Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (499)

Search Parameters:
Keywords = anti-soiling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4176 KiB  
Article
Anti-Overturning Performance of Prefabricated Foundations for Distribution Line Poles
by Liang Zhang, Chen Chen, Yan Yang, Kai Niu, Weihao Xu and Dehong Wang
Buildings 2025, 15(15), 2717; https://doi.org/10.3390/buildings15152717 (registering DOI) - 1 Aug 2025
Abstract
To enhance the anti-overturning performance of poles and prevent tilting or collapse, a prefabricated foundation for distribution lines is developed. Field tests are conducted on five groups of foundations. Based on the test results, finite element analysis (FEA) is employed to investigate the [...] Read more.
To enhance the anti-overturning performance of poles and prevent tilting or collapse, a prefabricated foundation for distribution lines is developed. Field tests are conducted on five groups of foundations. Based on the test results, finite element analysis (FEA) is employed to investigate the influence of different factors—such as pole embedment depth, foundation locations, soil type, and soil parameters—on the anti-overturning performance of pole prefabricated foundations. The results indicate that under ultimate load conditions, the reaction force distribution at the base of the foundation approximates a triangular pattern, and the lateral earth pressure on the pole follows an approximately quadratic parabolic distribution along the depth. When the foundation size increases from 0.8 m to 0.9 m, the bearing capacity of the prefabricated foundation improves by 8%. Furthermore, when the load direction changes from 0° to 45°, the foundation’s bearing capacity increases by 14%. When the foundation is buried at a depth of 1.0 m, compared with the ground position, the ultimate overturning moment of the prefabricated foundation increases by 10%. Based on field test results, finite element simulation results, and limit equilibrium theory, a calculation method for the anti-overturning bearing capacity of prefabricated pole foundations is developed, which can provide a practical reference for the engineering design of distribution line poles and their prefabricated foundations. Full article
Show Figures

Figure 1

23 pages, 4079 KiB  
Article
Investigation on the Bearing Characteristics and Bearing Capacity Calculation Method of the Interface of Reinforced Soil with Waste Tire Grid
by Jie Sun, Yuchen Tao, Zhikun Liu, Xiuguang Song, Wentong Wang and Hongbo Zhang
Buildings 2025, 15(15), 2634; https://doi.org/10.3390/buildings15152634 - 25 Jul 2025
Viewed by 218
Abstract
Geogrids are frequently utilized in engineering for reinforcement; yet, they are vulnerable to construction damage when employed on coarse-grained soil subgrades. In contrast, waste tire grids are more appropriate for subgrade reinforcement owing to their rough surfaces, integrated steel meshes, robust transverse ribs, [...] Read more.
Geogrids are frequently utilized in engineering for reinforcement; yet, they are vulnerable to construction damage when employed on coarse-grained soil subgrades. In contrast, waste tire grids are more appropriate for subgrade reinforcement owing to their rough surfaces, integrated steel meshes, robust transverse ribs, extended degradation cycles, and superior durability. Based on the limit equilibrium theory, this study developed formulae for calculating the internal and external frictional resistance, as well as the end resistance of waste tires, to ascertain the interface bearing properties and calculation techniques of waste tire grids. Based on this, a mechanical model for the ultimate pull-out resistance of waste-tire-reinforced soil was developed, and its validity was confirmed through a series of pull-out tests on single-sided strips, double-sided strips, and tire grids. The results indicated that the tensile strength of one side of the strip was approximately 43% of that of both sides, and the rough outer surface of the tire significantly enhanced the tensile performance of the strip; under identical normal stress, the tensile strength of the single-sided tire grid was roughly nine times and four times greater than that of the single-sided and double-sided strips, respectively, and the grid structure exhibited superior anti-deformation capabilities compared to the strip structure. The average discrepancy between the calculated values of the established model and the theoretical values was merely 2.38% (maximum error < 5%). Overall, this research offers technical assistance for ensuring the safety of subgrade design and promoting environmental sustainability in engineering, enabling the effective utilization of waste tire grids in sustainable reinforcement applications. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

