance 2.14-fold. Our findings demonstrate that this triple-probiotic-fermented goji beverage represents an effective dietary strategy for HUA management by simultaneously inhibiting UA production, enhancing excretion, and restoring gut microbiota homeostasis, providing a scientific basis for developing probiotic-based functional foods against HUA. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 5665 KiB  
Article
FPAW from Trachinotus ovatus Attenuates Potassium-Oxonate-Induced Hyperuricemia in Mice via Xanthine Oxidase Inhibition and Gut Microbiota Modulation: Molecular Insights and In Vivo Efficacy
by Huan Xiang, Dongxiao Sun-Waterhouse, Xiao Hu, Mengfan Hou, Shengjun Chen, Yanyan Wu, Yongqiang Zhao and Yueqi Wang
Nutrients 2025, 17(11), 1831; https://doi.org/10.3390/nu17111831 - 28 May 2025
Cited by 1 | Viewed by 569
Abstract
Background: Hyperuricemia (HUA) is a widespread metabolic disorder that arises from disruptions in purine metabolism, impaired kidney function, or both conditions. FPAW (Phe-Pro-Ala-Trp) is a novel peptide identified from Trachinotus ovatus with great XOD (xanthine oxidase) inhibitory activity (IC50 = 3.81 mM), [...] Read more.
Background: Hyperuricemia (HUA) is a widespread metabolic disorder that arises from disruptions in purine metabolism, impaired kidney function, or both conditions. FPAW (Phe-Pro-Ala-Trp) is a novel peptide identified from Trachinotus ovatus with great XOD (xanthine oxidase) inhibitory activity (IC50 = 3.81 mM), which can be developed as a potential active ingredient to relieve hyperuricemia. However, it remains unclear whether FPAW alleviates HUA in vivo or not. Methods: In this study, potassium-oxonate-induced hyperuricemic mice were used to evaluate the in vivo anti-hyperuricemic activity of FPAW. Some physiological parameters, such as serum uric acid (SUA), serum creatinine (SCR), blood urea nitrogen (BUN), and the activity of XOD and ADA (adenosine deaminase) in the liver were determined to evaluate the effect of reduced uric acid. The modulations in the gut microbiota and its metabolites (SCFAs) were analyzed by sequencing the V3-V4 region of the 16S rRNA gene and GC-MS in different fecal samples. Molecular docking was used to predict the interactions between the enzymes and FPAW. Results: The results showed that FPAW reduced the levels of serum uric acid, serum creatinine, and blood urea nitrogen, while also suppressing the activity of XOD in the livers of HUA mice. Moreover, the FPAW treatment alleviated gut microbiota dysfunction and increased the production of short-chain fatty acids to protect normal intestinal function and health of the host. Molecular docking simulations revealed that FPAW inhibited XOD activity by entering the hydrophobic channel and interacting with amino acid residues on the surface via hydrogen bonding and hydrophobic interactions. Conclusions: This study provides new candidates for the development of hypouricemic drugs. FPAW exhibited great potential to relieve hyperuricemia of mice induced by diet in the animal experiment. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

