Bioactive Potential of Pogostemon benghalensis (Burm.f.) Kuntze: Antibacterial, Antioxidant, and Xanthine Oxidase Inhibitory Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals Reagents, Solvents, and Standard Drugs
2.2. Bacterial Strains Utilized in Study
2.3. Authentication of Plant Sample
2.4. Preparation of the Plant Extract
2.5. Calculation of Extractive Yield
2.6. Quantitative Determination of Total Phenolic Content
2.7. Quantitative Determination of Total Flavonoid Content
2.8. Evaluation of Antioxidant Activity
2.9. Xanthine Oxidase Inhibitory Assay of P. benghalensis Inflorescence and Stem Bark Extracts
2.9.1. Preparation of Plant Extract, Xanthine, Xanthine Oxidase (XO) Solution
2.9.2. Xanthine Oxidase Inhibition Activity Assay
2.10. Evaluation of the Antibacterial Effect of P. benghalensis Inflorescence and Stem Bark Extracts
2.10.1. Plant Extracts and Filter Paper Disk Preparation
2.10.2. Sub-Culturing Bacterial Strains and Muller–Hinton Agar (MHA) Preparation
2.10.3. Bacterial Inocula/Suspension Preparation
2.10.4. Calculation of the Zone of Inhibition (ZOI) Against Examined Bacterial Strains
2.10.5. Determination of MBC and MIC Values
2.11. Statistical Analysis
3. Results
3.1. Extractive Yield Value
3.2. Quantitative Analysis of Total Phenol Content
3.3. Quantitative Analysis of Total Flavonoid Content
3.4. Quantitative Measurement of Antioxidant Activity by Utilizing the DPPH Free Radical Inhibition Method
3.5. Evaluation of XO Inhibitory Effect of P. benghalensis Inflorescence and Stem Bark Extracts
3.6. Screening of Antibacterial Potency of P. benghalensis Inflorescence and Stem Bark Extracts
4. Discussion
5. Limitations of This Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calixto, J.B. The role of natural products in modern drug discovery. An. Acad. Bras. 2019, 91, e20190105. [Google Scholar] [CrossRef] [PubMed]
- Unal, O.; Eraslan, E.C.; Uysal, I.; Mohammed, F.S.; Sevindik, M.; Akgul, H. Biological activities and phenolic contents of Rumex scutatus collected from Turkey. Fresenius Environ. Bull. 2022, 31, 7341–7346. [Google Scholar]
- Lamichhane, G.; Pandey, P.R. Regulatory aspects of nutraceuticals and functional foods in Nepal. Int. J. Nutraceuticals Funct. Foods Nov. Foods 2020, 2, 186–192. [Google Scholar]
- Ullah, F.; Ayaz, M.; Sadiq, A.; Ullah, F.; Hussain, I.; Shahid, M.; Yessimbekov, Z.; Adhikari-Devkota, A.; Devkota, H.P. Potential role of plant extracts and phytochemicals against foodborne pathogens. Appl. Sci. 2020, 10, 4597. [Google Scholar] [CrossRef]
- Mohammed, F.S.; Kına, E.; Sevindik, M.; Doğan, M.; Pehlivan, M. Antioxidant and antimicrobial activities of ethanol extract of Helianthemum salicifolium (Cistaceae). Indian J. Nat. Prod. Res. 2021, 12, 459–462. [Google Scholar]
- Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life. Sci. 2005, 78, 431–441. [Google Scholar] [CrossRef]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef]
- Choudhury, A.; Singh, P.A.; Bajwa, N.; Dash, S.; Bisht, P. Pharmacovigilance of herbal medicines: Concerns and future prospects. J. Ethnopharmacol. 2023, 309, 116383. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Five important seeds in traditional medicine, and pharmacological benefits. Seeds 2023, 2, 290–308. [Google Scholar] [CrossRef]