28 pages, 16653 KiB  
Article
Integrated Assessment Methodology for Jack-Up Stability: Centrifuge Test of Entire Four-Legged Model for WTIVs
by Mingsheng Xiahou, Zhiyuan Wei, Yilin Wang, Deqing Yang, Jian Chi and Shuxiang Liu
Appl. Sci. 2025, 15(14), 7971; https://doi.org/10.3390/app15147971 - 17 Jul 2025
Viewed by 163
Abstract
Although wind turbine installation vessels (WTIVs) are increasingly operating in deepwater complex geological areas with larger scales, systematic research on and experimental validation of platform jack-up stability remain insufficient. This study aimed to establish a comprehensive evaluation framework encompassing penetration depth, anti-overturning/sliding stability, [...] Read more.
Although wind turbine installation vessels (WTIVs) are increasingly operating in deepwater complex geological areas with larger scales, systematic research on and experimental validation of platform jack-up stability remain insufficient. This study aimed to establish a comprehensive evaluation framework encompassing penetration depth, anti-overturning/sliding stability, and punch-through risk, thereby filling the gap in holistic platform stability analysis. An entire four-legged centrifuge test at 150× g was integrated with coupled Eulerian–Lagrangian (CEL) numerical simulations and theoretical methods to systematically investigate spudcan penetration mechanisms and global sliding/overturning evolution in clay/sand. The key findings reveal that soil properties critically influence penetration resistance and platform stability: Sand exhibited a six-times-higher ultimate bearing capacity than clay, yet its failure zone was 42% smaller. The sliding resistance in sand was 2–5 times greater than in clay, while the overturning behavior diverged significantly. Although the horizontal loads in clay were only 50% of those in sand, the tilt angles at equivalent sliding distances reached 8–10 times higher. Field validation at Guangdong Lemen Wind Farm confirmed the method’s reliability: penetration prediction errors of <5% and soil backflow/plugging effects were identified as critical control factors for punch-through risk assessment. Notably, the overturning safety factors for crane operation at 90° outreach and storm survival were equivalent, indicating operational load combinations dominate overturning risks. These results provide a theoretical and decision-making basis for the safe operation of large WTIVs, particularly applicable to engineering practices in complex stratified seabed areas. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

18 pages, 6970 KiB  
Article
Study on Lateral Erosion Failure Behavior of Reinforced Fine-Grained Tailings Dam Due to Overtopping Breach
by Yun Luo, Mingjun Zhou, Menglai Wang, Yan Feng, Hongwei Luo, Jian Ou, Shangwei Wu and Xiaofei Jing
Water 2025, 17(14), 2088; https://doi.org/10.3390/w17142088 - 12 Jul 2025
Viewed by 319
Abstract
The overtopping-induced lateral erosion breaching of tailings dams represents a critical disaster mechanism threatening structural safety, particularly in reinforced fine-grained tailings dams where erosion behaviors demonstrate pronounced water–soil coupling characteristics and material anisotropy. Through physical model tests and numerical simulations, this study systematically [...] Read more.
The overtopping-induced lateral erosion breaching of tailings dams represents a critical disaster mechanism threatening structural safety, particularly in reinforced fine-grained tailings dams where erosion behaviors demonstrate pronounced water–soil coupling characteristics and material anisotropy. Through physical model tests and numerical simulations, this study systematically investigates lateral erosion failure patterns of reinforced fine-grained tailings under overtopping flow conditions. Utilizing a self-developed hydraulic initiation test apparatus, with aperture sizes of reinforced geogrids (2–3 mm) and flow rates (4–16 cm/s) as key control variables, the research elucidates the interaction mechanisms of “hydraulic scouring-particle migration-geogrid anti-sliding” during lateral erosion processes. The study revealed that compared to unreinforced specimens, reinforced specimens with varying aperture sizes (2–3 mm) demonstrated systematic reductions in final lateral erosion depths across flow rates (4–16 cm/s): 3.3–5.8 mm (15.6−27.4% reduction), 3.1–7.2 mm (12.8–29.6% reduction), 2.3–11 mm (6.9–32.8% reduction), and 2.5–11.4 mm (6.2–28.2% reduction). Smaller-aperture geogrids (2 mm × 2 mm) significantly enhanced anti-erosion performance through superior particle migration inhibition. Concurrently, a pronounced positive correlation between flow rate and lateral erosion depth was confirmed, where increased flow rates weakened particle erosion resistance and exacerbated lateral erosion severity. The numerical simulation results are in basic agreement with the lateral erosion failure process observed in model tests, revealing the dynamic process of lateral erosion in the overtopping breach of a reinforced tailings dam. These findings provide critical theoretical foundations for optimizing reinforced tailings dam design, construction quality control, and operational maintenance, while offering substantial engineering applications for advancing green mine construction. Full article
Show Figures