20 pages, 2300 KiB  
Article
Targeting Hyperuricemia and NLRP3 Inflammasome in Gouty Arthritis: A Preclinical Evaluation of Allopurinol and Disulfiram Combination Therapy
by Yahya I. Asiri, Manimekalai Pichaivel, Selva Prasanthi Parameshwaran, Krishnaraju Venkatesan, Saud Alqahtani, Taha Alqahtani, Rehab Ahmed, Hassabelrasoul Elfadil, Mahmoud Elodemi, Shaimaa Genena, Durgaramani Sivadasan and Premalatha Paulsamy
Pharmaceuticals 2025, 18(5), 762; https://doi.org/10.3390/ph18050762 - 21 May 2025
Cited by 1 | Viewed by 1177
Abstract
Background/Objectives: Gouty arthritis (GA) is a chronic inflammatory condition characterized by hyperuricemia and NLRP3 inflammasome activation, leading to joint damage and systemic inflammation. Although allopurinol (ALP), a xanthine oxidase inhibitor, effectively lowers serum urate levels, it has limited anti-inflammatory effects. This study investigated [...] Read more.
Background/Objectives: Gouty arthritis (GA) is a chronic inflammatory condition characterized by hyperuricemia and NLRP3 inflammasome activation, leading to joint damage and systemic inflammation. Although allopurinol (ALP), a xanthine oxidase inhibitor, effectively lowers serum urate levels, it has limited anti-inflammatory effects. This study investigated whether combining disulfiram (DSF), a known NLRP3 inflammasome inhibitor, with ALP enhances therapeutic outcomes in a rat model of gout. Methods: Thirty male Albino Wistar rats (150–200 g) were randomly assigned to five groups (n = 6): control, disease control, ALP-treated, DSF-treated, and ALP + DSF combination. Hyperuricemia was induced using potassium oxonate, followed by MSU crystal injection to trigger acute gout. Treatment lasted 30 days. Efficacy was assessed through clinical scoring, paw swelling, serum uric acid levels, ELISA-based cytokine profiling (IL-1β, TNF-α, IL-6), renal function tests, radiography, and histopathology. Results: Combination therapy with ALP + DSF significantly reduced paw swelling (p < 0.05), inflammation index (p < 0.001), serum uric acid (p < 0.001), and pro-inflammatory cytokines compared to monotherapy. Histopathology revealed preserved synovial architecture and reduced inflammatory infiltration. Radiographic imaging showed attenuated soft tissue swelling and joint erosion. Renal function markers were also improved in the combination group. Conclusions: The combination of ALP and DSF provided superior anti-inflammatory and urate-lowering effects compared to individual treatments. These findings support the potential of disulfiram as an adjunct to conventional ULTs in gout management through dual modulation of urate metabolism and inflammasome-driven inflammation. Full article
Show Figures

Graphical abstract

13 pages, 2355 KiB  
Article
Anti-Hyperuricemic and Nephroprotective Effects of Hydrolysate Derived from Silkworm Pupae (Bombyx mori): In Vitro and In Vivo Study
by Yuting Fan, Zhencong Yang, Xiao Lin, Zhoujin Xu, Lixia Mu, Qingrong Li and Xuli Wu
Nutrients 2025, 17(9), 1596; https://doi.org/10.3390/nu17091596 - 6 May 2025
Viewed by 762
Abstract
Background: Hyperuricemia is a prevalent metabolic disorder characterized by elevated serum uric acid (UA) levels. Methods: In this study, hydrolysate (SPP) derived from silkworm pupae protein was isolated and identified, demonstrating anti-hyperuricemic activity. The research aimed to investigate its anti-hyperuricemic and nephroprotective effects, [...] Read more.
Background: Hyperuricemia is a prevalent metabolic disorder characterized by elevated serum uric acid (UA) levels. Methods: In this study, hydrolysate (SPP) derived from silkworm pupae protein was isolated and identified, demonstrating anti-hyperuricemic activity. The research aimed to investigate its anti-hyperuricemic and nephroprotective effects, along with potential mechanisms, through in vitro assays and in vivo experiments using potassium oxonate/hypoxanthine-induced hyperuricemic mice. Results: The SPP exhibited significant xanthine oxidase (XOD) inhibitory activity, with an IC50 value of 7.41 mg/mL. Furthermore, SPP administration effectively reduced serum UA, blood urea nitrogen (BUN), creatinine levels, and renal pro-inflammatory cytokines in hyperuricemic mice. Mechanistic studies revealed that the anti-hyperuricemic effects of SPP may involve XOD inhibition and the modulation of renal UA transporters, specifically upregulating organic anion transporter 1 (OAT1) and ATP-binding cassette subfamily G member 2 (ABCG2) expression. Histopathological analysis and inflammatory cytokine profiling further demonstrated that SPP alleviated renal inflammation and pathological damage. Conclusions: These findings suggest that SPP possesses a notable urate-lowering efficacy and renal protective properties, highlighting its potential as a therapeutic agent for the management and prevention of hyperuricemia (HUA). Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