- Pandey, L.K.; Sharma, K.R. Analysis of phenolic and flavonoid content, α-amylase inhibitory and free radical scavenging activities of some medicinal plants. Sci. World J. 2022, 2022, 4000707. [Google Scholar] [CrossRef]
- Hemaiswarya, S.; Kumar, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008, 15, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Akinsulire, O.R.; Aibinu, I.E.; Adenipekun, T.; Adelowotan, T.; Odugbemi, T. In vitro antimicrobial activity of crude extracts from plants Bryophyllum pinnatum and Kalanchoe crenata. Afr. J. Tradit. Complement. Altern. Med. 2007, 4, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, G.F.; Locatelli, J.; Freitas, P.C.; Silva, G.L. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz. J. Microbiol. 2000, 31, 247–256. [Google Scholar] [CrossRef]
- Tan, A. Novel 1, 2, 3-triazole compounds: Synthesis, in vitro xanthine oxidase inhibitory activity, and molecular docking studies. J. Mol. Struct. 2020, 1211, 128060. [Google Scholar] [CrossRef]
- Singh, J.V.; Bedi, P.M.; Singh, H.; Sharma, S. Xanthine oxidase inhibitors: Patent landscape and clinical development (2015–2020). Expert Opin. Ther. Pat. 2020, 30, 769–780. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Ren, L.; Xie, Y. Advances in structures required of polyphenols for xanthine oxidase inhibition. Food Front. 2020, 1, 152–167. [Google Scholar] [CrossRef]
- Liang, G.; Nie, Y.; Chang, Y.; Zeng, S.; Liang, C.; Zheng, X.; Xiao, D.; Zhan, S.; Zheng, Q. Protective effects of Rhizoma smilacis glabrae extracts on potassium oxonate- and monosodium urate-induced hyperuricemia and gout in mice. Phytomedicine 2019, 59, 152772. [Google Scholar] [CrossRef]
- Kou, Y.Y.; Li, Y.F.; Xu, M.; Li, W.Y.; Yang, M.; Li, R.L. Effects of rupeng15 powder (rpp15) on monosodium urate crystal-induced gouty arthritis in rats. Evide. Based Complement. Alternat. Med. 2015, 2015, 527019. [Google Scholar] [CrossRef]
- Vasudeva, N.; Singla, P.; Das, S.; Sharma, S.K. Antigout and antioxidant activity of stem and root of Origanum majorana Linn. Am. J. Drug Discov. Dev. 2014, 4, 102–112. [Google Scholar] [CrossRef]
- Umamaheswari, M.; AsokKumar, K.; Somasundaram, A.; Sivashanmugam, T.; Subhadradevi, V.; Ravi, T.K. Xanthine oxidase inhibitory activity of some Indian medical plants. J. Ethnopharmacol. 2007, 109, 547–551. [Google Scholar] [CrossRef]
- Irawan, C.; Utami, A.; Styani, E.; Putri, I.D.; Putri, R.K.; Dewanta, A.; Ramadhanti, A. Potential of ethanolic extract from ripe Musa balbisiana Colla fruit using ultrasound-assisted extraction as an antioxidant and anti-Gout. Pharmacogn. J. 2021, 13, 1332–1340. [Google Scholar] [CrossRef]
- Daoudi, N.E.; Bouhrim, M.; Ouassou, H.; Bnouham, M. Medicinal plants as a drug alternative source for the antigout therapy in Morocco. Scientifica 2020, 2020, 8637583. [Google Scholar] [CrossRef] [PubMed]
