Optimization of Phenolic Compounds Extraction from Aerial Parts of Fabiana punensis S. C. Arroyo by Ultrasound- and Microwave-Assisted Extraction
Abstract
:1. Introduction
2. Results
2.1. Non-Conventional Extraction Optimizations
2.1.1. Ultrasound Assisted Extraction (UAE)
Analysis of Response Surface Plots for UAE
Optimal Extraction Conditions for UAE
2.1.2. Microwave Assisted Extraction (MAE)
Analysis of Response Surface Plots for MAE
Optimal Extraction Conditions for MAE
2.2. Comparisons of the Main Characteristics of Conventional Maceration vs. the Optimized Extracts Obtained by Non-Conventional Methods (UAE and MAE)
2.3. Scanning Electron Microscopy of Plant Material Subjected to Different Extraction Methods
2.4. HPLC-DAD of Conventional and UAE- and MAE-Optimized Extracts from F. punensis
2.5. In Vitro Biological Activities
2.5.1. Anti-inflammatory Activity of F. punensis Extracts. Lipooxygenase (LOX) and Xanthine Oxidase (XO) Inhibition
2.5.2. Antioxidant Properties of F. punensis Extracts. Superoxide Anion Radical (O2•−) Scavenging and Hydrogen Peroxide (H2O2) Scavenging
2.5.3. DNA Mutagenic Damage Protection of F. punensis Extracts
2.5.4. Cytotoxic/Anti-Proliferative Activity of F. punensis Extracts
2.6. Toxicological Evaluation of F. punensis Extracts
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Plant Extract Preparation
4.3. Conventional Extraction Method
4.4. Non-Conventional Extraction Methods
4.4.1. Experimental Design and Statistics Analysis
4.4.2. Ultrasound Assisted Extraction (UAE)
4.4.3. Microwave Assisted Extraction (MAE)
4.5. Chemical Analysis
4.5.1. Quantification of the Yield Extraction
4.5.2. Total Phenolic Compound (TPC) Content
4.5.3. Total Flavonoid (F) Content
4.6. Phenolic Compounds Profile. HPLC-DAD
4.7. Scanning Electron Microscopy
4.8. In Vitro Biological Activities
4.8.1. Antioxidant Activity
Scavenging of the Radical Cation ABTS (ABTS•+)
Hydrogen Peroxide Scavenging
Superoxide Anion Scavenging
4.8.2. Anti-Inflammatory Activity
Lipooxygenase (LOX) Inhibition
Xanthine Oxidase (XO) Inhibition
4.8.3. DNA Mutagenic Damage Protection
4.8.4. Cytotoxic/Anti-Proliferative Activity on Tumor Cell Line
Cell Culture
MTT Colorimetric Assay
Neutral Red Colorimetric Assay
4.9. Toxicological Evaluation
4.9.1. Evaluation of Genotoxicity Using Bacterial Cultures: Ames Assay
4.9.2. Toxicity Evaluation by Using Artemia salina as a Model
4.9.3. Toxicity Evaluation Using the Nematode Caenorhabditis elegans
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. 2024. Available online: http://www.plantsoftheworldonline.org/ (accessed on 14 May 2024).