24 pages, 1077 KiB  
Article
Assessment of the Anti-Acne Properties of Some Medicinal Plants and Development of an Herbal Anti-Acne Formulation
by F. Sezer Senol Deniz, Ozlem Oyardı, Cagla Bozkurt Guzel, Tahir Emre Yalcın, Serkan Yiğitkan, Yuksel Kan, Nurver Ulger Toprak and Ilkay Erdogan Orhan
Pharmaceutics 2025, 17(3), 317; https://doi.org/10.3390/pharmaceutics17030317 - 1 Mar 2025
Viewed by 1611
Abstract
Background: Acne is a prevalent dermatological condition characterized by the blockage of hair follicles and sebaceous glands, leading to the formation of acne. The anaerobe pathogen Cutibacterium acnes (formerly known as Propionibacterium acnes) plays an essential role in the pathogenesis of [...] Read more.
Background: Acne is a prevalent dermatological condition characterized by the blockage of hair follicles and sebaceous glands, leading to the formation of acne. The anaerobe pathogen Cutibacterium acnes (formerly known as Propionibacterium acnes) plays an essential role in the pathogenesis of acne, for which generally antimicrobial treatment is required. Acne is a substantial health concern, and continuing research is being conducted to discover novel and efficacious remedies. The antimicrobial activity of plants has been demonstrated in numerous studies, and they are still targeted organisms in drug development. Studies showing that plants are effective against acne pathogens have also been reported. Methods: The antimicrobial activity of the hydroethanolic extracts prepared from 30 plant species was determined against C. acnes standard strains (C. acnes Scholz and Kilian ATCC 11827 and ATCC 11828) and 30 clinical isolates in our preliminary screening. Since acne is an inflammatory skin disease, the anti-inflammatory effect of six active extracts against C. acnes was determined through the in vitro inhibition of collagenase, lipoxygenase (LOX), hyaluronidase and xanthine oxidase (XO) enzymes. Results: Cotinus coggygria Scop. leaf extract displayed the highest hyaluronidase and collagenase inhibition (79.75% and 52.52%, respectively), while the extract from the aerial parts of Helichrysum arenarium (L.) Moench demonstrated a potent XO inhibitory effect (82.51%). Therefore, these two extracts have been chosen for further studies, and LC/MS-MS was used to determine the phenolic profiles of these extracts. Conclusions: Subsequently, nanoemulgels were formulated with the active extracts to develop a prototype herbal anti-acne product, and characterization studies of the formulations were conducted. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