- Uprety, Y.; Poudel, R.C.; Gurung, J.; Chettri, N.; Chaudhary, R.P. Traditional use and management of NTFPs in Kangchenjunga Landscape: Implications for conservation and livelihoods. J. Ethnobiol. Ethnomed. 2016, 12, 19. [Google Scholar] [CrossRef] [PubMed]
- Dangol, D.R. Economic uses of forest plant resources in western Chitwan, Nepal. Banko Janakari 2002, 12, 56. [Google Scholar] [PubMed]
- Aryal, S.; Adhikari, B.; Panthi, K.; Aryal, P.; Mallik, S.K.; Bhusal, R.P.; Salehi, B.; Setzer, W.N.; Sharifi-Rad, J.; Koirala, N. Antipyretic, antinociceptive, and anti-inflammatory activities from Pogostemon benghalensis leaf extract in experimental wister rats. Medicines 2019, 6, 96. [Google Scholar] [CrossRef]
- Dahiya, S.; Batish, D.R.; Singh, H.P. Ethnobotanical, phytochemical and pharmacological aspects of Bengal Pogostemon (Pogostemon benghalensis). J. Herbmed. Pharmacol. 2020, 9, 318–327. [Google Scholar] [CrossRef]
- Thakur, M.; Asrani, R.K.; Thakur, S.; Sharma, P.K.; Patil, R.D.; Lal, B.; Parkash, O. Observations on traditional usage of ethnomedicinal plants in humans and animals of Kangra and Chamba districts of Himachal Pradesh in North-Western Himalaya, India. J. Ethnopharmacol. 2016, 191, 280–300. [Google Scholar] [CrossRef]
- Dangol, D.R. Traditional uses of plants of common land habitats in Western Chitwan, Nepal. J. Inst. Agric. Anim. Sci. 2008, 29, 71. [Google Scholar]
- Padal, S.B.; Ramakrishna, H.; Devender, R. Ethnomedicinal studies for endemic diseases by the tribes of Munchingiputtu Mandal, Visakhapatnam district, Andhra Pradesh, India. Int. J. Med. Arom. Plants. 2012, 2, 45345–45349. [Google Scholar]
- Bhattarai, S.; Chaudhary, R.P.; Taylor, R.S. Ethno-medicinal plants used by the people of Nawalparasi District, Central Nepal. Our Nat. 2009, 7, 82–99. [Google Scholar] [CrossRef]
- Khadka, A.; Budha Magar, A.; Sharma, K.R. Chemical profiling and biological activities on nepalese medicinal plant extracts and isolation of active fraction of Nyctanthes arbor-tristis. Sci. World J. 2024, 2024, 5080176. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.S.; Manandhar, N.P.; Hudson, J.B.; Towers, G.H. Antiviral activities of Nepalese medicinal plants. J. Ethnopharmacol. 1996, 52, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, S.; Batish, D.R.; Singh, H.P. Pogostemon benghalensis essential oil inhibited the weed growth via causing oxidative damage. Rev. Bras. Bot. 2020, 43, 447–457. [Google Scholar] [CrossRef]
- Thoppil, J.E.; Tajo, A.; Minija, J.; Deena, M.J.; Sreeranjini, K.; Leeja, L.; Sivadasan, M.; Alfarhan, A.H. Antimicrobial activity of the essential oils of three species of Pogostemon. J. Environ. Biol. 2014, 35, 795–798. [Google Scholar]
- Premakumari, P.D.; Kumaraswamy, M.; Sarayu, M.G. Anti-inflammatory potential of essential oil from Pogostemon benghalensis (burm. f.) kuntze. using animal models. J. Adv. Sci. Res. 2020, 11, 92–99. [Google Scholar]
- Anjana, S.; Thoppil, J.E. Chemical composition of the essential oils of four Pogostemon spp. and their larvicidal activity against Aedes albopictus Skuse (Diptera: Culicidae). Int. J. Environ. Biol. 2013, 3, 26–31. [Google Scholar]