Figure 1

27 pages, 9385 KiB  
Article
Comparative Analysis of Studies of Geological Conditions at the Planning and Construction Stage of Dam Reservoirs: A Case Study of New Facilities in South-Western Poland
by Maksymilian Połomski, Mirosław Wiatkowski and Gabriela Ługowska
Appl. Sci. 2025, 15(14), 7811; https://doi.org/10.3390/app15147811 - 11 Jul 2025
Viewed by 242
Abstract
Geological surveys have vital importance at the planning stage of dammed reservoir construction projects. The results of these surveys determine the majority of the technical solutions adopted in the construction design to ensure the proper safety and stability parameters of the structure during [...] Read more.
Geological surveys have vital importance at the planning stage of dammed reservoir construction projects. The results of these surveys determine the majority of the technical solutions adopted in the construction design to ensure the proper safety and stability parameters of the structure during water damming. Where the ground type is found to be different from what is expected, the construction project may be delayed or even cancelled. This study analyses issues and design modifications caused by the identification of different soil conditions during the construction of four new flood control reservoirs in the Nysa Kłodzka River basin in south-western Poland. The key findings are as follows: (1) a higher density of exploratory boreholes in areas with potentially fractured rock mass is essential for selecting the appropriate anti-filtration protection; (2) when deciding to apply deep piles, it is reasonable to verify, at the planning stage, whether they can be installed using the given technology directly at the planned site; (3) inaccurate identification of foundation soils under the dam body can lead to significant design modifications—in contrast, a denser borehole grid helps to determine the precise elevation of the base layer, which is essential for reliably estimating the volume of material required for the embankment; (4) in order to correctly assess the soil deposits located, for instance, in the reservoir basin area, it is more effective to use test excavations rather than relying solely on borehole-based investigations—as a last resort, test excavations can be used to supplement the latter. Full article
Show Figures