25 pages, 2660 KiB  
Article
Phytochemistry and Biological Activities of Hedeoma piperita Benth. (Quiensabe)
by Jeanette Guadalupe Cárdenas-Valdovinos, Hortencia Gabriela Mena-Violante, Flor de Fátima Rosas-Cárdenas, María Valentina Angoa-Pérez and Silvia Luna-Suárez
Int. J. Mol. Sci. 2025, 26(4), 1640; https://doi.org/10.3390/ijms26041640 - 14 Feb 2025
Viewed by 1353
Abstract
Hedeoma piperita Benth. (Lamiaceae) is a native medicinal plant from Mexico. It grows in pine, oak, and oyamel forests, as well as grasslands. In the Purépecha Plateau of Michoacán, it is called quiensabe and traditionally used to treat stomach pain, colic, cough, and [...] Read more.
Hedeoma piperita Benth. (Lamiaceae) is a native medicinal plant from Mexico. It grows in pine, oak, and oyamel forests, as well as grasslands. In the Purépecha Plateau of Michoacán, it is called quiensabe and traditionally used to treat stomach pain, colic, cough, and low blood pressure, among other ailments. This study aimed to determine the phytochemical profile of infusions and ethanolic extracts of the stems and green and purple leaves of H. piperita collected in Cherán, Michoacán. Total phenols, flavonoids, anthocyanins, and terpenoids were analyzed using UV–visible spectrophotometry; specific phenolic acids and flavonoids were detected by high performance thin layer chromatography (HPTLC); and the volatile profile of stems, green and purple leaves was determined by solid phase microextraction in GC-MS. Biological activities such as antioxidant activities (via DPPH and ABTS methods), antihypertensive activities (angiotensin converting enzyme (ACE) inhibition), antibacterial activities (minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), anti-inflammatory activities (xanthine oxidase enzyme (XOD) inhibition) and antidiabetic activities (α-glucosidase enzyme inhibition) were evaluated in vitro. Results showed key compounds like rosmarinic acid, luteolin, menthone, menthol, and pulegone were identified using HPTLC and SPME/GC-MS, with organ-specific variations. Green and purple leaves infusions inhibited DPPH and ABTS+ by 90–99% (IC50 3.3–3.8 and 7.4–11.5 µg/mL, respectively) and purple leaves infusion showed a 69.88% XOD enzyme inhibition (IC50 47.991 µg/mL) and an 85.12% α-glucosidase enzyme inhibition (IC50 72.49 µg/mL). Purple leaves ethanolic extract exhibited the lowest MIC and MBC against Shigella flexneri and ACE inhibition at 97.25% (IC50 11.19 µg/mL). These results demonstrate the biological potential of H. piperita in the development of natural drugs and expand its use as an herbal remedy. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

13 pages, 3151 KiB  
Article
In Silico Prediction of Maize microRNA as a Xanthine Oxidase Inhibitor: A New Approach to Treating Hyperuricemia Patients
by Manas Joshi and Mohd Mabood Khan
Non-Coding RNA 2025, 11(1), 6; https://doi.org/10.3390/ncrna11010006 - 15 Jan 2025
Viewed by 1432
Abstract
Introduction: Hyperuricemia is characterized by increased uric acid (UA) in the body. The ability to block xanthine oxidase (XO) is a useful way to check how different bioactive molecules affect hyperuricemia. Previous reports showed the significant effect of corn against hyperuricemia disorder with [...] Read more.
Introduction: Hyperuricemia is characterized by increased uric acid (UA) in the body. The ability to block xanthine oxidase (XO) is a useful way to check how different bioactive molecules affect hyperuricemia. Previous reports showed the significant effect of corn against hyperuricemia disorder with its anti-XO activity. The identification of stable Zea mays miRNA (zma-miR) in humans has opened up a new avenue for speculation about its part in regulating novel human gene targets. Aims: The aim of this study was to investigate the prospects of zma-miRs in XO gene regulation, the possible mechanism, and the interaction analysis of the zma-miR-XO mRNA transcript. Method: Significant features of miRNA-mRNA interaction were revealed using two popular miRNA target prediction software—intaRNA (version 3.3.1) and RNA hybrid (version 2.2.1) Results: Only 12 zma-miR-156 variants, out of the 325 zma-miR’s sequences reported in the miRNA database, efficiently interact with the 3′UTR of the XO gene. Characteristics of miRNA-mRNA interaction were as follows: the positioning of zma-miR-156 variants shows that they all have the same 11-mer binding sites, guanine (G), and uracil (U) loops at the 13th and 14th positions from the 5′ end, and no G: U wobble pairing. These factors are related to the inhibition of functional mRNA expression. Additionally, the zma-miR-156 variants exhibit a single-base variation (SBV), which leads to distinct yet highly effective alterations in their interaction pattern with the XO mRNA transcript and the corresponding free energy values. Conclusion: Therefore, we propose that zma-miR-156 variants may be a promising new bioactive compound against hyperuricemia and related diseases. Full article
Show Figures