- Isla, M.I.; Leal, M.; González, D.; Orqueda, E.; Zampini, I.C.; Cuello, A.S. Fabiana punensis S.C. Arroyo, F. broides Phil., F. densa Remy, F. patagonica Speg. In Medicinal and Aromatic Plants of South America Vol. 2; Máthé, Á., Bandoni, A., Eds.; Medicinal and Aromatic Plants of the World, Volume 7; Springer: Cham, Switzerland, 2021; pp. 225–234. ISBN 978-3-030-62818-5. [Google Scholar]
- Cuello, S.; Alberto, M.R.; Zampini, I.C.; Ordoñez, R.M.; Isla, M.I. Comparative study of antioxidant and anti-inflammatory activities and genotoxicity of alcoholic and aqueous extracts of four Fabiana species that grow in mountainous area of Argentina. J. Ethnopharmacol. 2011, 137, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Setyani, W.; Murwanti, R.; Sulaiman, T.N.S.; Hertiani, T. Application of Response Surface Methodology (RSM) for the optimization of ultrasound-assisted extraction (UAE) of Moringa oleifera: Extraction yield, content of bioactive compounds, and biological effects in vitro. Plants 2023, 12, 2455. [Google Scholar] [CrossRef] [PubMed]
- Dhanani, T.; Shah, S.; Gajbhiye, N.A.; Kumar, S. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arab. J. Chem. 2017, 10, S1193–S1199. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Ren, X. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef]
- Majid, I.; Khan, S.; Aladel, A.; Dar, A.H.; Adnan, M.; Khan, M.I.; Ashraf, S.A. Recent insights into green extraction techniques as efficient methods for the extraction of bioactive components and essential oils from foods. CYTA-J. Food 2023, 21, 101–114. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Fabiano-Tixier, A.S.; Nutrizio, M.; Jambrak, A.R.; Munekata, P.E.; Cravotto, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- El Baakili, A.; Fadil, M.; Es-Safi, N.E. Ultrasonic-assisted extraction for phenolic compounds and antioxidant activity of Moroccan Retama sphaerocarpa L. leaves: Simultaneous optimization by response surface methodology and characterization by HPLC/ESI-MS analysis. Heliyon 2023, 9, e17168. [Google Scholar] [CrossRef] [PubMed]
- Cannavacciuolo, C.; Pagliari, S.; Celano, R.; Campone, L.; Rastrelli, L. Critical analysis of green extraction techniques used for botanicals: Trends, priorities, and optimization strategies—A review. TrAC 2024, 173, 117627. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Martínez-Zamora, L.; Mozafari, L.; Bueso, M.C.; Kessler, M.; Artés-Hernández, F. Response surface methodology to optimize the extraction of carotenoids from horticultural by-products—A systematic review. Foods 2023, 12, 4456. [Google Scholar] [CrossRef]
- Silva, E.M.; Rogez, H.; Larondelle, Y. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep. Purif. Technol. 2007, 55, 381–387. [Google Scholar] [CrossRef]
- Mabry, T.J.; Markham, K.R.; Thomas, M.B. The Systematic Identification of Flavonoids; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
- Sepúlveda Rincón, C.T.; Ciro Gómez, G.L.; Zapata Montoya, J.E. Extracción de compuestos fenólicos y actividad antioxidante de hojas de Bixa orellana L. (achiote). Rev. Cuba. Plantas Med. 2016, 21, 133–144. [Google Scholar]
- Sharmila, G.; Nikitha, V.S.; Ilaiyarasi, S.; Dhivya, K.; Rajasekar, V.; Kumar, N.M.; Muthukumaran, C. Ultrasound assisted extraction of total phenolics from Cassia auriculata leaves and evaluation of its antioxidant activities. Ind. Crops Prod. 2016, 84, 13–21. [Google Scholar] [CrossRef]
- Banožić, M.; Banjari, I.; Flanjak, I.; Paštar, M.; Vladić, J.; Jokić, S. Optimization of MAE for the separation of nicotine and phenolics from tobacco waste by using the response surface methodology approach. Molecules 2021, 26, 4363. [Google Scholar] [CrossRef] [PubMed]