Figure 1

12 pages, 4263 KiB  
Article
Characterization of a Novel Lentzea Species Isolated from the Kumtagh Desert and Genomic Insights into the Secondary Metabolite Potential of the Genus
by Ying Wen, Jiahui Li, Fujun Qiao, Wanyin Luo, Tuo Chen, Guangxiu Liu and Wei Zhang
Microorganisms 2025, 13(7), 1628; https://doi.org/10.3390/microorganisms13071628 - 10 Jul 2025
Viewed by 271
Abstract
A novel actinobacterial strain, designated E54T, was isolated from a hyper-arid desert soil sample collected from the Kumtagh Desert in Dunhuang, Gansu Province, China. Phylogenetic analysis based on 16S rRNA gene sequences placed strain E54T within the genus Lentzea, [...] Read more.
A novel actinobacterial strain, designated E54T, was isolated from a hyper-arid desert soil sample collected from the Kumtagh Desert in Dunhuang, Gansu Province, China. Phylogenetic analysis based on 16S rRNA gene sequences placed strain E54T within the genus Lentzea, showing highest similarity to Lentzea waywayandensis DSM 44232T (98.9%) and Lentzea flava NBRC 15743T (98.5%). However, whole-genome comparisons revealed that the average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between E54T and these related strains were below the thresholds for species delineation. Strain E54T exhibited typical morphological characteristics of the genus Lentzea, forming a branched substrate. It grew optimally at 28–30 °C, pH 7.0–9.0, and tolerated up to 10% NaCl. The cell wall contained meso-diaminopimelic acid, the predominant menaquinone was MK-9(H4), and major fatty acids included iso-C16:0. The polar lipid profile comprised diphosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl inositol, hydroxyphosphatidyl ethanolamine, and an unidentified lipid. The characteristic amino acid type of the cell wall was meso-DAP. Whole-cell hydrolysis experiments revealed the characteristic cell wall sugar fractions: ribose and galactose. The genome of strain E54T is approximately 8.0 Mb with a DNA G+C content of 69.38 mol%. Genome mining revealed 39 biosynthetic gene clusters (BGCs), including non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKS), terpenes, and siderophores. Comparative antiSMASH-based genome analysis across 38 Lentzea strains further demonstrated the genus’ remarkable biosynthetic diversity. NRPS and type I PKS (T1PKS) were the most prevalent BGC types, indicating a capacity to synthesize structurally complex and pharmacologically relevant metabolites. Together, these findings underscore the untapped biosynthetic potential of the genus Lentzea and support the proposal of strain E54T as a novel species. The strain E54T (=JCM 34936T = GDMCC 4.216T) should represent a novel species, for which the name Lentzea xerophila sp. nov. is proposed. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

22 pages, 2022 KiB  
Article
Impact of Slow-Forming Terraces on Erosion Control and Landscape Restoration in Central Africa’s Steep Slopes
by Jean Marie Vianney Nsabiyumva, Ciro Apollonio, Giulio Castelli, Elena Bresci, Andrea Petroselli, Mohamed Sabir, Cyrille Hicintuka and Federico Preti
Land 2025, 14(7), 1419; https://doi.org/10.3390/land14071419 - 6 Jul 2025
Viewed by 577
Abstract
Large-scale land restoration projects require on-the-ground monitoring and evidence-based evaluation. This study, part of the World Bank Burundi Landscape Restoration and Resilience Project (in French: Projet de Restauration et de Résilience du Paysage du Burundi-PRRPB), examines the impact of slow-forming terraces on surface [...] Read more.
Large-scale land restoration projects require on-the-ground monitoring and evidence-based evaluation. This study, part of the World Bank Burundi Landscape Restoration and Resilience Project (in French: Projet de Restauration et de Résilience du Paysage du Burundi-PRRPB), examines the impact of slow-forming terraces on surface conditions and erosion in Isare (Mumirwa) and Buhinyuza (Eastern Depressions), Burundi. Slow-forming, or progressive, terraces were installed on 16 December 2022 (Isare) and 30 December 2022 (Buhinyuza), featuring ditches and soil bunds to enhance soil and water conservation. Twelve plots were established, with 132 measurement pins, of which 72 were in non-terraced plots (n_PT) and 60 were in terraced plots (PT). Monthly measurements, conducted until May 2023, assessed erosion reduction, surface conditions, roughness, and soil thickness. Terracing reduced soil loss by 54% in Isare and 9% in Buhinyuza, though sediment accumulation in ditches was excessive, especially in n_PT. Anti-erosion ditches improved surface stability by reducing slope length, lowering erosion and runoff. Covered Surface (CoS%) exceeded 95%, while Opened Surface (OS%) and Bare Surface (BS%) declined significantly. At Isare, OS% dropped from 97% to 80%, and BS% from 96% to 3% in PT. Similar trends appeared in Buhinyuza. Findings highlight PRRPB effectiveness in this short-term timeframe, and provide insights for soil conservation in steep-slope regions of Central Africa. Full article
Show Figures