Figure 1

22 pages, 2471 KiB  
Article
Bioactive Potential of Pogostemon benghalensis (Burm.f.) Kuntze: Antibacterial, Antioxidant, and Xanthine Oxidase Inhibitory Activities
by Nitesh Jaishwal, Mamta Jayswal, Deep Chand Gupta, Bishnu Dhakal, Santosh Koirala, Ram Bahadur Khadka, Hari Prasad Devkota and Jitendra Pandey
Bacteria 2025, 4(1), 3; https://doi.org/10.3390/bacteria4010003 - 6 Jan 2025
Cited by 1 | Viewed by 1580
Abstract
This research is focused on assessing the antibacterial properties of Pogostemon benghalensis stem bark and inflorescence extracts, as well as their inhibitory effects on xanthine oxidase, antioxidant potential, overall phenolic content, and flavonoid concentration. The cold maceration technique was used to obtain extracts [...] Read more.
This research is focused on assessing the antibacterial properties of Pogostemon benghalensis stem bark and inflorescence extracts, as well as their inhibitory effects on xanthine oxidase, antioxidant potential, overall phenolic content, and flavonoid concentration. The cold maceration technique was used to obtain extracts using water, methanol, and ethyl acetate solvents. The disk diffusion method demonstrated the significant antibacterial efficacy of the methanol stem bark extract against Staphylococcus epidermidis, with a zone of inhibition (ZOI) of 13 mm, and the inflorescence methanol extract against Klebsiella pneumonia (ZOI: 12.9 mm). Moreover, the methanol stem bark extract exhibited the minimum bactericidal concentration (MBC) at 1.56 mg/mL and the minimum inhibitory concentration (MIC) at 0.78 mg/mL against S. epidermidis. The ethyl acetate inflorescence extract displayed noteworthy xanthine oxidase inhibition (IC50: 29.1 µg/mL) comparable to allopurinol (IC50: 12.7 µg/mL). Furthermore, the methanol stem bark extract exhibited a remarkable DPPH free radical inhibitory effect, showing an IC50 value of 42.5 µg/mL. The total polyphenol content ranged from 29.9 μg to 161.3 µg GAE per mg of dried extract weight in the methanol inflorescence extract, while the total flavonoid content ranged from 38.4 μg to 96.8 μg QE per mg of dried extract weight within the water-derived extract. Overall, these findings demonstrate the potent antibacterial properties, xanthine oxidase inhibition, and antioxidant activity of P. benghalensis extracts. Full article
Show Figures

Figure 1

5 pages, 1070 KiB  
Proceeding Paper
In Silico Investigation of Two Benzoxanthone-Flavonoids: ADMET Analysis and Xanthine Oxidase Binding
by Abdeslem Bouzina, Rachida Mansouri, Yousra Ouafa Bouone and Nour-Eddine Aouf
Chem. Proc. 2024, 16(1), 116; https://doi.org/10.3390/ecsoc-28-20212 - 14 Nov 2024
Viewed by 166
Abstract
Natural products, particularly flavonoids, which possess medicinal properties such as anticancer, anti-inflammatory, and antioxidant effects, are known to inhibit the enzyme xanthine oxidase (XO), which plays a key role in purine metabolism and generates reactive oxygen species (ROS). Inhibiting XO may help manage [...] Read more.
Natural products, particularly flavonoids, which possess medicinal properties such as anticancer, anti-inflammatory, and antioxidant effects, are known to inhibit the enzyme xanthine oxidase (XO), which plays a key role in purine metabolism and generates reactive oxygen species (ROS). Inhibiting XO may help manage diseases associated with uric acid accumulation and ROS production. Molecular docking was performed to analyze the interactions of two benzoxanthone-flavonoid compounds, Artonin E and (+)-Artobiloxanthone, with the enzyme XO. These compounds demonstrated excellent stability within the site active of XO, with estimated docking scores of −9.64 and −7.99 kcal/mol, respectively, and formed significant interactions, similar to those observed in the quercetin–XO complex. Additionally, ADMET analyses suggest that these compounds have promising therapeutic potential. Full article
Show Figures