- Patel, M.S.; Antala, B.V.; Dowerah, E.; Senthilkumar, R.; Lahkar, M. Antitumor activity of Pogostemon benghalensis Linn. on ehrlich ascites carcinoma tumor bearing mice. J. Cancer Res. Ther. 2014, 10, 1071–1075. [Google Scholar] [CrossRef]
- Neupane, P.; Lamichhane, J. Estimation of total phenolic content, total flavonoid content and antioxidant capacities of five medicinal plants from Nepal. Vegetos 2020, 33, 360–366. [Google Scholar] [CrossRef]
- Umamaheswari, M.; Asokkumar, K.; Sivashanmugam, A.T.; Remyaraju, A.; Subhadradevi, V.; Ravi, T.K. In vitro xanthine oxidase inhibitory activity of the fractions of Erythrina stricta Roxb. J. Ethnopharmacol. 2009, 124, 646–648. [Google Scholar] [CrossRef]
- Palani, T.; Shobha, K.; Thirunavukkarasu, P.; Hari, R. In vitro and in silico antigout arthritic activities of ethanolic and aqueous stem extracts of Cissus quadrangularis—A TLR2 and TLR4 receptor approach. J. Appl. Pharm. Sci. 2018, 8, 15–22. [Google Scholar]
- Owen, P.L.; Johns, T. Xanthine oxidase inhibitory activity of northeastern North American plant remedies used for gout. J. Ethnopharmacol. 1999, 64, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Neupane, S.; Bajracharya, S.; Thada, S.; Bakabal, A.; Khadka, R.B.; Devkota, H.P.; Pandey, J. Total phenolic and flavonoid contents, and preliminary antioxidant, xanthine oxidase inhibitory and antibacterial activities of fruits of lapsi (Choerospondias axillaris roxb.), an underutilized wild Fruit of Nepal. Appl. Sci. 2023, 13, 8945. [Google Scholar] [CrossRef]
- Bagale, R.; Acharya, S.; Gupta, A.; Chaudhary, P.; Chaudhary, G.P.; Pandey, J. Antibacterial and antioxidant activities of Prinsepia utilis royle leaf and seed extracts. J. Trop. Med. 2022, 2022, 3898939. [Google Scholar] [CrossRef] [PubMed]
- Sandhiya, U.; Manikandan, T.; Thavamurugan, S.; Kavipriya, M.R.; Pavithra, S.K.; Lakshmi Prabha, A.M. Profiling bioactive compounds of Pogostemon benghalensis (Burm. f.) Kuntze and its antibacterial activity. Vegetos 2024, 37, 144–154. [Google Scholar] [CrossRef]
- Pradeep, D.P.; Murugan, K. Comparative study on antioxidant activity of essential oils from Pogostemon benghalensis (Burm. f.) kuntze. and P. cablin (blanco) Benth. World J. Pharm. Res. 2018, 8, 1301–1313. [Google Scholar]
- Samydurai, P.; Saradha, M. Effects of various solvent on the extraction of antimicrobial, antioxidant phenolics from the stem bark of Decalepis hamiltonii Wight and Arn. Asian J. Res. Pharm. Sci. 2016, 6, 129–134. [Google Scholar]
- Tham, M.W.; Liew, K.C. Influence of different extraction temperatures and methanol solvent percentages on the total phenols and total flavonoids from the heartwood and bark of Acacia auriculiformis. Eur. J. Wood Wood Prod. 2014, 72, 67–72. [Google Scholar] [CrossRef]
- Yen, G.C.; Duh, P.D.; Tsai, C.L. Relationship between antioxidant activity and maturity of peanut hulls. J. Agric. Food Chem. 1993, 41, 67–70. [Google Scholar] [CrossRef]
- Pandey, Y.; Upadhyay, S.; Bhatt, S.S. Phytochemical constituent of some wild edible fruits of Sikkim Himalaya. J. Pharmacogn. Phytochem. 2018, 7, 1045–1047. [Google Scholar]