Figure 1

32 pages, 16283 KiB  
Article
Artemisia absinthium L. Extract Targeting the JAK2/STAT3 Pathway to Ameliorate Atherosclerosis
by Jiayi Yang, Tian Huang, Lijie Xia and Jinyao Li
Foods 2025, 14(13), 2381; https://doi.org/10.3390/foods14132381 - 5 Jul 2025
Viewed by 487
Abstract
Artemisia absinthium L. contributes to ecological stabilization in arid regions through its deep root system for sand fixation and soil microenvironment modulation, thereby effectively mitigating desertification. Total terpenoids have been extracted from A. absinthium (AATP) and found to have antioxidant and anti-inflammatory activities. [...] Read more.
Artemisia absinthium L. contributes to ecological stabilization in arid regions through its deep root system for sand fixation and soil microenvironment modulation, thereby effectively mitigating desertification. Total terpenoids have been extracted from A. absinthium (AATP) and found to have antioxidant and anti-inflammatory activities. Terpenoids are a class of natural products derived from methyl hydroxypropanoic acid, for which their structural units consist of multiple isoprene (C5) units. They are one of the largest and most structurally diverse classes of natural compounds. However, there are still large gaps in knowledge regarding their exact biological activities and effects. Atherosclerosis (AS) is a prevalent cardiovascular disease marked by the chronic inflammation of the vascular system, and lipid metabolism plays a key role in its pathogenesis. This study determined the extraction and purification processes of AATP through single-factor experiments and response surface optimization methods. The purity of AATP was increased from 20.85% ± 0.94 before purification to 52.21% ± 0.75, which is 2.5 times higher than before purification. Studies have shown that the total terpenoids of A. absinthium significantly reduced four indices of serum lipids in atherosclerosis (AS) rats, thereby promoting lipid metabolism, inhibiting inflammatory processes, and hindering aortic wall thickening and hepatic fat accumulation. It is known from network pharmacology studies that AATP regulates the Janus kinase/signal transducer (JAK/STAT) signaling axis. Molecular docking studies have indicated that the active component of AATP effectively binds to Janus kinase (JAK2) and signal transducer (STAT3) target proteins. The results indicate that AATP can inhibit the release of pro-inflammatory mediators (such as reactive oxygen species (ROS)) in LPS-induced RAW264.7 macrophages. It also inhibits the M1 polarization of RAW264.7 macrophages. Protein immunoblotting analysis revealed that it significantly reduces the phosphorylation levels of Janus kinase (JAK2) and the signal transducer and activator of transcription 3 (STAT3). Research indicates that the active components in A. absinthium may exert anti-atherosclerotic effects by regulating lipid metabolism and inhibiting inflammatory responses. It holds potential value for development as a functional food or drug for the prevention and treatment of atherosclerosis. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

18 pages, 1475 KiB  
Article
Metabolomic Prediction of Naphthalene Pneumo-Toxicity in the Snail Helix aspersa maxima
by Aude Devalckeneer, Marion Bouviez and Jean-Marie Colet
Metabolites 2025, 15(7), 448; https://doi.org/10.3390/metabo15070448 - 3 Jul 2025
Viewed by 566
Abstract
Background: Polluted soils represent a major problem in many industrialized countries that urgently requires appropriate health risk assessment. The One Health concept that considers a close relationship between human and animal health and ecosystems relies, among other techniques, on continuous monitoring through the [...] Read more.
Background: Polluted soils represent a major problem in many industrialized countries that urgently requires appropriate health risk assessment. The One Health concept that considers a close relationship between human and animal health and ecosystems relies, among other techniques, on continuous monitoring through the use of animal species as bioindicators. In this context, terrestrial gastropods, already recognized as relevant indicators due to their anatomo-physiology, provide a reliable model to study the pneumotoxic effects of pollutants. On the other hand, risk assessment is based on multi-biomarker studies. Therefore, omic approaches seem particularly useful since they can simultaneously detect numerous early biological changes. Methods: In this study, Helix aspersa maxima was exposed to naphthalene, a highly volatile aromatic hydrocarbon responsible for numerous respiratory disorders. Pulmonary membrane extracts and hemolymph samples were analyzed by 1H-NMR spectroscopy after single or repeated exposures to naphthalene. Results: Numerous metabolic changes were observed, which could be related to membrane lesions, energy, anti-inflammatory, and tumorigenesis pathways. Conclusions: Our findings highlight the potential of combining animal indicator and omics techniques to predict respiratory health risks in cases of exposure to polluted soils. Full article
(This article belongs to the Collection Feature Papers in Assessing Environmental Health and Function)
Show Figures