Figure 1

19 pages, 3489 KiB  
Article
Rhododendron luteum Sweet Flower Supercritical CO2 Extracts: Terpenes Composition, Pro-Inflammatory Enzymes Inhibition and Antioxidant Activity
by Lena Łyko, Marta Olech, Urszula Gawlik, Agnieszka Krajewska, Danuta Kalemba, Katarzyna Tyśkiewicz, Narcyz Piórecki, Andriy Prokopiv and Renata Nowak
Int. J. Mol. Sci. 2024, 25(18), 9952; https://doi.org/10.3390/ijms25189952 - 15 Sep 2024
Cited by 3 | Viewed by 1944
Abstract
Terpenes are plant secondary metabolites known for their anti-inflammatory and antioxidant activities. According to ethnobotanical knowledge, Rhododendron luteum Sweet was used in traditional medicine against inflammation. The present study was conducted to determine the triterpene profile and antioxidant and anti-inflammatory activity of supercritical [...] Read more.
Terpenes are plant secondary metabolites known for their anti-inflammatory and antioxidant activities. According to ethnobotanical knowledge, Rhododendron luteum Sweet was used in traditional medicine against inflammation. The present study was conducted to determine the triterpene profile and antioxidant and anti-inflammatory activity of supercritical CO2 (SC-CO2) extracts of Rhododendron luteum Sweet flower (RLF). An LC-APCI-MS/MS analysis showed the presence of eight pentacyclic triterpenes and one phytosterol in the extracts obtained with pure CO2 as well as CO2 with the addition of aqueous ethanol as a co-solvent. Among the compounds detected, oleanolic/ursolic acid, β-sitosterol and 3β-taraxerol were the most abundant. The extract obtained with pure SC-CO2 was additionally subjected to HS-SPME-GC-FID-MS, which revealed more than 100 volatiles, mainly eugenol, β-phenylethanol, dodecane, β-caryophyllene, estragole and (Z)- and (E)-cinnamyl alcohol, followed by δ-cadinene. The extracts demonstrated significant hyaluronidase inhibition and exhibited varying modes of lipoxygenase and xanthine oxidase inhibitory activities. The studies of RLF have shown that their SC-CO2 extracts can be a rich source of triterpenes with anti-inflammatory potential. Full article
(This article belongs to the Special Issue Bioactive Compounds and Their Antioxidant Role)
Show Figures