- Khatoniar, S.; Barooah, M.S.; Baruah, I.C. Qualitative and quantitative phytochemical assessment and antioxidant activity of selected green leafy vegetables of Assam. J. Pharmacogn. Phytochem. 2018, 7, 1762–1765. [Google Scholar]
- Parajuli, S.; Pun, N.T.; Parajuli, S.; Jamarkattel-Pandit, N. Antioxidant activity, total phenol and flavanoid contents in some selected medicinal plants of Nepal. J. Health Allied Sci. 2012, 2, 27–31. [Google Scholar] [CrossRef]
- Canadanovic-Brunet, J.M.; Djilas, S.M.; Cetkovic, G.S.; Tumbas, V.T. Free-radical scavenging activity of wormwood (Artemisia absinthium L) extracts. J. Sci. Food Agric. 2005, 85, 265–272. [Google Scholar] [CrossRef]
- Pimpliskar, M.R.; Jadhav, R.; Ughade, Y.; Jadhav, R.N. Preliminary phytochemical and pharmacological screening of Pogostemon benghalensis for antioxidant and antibacterial activity. Asian J. Pharm. Pharmacol. 2021, 7, 28–32. [Google Scholar] [CrossRef]
- Karle, B.A.; Sasawade, R.R. Study of antioxidant activity of some selected medicinal plants. Int. J. Res. Anal. Rev. 2019, 6, 645–647. [Google Scholar]
- Chanotiya, C.S.; Yadav, A.; Singh, A.K.; Mathela, C.S. Composition of the leaf and inflorescence essential oil of Pogostemon benghalensis Burm. F. from Kumaon. Nat. Prod. Commun. 2007, 2, 941–944. [Google Scholar] [CrossRef]
- Joshi, R.K. Volatile constituents of leaf, stem and flower of the traditional shrub Pogostemon plectranthoides Desf. from the Western Ghats, India. Nat. Prod. Res. 2021, 36, 411–413. [Google Scholar] [CrossRef]
- Quan, N.V.; Anh, L.H.; Lam, V.Q.; Takami, A.; Teschke, R.; Khanh, T.D.; Xuan, T.D. Anti-diabetes, anti-gout, and anti-leukemia properties of essential oils from natural spices Clausena indica, Zanthoxylum rhetsa, and Michelia tonkinensis. Molecules 2022, 27, 774. [Google Scholar] [CrossRef]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F. Advances in biological activities of essential oils. Stud. Nat. Prod. Chem. 2022, 74, 331–366. [Google Scholar]
- Huang, C.Y.; Chang, Y.Y.; Chang, S.T.; Chang, H.T. Xanthine oxidase inhibitory activity and chemical composition of Pistacia chinensis leaf essential oil. Pharmaceutics 2022, 14, 1982. [Google Scholar] [CrossRef]
- Wang, S.Y.; Yang, C.W.; Liao, J.W.; Zhen, W.W.; Chu, F.H.; Chang, S.T. Essential oil from leaves of Cinnamomum osmophloeum acts as a xanthine oxidase inhibitor and reduces the serum uric acid levels in oxonate-induced mice. Phytomedicine 2008, 15, 940–945. [Google Scholar] [CrossRef]
- Bou-Salah, L.; Benarous, K.; Linani, A.; Bombarda, I.; Yousfi, M. In vitro and in silico inhibition studies of five essential oils on both enzymes human and bovine xanthine oxidase. Ind. Crops Prod. 2020, 143, 111949. [Google Scholar] [CrossRef]
- Lefebvre, T.; Destandau, E.; Lesellier, E. Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. J. Chromatogr. A 2021, 1635, 461770. [Google Scholar] [CrossRef] [PubMed]
- Markom, M.; Hasan, M.; Daud, W.R.; Singh, H.; Jahim, J.M. Extraction of hydrolysable tannins from Phyllanthus niruri Linn.: Effects of solvents and extraction methods. Sep. Purif. Technol. 2007, 52, 487–496. [Google Scholar] [CrossRef]