- Belwal, T.; Chemat, F.; Venskutonis, P.R.; Cravotto, G.; Jaiswal, D.K.; Bhatt, I.D.; Luo, Z. Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TrAC Trends Anal. Chem. 2020, 127, 115–895. [Google Scholar] [CrossRef]
- Geow, C.H.; Tan, M.C.; Yeap, S.P.; Chin, N.L. A review on extraction techniques and its future applications in industry. Eur. J. Lipid Sci. Technol. 2021, 123, 200–302. [Google Scholar] [CrossRef]
- Talmaciu, A.I.; Volf, I.; Popa, V.I. A comparative analysis of the ‘green’ techniques applied for polyphenols extraction from bioresources. Chem. Biodivers. 2015, 12, 1635–1651. [Google Scholar] [CrossRef] [PubMed]
- Carabajal, M.P.A.; Isla, M.I.; Borsarelli, C.; Zampini, I.C. Influence of in vitro gastro-duodenal digestion on the antioxidant activity of single and mixed three “Jarilla” species infusions. J. Herb. Med. 2019, 19, 100–296. [Google Scholar] [CrossRef]
- Torres-Carro, R.; Isla, M.I.; Thomas-Valdes, S.; Jimenez-Aspee, F.; Schmeda-Hirschmann, G.; Alberto, M.R. Inhibition of pro-inflammatory enzymes by medicinal plants from the Argentinean highlands (Puna). J. Ethnopharmacol. 2017, 205, 57–68. [Google Scholar] [CrossRef]
- Bustanji, Y.; Hudaib, M.; Tawaha, K.; Mohammad, M.; Almasri, I.; Hamed, S.; Oran, S. In vitro xanthine oxidase inhibition by selected Jordanian medicinal plants. Jordan J. Pharm. Sci. 2011, 4, 49–56. [Google Scholar]
- Xie, X.; He, Z.; Chen, N.; Tang, Z.; Wang, Q.; Cai, Y. The roles of environmental factors in regulation of oxidative stress in plant. BioMed Res. Int. 2019, 9732325. [Google Scholar] [CrossRef] [PubMed]
- Madunić, J.; Madunić, I.V.; Gajski, G.; Popić, J.; Garaj-Vrhovac, V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett. 2018, 413, 11–22. [Google Scholar] [CrossRef]
- Balasubramianian, S.; Zhu, L.; Eckert, R.L. Apigenin inhibition of involucrin gene expression is associated with a specific reduction in phosphorylation of protein kinase C Tyr 311. J. Biol. Chem. 2006, 281, 36162–36172. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, S.U. Recent insights into the biological functions of apigenin. EXCLI J. 2020, 19, 984–991. [Google Scholar]
- Yang, C.S.; Landau, J.M.; Huang, M.T.; Newmark, H.L. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr. 2001, 21, 381–406. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Fernando, C.D.; Soysa, P. Optimized enzymatic colorimetric assay for determination of hydrogen peroxide (H2O2) scavenging activity of plant extracts. MethodsX 2015, 2, 283–291. [Google Scholar] [CrossRef]
- Valentao, P.; Fernandes, E.; Carvalho, F.; Andrade, P.B.; Seabra, R.M.; Bastos, M.L. Antioxidant activity of Centaurium erythraea infusion evidenced by its superoxide radical scavenging and xanthine oxidase inhibitory activity. J. Agric. Food Chem. 2001, 49, 3476–3479. [Google Scholar] [CrossRef]
- Taraporewala, I.B.; Kauffman, J.M. Synthesis and Structure–Activity Relationships of Anti-inflammatory 9,10-Dihydro-9-oxo-2-acridine-alkanoic. Acids and 4-(2-carboxyphenyl) aminobenzenealkanoic Acids. J. Pharm. Sci. 1990, 79, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Cos, P.; Ying, L.; Calomme, M.; Hu, J.P.; Cimanga, K.; Van Poel, B.; Pieters, L.; Vlietinck, A.J.; Berghe, D.V. Structure−activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Nat. Prod. 1998, 61, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Maron, D.M.; Ames, B.N. Revised methods for the Salmonella mutagenicity test. In Handbook of Mutagenicity Test Procedures; Kilbey, B.J., Legator, M.S., Nichols, W., Ramel, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 93–140. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Borenfreud, E.; Puerner, J.A. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett. 1985, 24, 119–124. [Google Scholar] [CrossRef]
- Pérez, Y.G.; Gilling, P.A. Determinación de la toxicidad aguda del dicromato de potasio en larvas de Artemia salina. Anu. Toxicol. 2001, 1, 4–108. [Google Scholar]