Figure 1

21 pages, 8226 KiB  
Article
Optimization of Phenolic Compounds Extraction from Aerial Parts of Fabiana punensis S. C. Arroyo by Ultrasound- and Microwave-Assisted Extraction
by Daniela Alejandra González, José Martínez Chamás, María Eugenia Orqueda, Mariana Leal, Agostina Conta, María Inés Mercado, María Inés Isla and Iris Catiana Zampini
Molecules 2024, 29(15), 3578; https://doi.org/10.3390/molecules29153578 - 29 Jul 2024
Cited by 1 | Viewed by 1459
Abstract
Fabiana punensis S. C. Arroyo is a subshrub or shrub that is indigenous to the arid and semiarid region of northern Argentina and is known to possess several medicinal properties. The objective of this study was to optimize the extraction conditions so as [...] Read more.
Fabiana punensis S. C. Arroyo is a subshrub or shrub that is indigenous to the arid and semiarid region of northern Argentina and is known to possess several medicinal properties. The objective of this study was to optimize the extraction conditions so as to maximize the yield of bioactive total phenolic compound (TPC) and flavonoids (F) of F. punensis’ aerial parts by using non-conventional extraction methods, namely ultrasound-assisted extraction, UAE, and microwave-assisted extraction, MAE, and to compare the biological activities and toxicity of optimized extracts vs. conventional extracts, i.e., those gained by maceration. Response Surface Methodology (RSM) was used to apply factorial designs to optimize the parameters of extraction: solid-to-liquid ratio, extraction time, ultrasound amplitude, and microwave power. The experimental values for TPC and F and antioxidant activity under the optimal extraction conditions were not significantly different from the predicted values, demonstrating the accuracy of the mathematical models. Similar HPLC-DAD patterns were found between conventional and UAE- and MAE-optimized extracts. The main constituents of the extracts correspond to phenolic compounds (flavonoids and phenolic acids) and apigenin was identified. All extracts showed high scavenger capacity on ABTS•+, O2•− and H2O2, enabling the inhibition of the pro-inflammatory enzymes xanthine oxidase (XO) and lipoxygenase (LOX). They also showed an antimutagenic effect in Salmonella Typhimurium assay and cytotoxic/anti-proliferative activity on human melanoma cells (SKMEL-28). Toxicological evaluation indicates its safety. The results of this work are important in the development of efficient and sustainable methods for obtaining bioactive compounds from F. punensis for the prevention of chronic degenerative diseases associated with oxidative stress, inflammation, and DNA damage. Full article
(This article belongs to the Special Issue Chemical Analyses and Therapeutic Properties of Plant Extracts)
Show Figures

Figure 1

16 pages, 976 KiB  
Article
Revealing the Phenolic Composition and the Antioxidant, Antimicrobial and Antiproliferative Activities of Two Euphrasia sp. Extracts
by Daniela Benedec, Ilioara Oniga, Daniela Hanganu, Ana-Maria Vlase, Irina Ielciu, Gianina Crișan, Nicodim Fiţ, Mihaela Niculae, Timea Bab, Emoke Pall and Laurian Vlase
Plants 2024, 13(13), 1790; https://doi.org/10.3390/plants13131790 - 28 Jun 2024
Cited by 7 | Viewed by 2101
Abstract
The species of the genus Euphrasia present important medicinal potential according to their traditional uses. However, few studies aim to sustain this fact by scientific evidence. The present study aimed to explore the phytochemical profile and investigate the antioxidant, antimicrobial and antiproliferative potential [...] Read more.
The species of the genus Euphrasia present important medicinal potential according to their traditional uses. However, few studies aim to sustain this fact by scientific evidence. The present study aimed to explore the phytochemical profile and investigate the antioxidant, antimicrobial and antiproliferative potential of E. officinalis subsp. pratensis Fr. (EO) and E. stricta J.P.Wolff ex J.F.Lehm (ES). The tested samples consisted of ethanolic extracts. The identification and quantification of phenolic compounds were performed using spectrophotometric and LC–MS/MS methods. The antioxidant capacity was evaluated using the DPPH, FRAP and xanthine oxidase methods. Antimicrobial properties were screened using disk diffusion, broth microdilution and anti-biofilm assays, while antiproliferative potential was assessed on a colorectal adenocarcinoma human cancer cell line (DLD-1). The LC–MS/MS analysis showed chlorogenic acid and rutin as the dominant constituents in the tested extracts. The antioxidant activity assays showed important capacity for both samples; in vitro antimicrobial and anti-biofilm properties were exhibited, especially against Gram-positive bacteria, and an important inhibitory potential was observed on the proliferation of the DLD-1 cell line. The findings in the present study contribute to the recommendation of EO and ES for the prevention and treatment of oxidative stress-related pathologies, cancer and microbial infections. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