- Essawi, T.; Srour, M. Screening of some Palestinian medicinal plants for antibacterial activity. J. Ethnopharmacol. 2000, 70, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Opoku, A.R.; Geheeb-Keller, M.; Hutchings, A.D.; Terblanche, S.E.; Jäger, A.K.; Van Staden, J. Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities. J. Ethnopharmacol. 1999, 68, 267–274. [Google Scholar] [CrossRef]
- Lodha, S.; Deshmukh, S. Phytochemical analysis and antimicrobial property of leaves of Pogostemon benghalensis (Burm. F.) Kuntze. Asian J. Microbiol. Biotechnol. Environ. Sci. 2020, 22, 71–76. [Google Scholar]
- Oussalah, M.; Caillet, S.; Lacroix, M. Mechanism of action of Spanish oregano, Chinese cinnamon and savory essential oils against cell membranes and cell walls of Escherichia coli O157:H7 and Listeria monocytogenes. J. Food. Prot. 2006, 69, 1046–1055. [Google Scholar] [CrossRef]
Scientific Name | Solvent | Parts Used | Sample | Wt. of Crude Sample (g) | Wt. of Dry Extract (g) | Yield % |
---|---|---|---|---|---|---|
P. benghalensis | Aqueous | Inflorescence | PBFA | 200 | 5.6 | 2.8 |
Bark | PBBA | 200 | 9.9 | 4.9 | ||
Ethyl acetate | Inflorescence | PBFEA | 200 | 11.3 | 5.6 | |
Bark | PBBEA | 200 | 7.3 | 3.7 | ||
Methanol | Inflorescence | PBFM | 200 | 12.9 | 6.4 | |
Bark | PBBM | 200 | 10.3 | 5.1 |
Extracts | Total Phenol Content (μg GAE/mg) | Total Flavonoid Content (μg QE/mg) |
---|---|---|
PBBEA | 98.3 ± 2.2 a | 58.8 ± 1.4 a |
PBBM | 138.0 ± 2.1 b | 81.6 ± 2.5 b |
PBBA | 44.4 ± 1.0 c | 45.5 ± 3.2 c |
PBFEA | 106.9 ± 1.6 d | 61.8 ± 1.4 d |
PBFM | 161.3 ± 1.7 e | 96.8 ± 1.6 e |
PBFA | 29.9 ± 2.4 f | 38.4 ± 2.6 f |
Concentration (µg/mL) | % DPPH Radical Scavenging Activity | ||||||||
---|---|---|---|---|---|---|---|---|---|
7.81 | 15.625 | 31.25 | 62.5 | 125 | 250 | 500 | r | p-Value | |
PBFEA | 16.8 ± 0.4 | 26.2 ± 3.3 | 41.6 ± 0.7 | 57.3 ± 0.2 | 63.2 ± 0.7 | 82.2 ± 1.3 | 89.6 ± 0.9 | 0.86 | 0.013 |
PBFM | 19.3 ± 0.9 | 34.6 ± 0.5 | 51.4 ± 0.6 | 60.0 ± 1.0 | 66.8 ± 0.3 | 84.4 ± 0.1 | 93.6 ± 0.8 | 0.86 | 0.013 |
PBFA | 13.0 ± 0.9 | 17.7 ± 0.6 | 20.3 ± 0.5 | 24.7 ± 1.8 | 30.9 ± 1.3 | 36.9 ± 0.5 | 44.3 ± 1.3 | 0.93 | 0.002 |
PBBEA | 5.1 ± 0.5 | 4.9 ± 0.4 | 6.4 ± 1.4 | 12.9 ± 0.3 | 31.5 ± 1.9 | 41.7 ± 0.3 | 59.5 ± 0.3 | 0.96 | 0.0005 |
PBBM | 23.9 ± 1.8 | 30.67 ± 0.7 | 39.9 ± 0.7 | 57.5 ± 0.1 | 62.1 ± 0.1 | 96.2 ± 0.1 | 97.5 ± 1.8 | 0.89 | 0.008 |
PBBA | 15.7 ± 0.3 | 16.5 ± 0.5 | 19.1 ± 3.3 | 25.7 ± 0.5 | 33.1 ± 0.1 | 35.7 ± 0.1 | 41.0 ± 0.3 | 0.89 | 0.007 |
Concentration (µg /mL) | % Scavenged ± SD | r | p-Value |
---|---|---|---|
1.0 µg/mL | 7.5 ± 0.1 | ||
2.5 µg/mL | 25.5 ± 0.6 | 0.0028 | |
5 µg/mL | 51.3 ± 0.4 | 0.997 | |
10 µg/mL | 93.2 ± 0.3 |
Zone of Inhibition in mm (Mean ± SD) | ||||||||
---|---|---|---|---|---|---|---|---|
Bacterial Strains | PBBEA | PBBM | PBBA | PBFEA | PBFM | PBFA | Ciprofloxacin | Gentmycin |
S. epidermidis ATCC 12228 | 11.7 ± 0.7 | 13.0 ± 0.8 | 8.3 ± 0.6 | 10.1 ± 0.5 | 9.1 ± 0.3 | 11.1 ± 0.2 | - | 20.0 ± 0.6 |
S. pneumoniae ATCC 49619 | 11.3 ± 0.7 | 11.7 ± 0.9 | ND | 11.3 ± 0.5 | 10.6 ± 0.3 | ND | - | 18.4 ± 1.3 |