Figure 1

17 pages, 2514 KiB  
Article
Predicting Potential Habitats and the Conservation of the Tasar Silkworm (Antheraea mylitta) in the Similipal Biosphere Reserve, Odisha, India
by Rakesh Ranjan Thakur, Debabrata Nandi, Dillip Kumar Bera, Saranjit Singh, Roshan Beuria, Priyanka Mishra, Fahdah Falah Ben Hasher, Maya Kumari and Mohamed Zhran
Sustainability 2025, 17(13), 5824; https://doi.org/10.3390/su17135824 - 24 Jun 2025
Viewed by 540
Abstract
The tasar silk production of India’s sericulture industry supports tribal livelihoods and economic sustainability. However, Antheraea mylitta Drury, 1773, the primary species for tasar silk, faces habitat threats due to deforestation, climate change, and anthropogenic pressures. This study evaluates the distribution and habitat [...] Read more.
The tasar silk production of India’s sericulture industry supports tribal livelihoods and economic sustainability. However, Antheraea mylitta Drury, 1773, the primary species for tasar silk, faces habitat threats due to deforestation, climate change, and anthropogenic pressures. This study evaluates the distribution and habitat suitability of wild tasar silkworm using multi-criteria approach, Geographic Information System (GIS), Remote Sensing (RS), and ecological niche modeling using the MaxEnt algorithm. Field surveys were conducted to collect cocoon samples, and the analysis of environmental parameters and assessment of soil micronutrient influences were also carried out. The MaxEnt model predictions indicate that the Central, Western, and Southern zones of Mayurbhanj, encompassing the Similipal Biosphere Reserve, provide the most suitable habitats. The jackknife test confirmed that these climatic variables collectively contributed 68.7% to the habitat suitability model. This study highlights the impact of habitat fragmentation and deforestation on tasar silkworm populations, emphasizing the need for conservation strategies, sustainable forest management, and afforestation programs. The findings highlight the following key conservation strategies: restoring habitats in Similipal, enforcing anti-deforestation laws, promoting community-led planting of host trees, and adopting climate-resilient silk farming to protect biodiversity and support tribal livelihoods. Full article
Show Figures