21 pages, 4770 KiB  
Article
Ammoides pusilla Aerial Part: GC-MS Profiling and Evaluation of In Vitro Antioxidant and Biological Activities
by Meriam Belaiba, Mohamed Marouane Saoudi, Manef Abedrabba and Jalloul Bouajila
Processes 2024, 12(6), 1274; https://doi.org/10.3390/pr12061274 - 20 Jun 2024
Cited by 3 | Viewed by 1638
Abstract
The study of Ammoides pusilla, a Tunisian medicinal plant, explored its chemical composition and biological activities, highlighting its under-exploited therapeutic potential. The essential oil, obtained by steam distillation, reveals twenty major compounds, including perilic aldehyde, β-phellandrene, and o-cymene. Two new natural constituents [...] Read more.
The study of Ammoides pusilla, a Tunisian medicinal plant, explored its chemical composition and biological activities, highlighting its under-exploited therapeutic potential. The essential oil, obtained by steam distillation, reveals twenty major compounds, including perilic aldehyde, β-phellandrene, and o-cymene. Two new natural constituents were identified in the cyclohexane extract and four in the dichloromethane extract. DPPH and ABTS tests showed that methanol extract exhibited the highest antioxidant activity, giving values of 78.9% and 65.5%, respectively, at 50 µg/mL. Its anti-diabetic activity (IC50 = 25.0 µg/mL) exceeds that of acarbose. The anti-SOD activity of methanol extract also showed promise, at 73.3% at 50 µg/mL. Essential oil and ethyl acetate extract showed notable inhibition of xanthine oxidase activity, reaching 69.0%. In addition, the essential oil demonstrated strong anti-AChE (63.23% at 50 µg/mL) and anti-inflammatory (IC50 = 31.0 µg/mL) activity. In terms of cytotoxicity, the methanol extract was effective against the HCT116 cell line (IC50 = 20.9 µg/mL), and all extracts showed activity against MCF7, OVCAR-3, and IGROV-1 cells, with IC50 values ranging from 4.0 to 25.0 µg/mL. This result underlines the potential of Ammoides pusilla extracts as important sources of bioactive compounds for therapeutic applications. Further research is needed to fully exploit these activities in drug development. Full article
Show Figures

Figure 1

25 pages, 5740 KiB  
Review
New Light on Plants and Their Chemical Compounds Used in Polish Folk Medicine to Treat Urinary Diseases
by Beata Olas, Waldemar Różański, Karina Urbańska, Natalia Sławińska and Magdalena Bryś
Pharmaceuticals 2024, 17(4), 435; https://doi.org/10.3390/ph17040435 - 28 Mar 2024
Cited by 3 | Viewed by 2916
Abstract
This review contains the results of Polish (Central Europe) ethnomedical studies that describe the treatment of urinary tract diseases with wild and cultivated plants. The study includes only the plants that are used to treat the urinary tract, excluding prostate diseases. A review [...] Read more.
This review contains the results of Polish (Central Europe) ethnomedical studies that describe the treatment of urinary tract diseases with wild and cultivated plants. The study includes only the plants that are used to treat the urinary tract, excluding prostate diseases. A review of the literature was carried out to verify the pharmacological use of the plants mentioned in the interviews. Based on this, the study reviews the pharmacological activities of all the recorded species and indicates their most important chemical compounds. Fifty-three species (belonging to 30 families) were selected for the study. The Compositae (eight species), Rosaceae (six species), and Apiaceae (six species) are the most common families used in the treatment of urinary diseases in Polish folk medicine. Both in vitro and in vivo studies have confirmed that many of these plant species have beneficial properties, such as diuretic, antihyperuricemic, antimicrobial, and anti-inflammatory activity, or the prevention of urinary stone formation. These effects are exerted through different mechanisms, for example, through the activation of bradykinin B2 receptors, inhibition of xanthine oxidase, or inhibition of Na+-K+ pump. Many plants used in folk medicine are rich in phytochemicals with proven effectiveness against urinary tract diseases, such as rutin, arbutin, or triterpene saponins. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

Back to TopTop