S. aureus ATCC 25923 | 9.3 ± 0.6 | 9.4 ± 0.4 | ND | 10.4 ± 0.5 | 7.1 ± 0.8 | ND | - | 12.3 ± 0.8 |
B. cereus ATCC 164872 | 11.0 ± 0.7 | 11.5 ± 0.4 | ND | 10.6 ± 0.8 | 10.2 ± 0.4 | 8.9 ± 0.3 | - | 13.1 ± 0.6 |
K. pneumonia ATCC 4352 | 9.1 ± 0.7 | 9.1 ± 0.3 | ND | 11.5 ± 0.5 | 12.9 ± 0.8 | ND | 27.5 ±1.7 | - |
P. aeruginosa ATCC 15442 | 8.0 ± 1.0 | ND | ND | 10.7 ± 0.4 | 8.6 ± 0.5 | ND | 22.3 ± 1.8 | - |
S. enteritidis ATCC 155350 | 8.3 ± 0.4 | ND | ND | ND | 10.1 ± 0.7 | ND | 24.2 ± 1.1 | - |
E. coli ATCC 14948 | 8.7 ± 0.5 | 9.9 ± 0.6 | 8.2 ± 0.1 | 8.8 ± 0.2 | 12.2 ± 0.6 | ND | 32.2 ± 1.5 | - |
Bacterial Strains | PBBEA | PBBM | PBBA | PBFEA | PBFM | PBFA | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC/MBC | MIC | MBC | MIC/MBC | MIC | MBC | MIC/MBC | MIC | MBC | MIC/MBC | MIC | MBC | MIC/MBC | MIC | MBC | MIC/MBC | |
S. epidermidis | 1.6 | 3.1 | 0.51 | 0.8 | 1.6 | 0.5 | 12.5 | 25.0 | 0.5 | 3.1 | 6.3 | 0.49 | 6.3 | 12.5 | 0.5 | 3.1 | 6.3 | 0.49 |
S. aureus | 6.3 | 6.3 | 1.0 | 3.1 | 3.1 | 1.0 | NT | NT | NT | 6.3 | 6.3 | 1.0 | 25.0 | 50.0 | 0.5 | NT | NT | NT |
B. cereus | 3.1 | 6.3 | 0.49 | 3.1 | 6.3 | 0.49 | NT | NT | NT | 6.3 | 12.5 | 0.5 | 3.1 | 6.3 | 0.49 | 12.5 | 25.0 | 0.5 |
S. pneumoniae | 3.1 | 3.1 | 1.0 | 1.6 | 3.1 | 0.51 | NT | NT | NT | 3.1 | 6.3 | 0.49 | 3.1 | 6.3 | 0.49 | NT | NT | NT |
K. pneumonia | 6.3 | 6.3 | 1.0 | 6.3 | 12.5 | 0.5 | NT | NT | NT | 3.1 | 12.5 | 0.5 | 1.6 | 3.1 | 0.51 | NT | NT | NT |
P. aeruginosa | 12.5 | 25.0 | 0.5 | NT | NT | NT | NT | NT | NT | 3.1 | 6.3 | 0.49 | 12.5 | 25.0 | 0.5 | NT | NT | NT |
E. coli | 12.5 | 25.0 | 0.5 | 3.1 | 6.3 | 0.49 | 25.0 | 50.0 | 0.5 | 25.0 | 50.0 | 0.5 | 1.6 | 3.1 | 0.49 | NT | NT | NT |
S. enteritidis | 25.0 | 50.0 | 0.5 | NT | NT | NT | NT | NT | NT | NT | NT | NT | 6.3 | 12.5 | 0.5 | NT | NT | NT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaishwal, N.; Jayswal, M.; Gupta, D.C.; Dhakal, B.; Koirala, S.; Khadka, R.B.; Devkota, H.P.; Pandey, J. Bioactive Potential of Pogostemon benghalensis (Burm.f.) Kuntze: Antibacterial, Antioxidant, and Xanthine Oxidase Inhibitory Activities. Bacteria 2025, 4, 3. https://doi.org/10.3390/bacteria4010003
Jaishwal N, Jayswal M, Gupta DC, Dhakal B, Koirala S, Khadka RB, Devkota HP, Pandey J. Bioactive Potential of Pogostemon benghalensis (Burm.f.) Kuntze: Antibacterial, Antioxidant, and Xanthine Oxidase Inhibitory Activities. Bacteria. 2025; 4(1):3. https://doi.org/10.3390/bacteria4010003
Chicago/Turabian StyleJaishwal, Nitesh, Mamta Jayswal, Deep Chand Gupta, Bishnu Dhakal, Santosh Koirala, Ram Bahadur Khadka, Hari Prasad Devkota, and Jitendra Pandey. 2025. "Bioactive Potential of Pogostemon benghalensis (Burm.f.) Kuntze: Antibacterial, Antioxidant, and Xanthine Oxidase Inhibitory Activities" Bacteria 4, no. 1: 3. https://doi.org/10.3390/bacteria4010003
APA StyleJaishwal, N., Jayswal, M., Gupta, D. C., Dhakal, B., Koirala, S., Khadka, R. B., Devkota, H. P., & Pandey, J. (2025). Bioactive Potential of Pogostemon benghalensis (Burm.f.) Kuntze: Antibacterial, Antioxidant, and Xanthine Oxidase Inhibitory Activities. Bacteria, 4(1), 3. https://doi.org/10.3390/bacteria4010003