Figure 1

24 pages, 5864 KiB  
Article
Deformation Characteristics and Base Stability of a Circular Deep Foundation Pit with High-Pressure Jet Grouting Reinforcement
by Xiaoliang Zhu, Wenqing Zhao, Junchen Zhao, Guoliang Dai, Ruizhe Jin, Zhiwei Chen and Wenbo Zhu
Appl. Sci. 2025, 15(12), 6825; https://doi.org/10.3390/app15126825 - 17 Jun 2025
Cited by 1 | Viewed by 450
Abstract
This study investigates the deformation characteristics and base stability of a circular diaphragm wall support system (external diameter: 90 m, wall thickness: 1.5 m) with pit bottom reinforcement for the South Anchorage deep foundation pit of the Zhangjinggao Yangtze River Bridge, which uses [...] Read more.
This study investigates the deformation characteristics and base stability of a circular diaphragm wall support system (external diameter: 90 m, wall thickness: 1.5 m) with pit bottom reinforcement for the South Anchorage deep foundation pit of the Zhangjinggao Yangtze River Bridge, which uses layered and partitioned top-down excavation combined with lining construction. Through field monitoring (deep horizontal displacement of the diaphragm wall, vertical displacement at the wall top, and earth pressure) and numerical simulations (PLAXIS Strength Reduction Method), we systematically analyzed the deformation evolution and failure mechanisms during construction. The results indicate the following: (1) Under the synergistic effect of the circular diaphragm wall, lining, and pit bottom reinforcement, the maximum horizontal displacement at the wall top was less than 30 mm and the vertical displacement was 0.04%H, both significantly below code-specified thresholds, verifying the effectiveness of the support system and pit bottom reinforcement. (2) Earth pressure exhibited a “decrease-then-increase” trend during the excavation proceeds. High-pressure jet grouting pile reinforcement at the pit base significantly enhanced basal constraints, leading to earth pressure below the Rankine active limit during intermediate stages and converging toward theoretical values as deformation progressed. (3) Without reinforcement, hydraulic uplift failure manifested as sand layer suspension and soil shear. After reinforcement, failure modes shifted to basal uplift and wall-external soil sliding, demonstrating that high-pressure jet grouting pile reinforcement had positive contribution basal heave stability by improving soil shear strength. (4) Improved stability verification methods for anti-heave and anti-hydraulic-uplift were proposed, incorporating soil shear strength contributions to overcome the underestimation of reinforcement effects in traditional pressure equilibrium and Terzaghi bearing capacity models. This study provides theoretical and practical references for similar deep foundation pit projects and offers systematic solutions for the safety design and deformation characteristics of circular diaphragm walls with pit bottom reinforcement. Full article
Show Figures

Figure 1

30 pages, 4591 KiB  
Article
Evolution of the Soil Bacterial Community as a Function of Crop Management: A Metagenomic Study in Orange Tree (Citrus sinensis) Plantations
by Carlos Giménez-Valero, Alejandro Andy Maciá-Vázquez, Dámaris Núñez-Gómez, Agustín Conesa, Vicente Lidón and Pablo Melgarejo
Plants 2025, 14(12), 1781; https://doi.org/10.3390/plants14121781 - 11 Jun 2025
Viewed by 428
Abstract
Soil management significantly influences the structure and diversity of soil bacterial communities, affecting biodiversity and ecosystem functions. In semi-arid regions, water efficiency strategies like anti-weed netting are implemented, but their impact on soil microbial communities remains underexplored. This study evaluates the temporal evolution [...] Read more.
Soil management significantly influences the structure and diversity of soil bacterial communities, affecting biodiversity and ecosystem functions. In semi-arid regions, water efficiency strategies like anti-weed netting are implemented, but their impact on soil microbial communities remains underexplored. This study evaluates the temporal evolution of soil bacterial communities in orange tree (Citrus sinensis (L.) Osbeck) plantations under two conditions: with and without anti-weed netting. Soil samples were collected at three time points over a period of 18 months since the establishment of the crop and analyzed using high-throughput 16S rRNA sequencing, assessing alpha and beta diversity, taxonomic composition, and functional pathways via KEGG analysis. The results indicate that weed control netting contributes to stabilizing bacterial diversity over time and increases the relative abundance of dominant phyla such as Planctomycetota, Proteobacteria, Bacteroidota, and Acidobacteriota. Functional predictions revealed significant differences in metabolic pathways, including those associated with nitrogen fixation and organic matter degradation. These findings suggest that anti-weed netting not only influences the taxonomic composition of soil bacterial communities but also modulates their functional potential, with implications for sustainable agriculture in semi-arid environments. This study provides new insights into the interaction between soil management and soil bacterial communities, offering valuable information for optimizing agricultural practices and soil conservation strategies. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