- Solis, G.M.; Petrascheck, M. Measuring Caenorhabditis elegans life span in 96 well microtiter plates. JoVE 2011, 49, e2496. [Google Scholar]
UAE | ||||||
---|---|---|---|---|---|---|
Amplitude (%) | Time (min) | Solid/Liquid Ratio (g/mL) | Phytochemicals | Predicted Value | Experimental Value | Prediction Error (%) |
25 | 30 | 1:20 | TPC (µg GAE 1/mL) | 1275.33 | 1183.85 ± 1 | 7 ± 0.43 |
F (µg QE 2/mL) | 172.03 | 162.31 ± 0.2 | 5 ± 0.39 | |||
MAE | ||||||
Power (W) | Time (seg) | Solid/Liquid Ratio (g/mL) | Phytochemicals | Predicted Value | Experimental Value | Prediction Error (%) |
700 | 90 | 1:20 | TPC (µg GAE 1/mL) | 562.67 | 584.97 ± 21 | 4 |
F (µg QE 2/mL) | 129.88 | 133.60 ± 3 | 2 | |||
ABTS•+ (%) | 48.14 | 51.9 ± 4.7 | 7 |
Conventional | UAE-Optimized | MAE-Optimized | |
---|---|---|---|
TPC [µg GAE 1/mL] | 1308 ± 9.2 A | 1348.03 ± 10.2 A | 524.8 ± 35.1 B |
F [µg QE 2/mL] | 221 ± 19.8 A | 212.36 ± 17.2 A | 144.08 ± 12.3 B |
ABTS•+ [%] | 50 ± 4.6 B | 74 ± 5.7 A | 57 ± 4.8 B |
DW [mg/mL] | 9.94 ± 0.8 B | 17.4 ± 1.2 A | 9.8 ± 0.7 B |
Time [days/min/seg] | 7 days | 30 min | 90 seg |
Volume of solvent | 20 mL | 20 mL | 20 mL |
Plant material | 1 g | 1 g | 1 g |
Extraction Method | TPC/Plate [µg GAE 1/Plate] | Percentage of Mutagenic Inhibition (% MI) | |
---|---|---|---|
TA98 | TA100 | ||
UAE | 500 | 24.63 ± 3.84 D | 13.11 ± 1.31 D |
1000 | 53.73 ± 8.34 B | 17.84 ± 0.78 D | |
2000 | 68.82 ± 1.72 B | 48.35 ± 4.83 BC | |
MAE | 500 | 14.92 ± 5.10 D | 19.93 ± 1.4 D |
1000 | 41.01 ± 646 C | 28.13 ± 3.1 D | |
2000 | 66.37 ± 5.55 B | 42.54 ± 4.51 C | |
Conventional | 500 | 6.32 ± 1.90 E | 17.65 ± 2.3 D |
1000 | 32.90 ± 5.37 C | 11.36 ± 1.13 D | |
2000 | 55.43 ± 7.18 B | 52.36 ± 7.4 B | |
C (+) green tea | 1000 | 74.10 ± 1.80 A | 69.01 ± 2.25 A |
MTT Assay | Neutral Red Assay | |
---|---|---|
Extraction Method | LC50 (µg 1 GAE/mL) | LC50 (µg 1 GAE/mL) |
UAE | 18.0 ± 2.1 A | 60.0 ± 8.8 A |
MAE | 14.0 ± 1.7 A | 40.0 ± 8.1 A |
Conventional | 16.0 ± 2.0 A | 42.0 ± 7.7 A |
Quercetin | 15.1 ± 1.8 A | 52.3 ± 6.0 A |
A. salina | C. elegans | |
---|---|---|
Extraction Method | LC50 a (µg 1 GAE/mL) | LC50 b (µg 1 GAE/mL) |
UAE | 90.00 ± 7.50 A | 47.85 ± 5.60 A |
MAE | 112.59 ± 8 A | 49.00 ± 6.10 A |
Conventional | 113.77 ± 11 A | 54.73 ± 4.30 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González, D.A.; Martínez Chamás, J.; Orqueda, M.E.; Leal, M.; Conta, A.; Mercado, M.I.; Isla, M.I.; Zampini, I.C. Optimization of Phenolic Compounds Extraction from Aerial Parts of Fabiana punensis S. C. Arroyo by Ultrasound- and Microwave-Assisted Extraction. Molecules 2024, 29, 3578. https://doi.org/10.3390/molecules29153578
González DA, Martínez Chamás J, Orqueda ME, Leal M, Conta A, Mercado MI, Isla MI, Zampini IC. Optimization of Phenolic Compounds Extraction from Aerial Parts of Fabiana punensis S. C. Arroyo by Ultrasound- and Microwave-Assisted Extraction. Molecules. 2024; 29(15):3578. https://doi.org/10.3390/molecules29153578
Chicago/Turabian StyleGonzález, Daniela Alejandra, José Martínez Chamás, María Eugenia Orqueda, Mariana Leal, Agostina Conta, María Inés Mercado, María Inés Isla, and Iris Catiana Zampini. 2024. "Optimization of Phenolic Compounds Extraction from Aerial Parts of Fabiana punensis S. C. Arroyo by Ultrasound- and Microwave-Assisted Extraction" Molecules 29, no. 15: 3578. https://doi.org/10.3390/molecules29153578
APA StyleGonzález, D. A., Martínez Chamás, J., Orqueda, M. E., Leal, M., Conta, A., Mercado, M. I., Isla, M. I., & Zampini, I. C. (2024). Optimization of Phenolic Compounds Extraction from Aerial Parts of Fabiana punensis S. C. Arroyo by Ultrasound- and Microwave-Assisted Extraction. Molecules, 29(15), 3578. https://doi.org/10.3390/molecules29153578