13 pages, 1072 KiB  
Article
Exploitation of the Herbicide Effect of Compost for Vineyard Soil Management
by Piergiorgio Romano, Lorenzo Samuil Mordos, Marcello Stifani, Francesco Mello, Corrado Domanda, Daniel Grigorie Dinu, Concetta Eliana Gattullo, Gianluca Pappaccogli, Gianni Zorzi, Rita Annunziata Accogli and Laura Rustioni
Environments 2025, 12(6), 190; https://doi.org/10.3390/environments12060190 - 5 Jun 2025
Viewed by 1034
Abstract
Soil management in vineyards is a crucial component of sustainable viticulture. Weed control under the row has traditionally been addressed using mechanical, physical, and chemical techniques, but herbicides pose environmental and health risks. The circular economy offers an alternative approach by converting organic [...] Read more.
Soil management in vineyards is a crucial component of sustainable viticulture. Weed control under the row has traditionally been addressed using mechanical, physical, and chemical techniques, but herbicides pose environmental and health risks. The circular economy offers an alternative approach by converting organic waste into a resource, such as compost. This study explores the effectiveness of compost derived from the organic fraction of municipal solid waste (MSW) not only as a mulching technique but also as a potential biological agent for weed control through allelopathic mechanisms in vineyards. Experiments were conducted both in the field and under controlled conditions. In the field, compost was applied under the vine row as mulch and incorporated into the soil. Under controlled conditions, germination tests were performed to assess weed inhibition at different compost concentrations. Field results demonstrated that compost applications, both as mulch and incorporated into the soil, significantly inhibited weed growth during the first period after application compared to the tilled control without compost. Thus, this inhibition is not limited to physical mulching; it also applies to the release of allelopathic compounds from compost. Controlled condition experiments showed strong inhibition of germination in Cichorium intybus and Foeniculum vulgare seeds, confirming the anti-germinative effects of compost, particularly on small-seeded weed species. Compost is a promising tool for sustainable vineyard management, offering fertilization and weed-suppression benefits while reducing herbicide use. Full article
(This article belongs to the Special Issue New Insights in Soil Quality and Management, 2nd Edition)
Show Figures

Figure 1

20 pages, 493 KiB  
Review
Glucosinolates in Cruciferous Vegetables: Genetic and Environmental Regulation, Metabolic Pathways, and Cancer-Preventive Mechanisms
by Sujata Kattel and George F. Antonious
Int. J. Plant Biol. 2025, 16(2), 58; https://doi.org/10.3390/ijpb16020058 - 29 May 2025
Viewed by 820
Abstract
We investigated the genetic and environmental variables determining the glucosinolate (GSL) content of cruciferous vegetables and the implications for cancer prevention. The enzyme myrosinase hydrolyzes GSLs, which are sulfur-containing chemicals found mostly in cruciferous vegetables, producing isothiocyanates (ITCs), which are physiologically active molecules. [...] Read more.
We investigated the genetic and environmental variables determining the glucosinolate (GSL) content of cruciferous vegetables and the implications for cancer prevention. The enzyme myrosinase hydrolyzes GSLs, which are sulfur-containing chemicals found mostly in cruciferous vegetables, producing isothiocyanates (ITCs), which are physiologically active molecules. GSL breakdown products have considerable anti-carcinogenic, antioxidant, and anti-inflammatory capabilities, making them vital to human health. The review dives into genetic heterogeneity among cruciferous species, the importance of individual genes in GSL manufacturing, and breeding techniques for increasing GSL content. It also examines how environmental variables like soil type, pH, plant, nutrient availability, and temperature affect GSL levels. This report also covers the function of GSLs in plant defense, their bioavailability in humans, and their mechanisms in cancer prevention, emphasizing the chemicals’ potential for lowering cancer risk through cruciferous vegetable consumption. The findings highlight the necessity of optimizing both genetic and environmental variables required to increase the nutritional content and medicinal potential of cruciferous vegetables. Full article
(This article belongs to the Section Plant Biochemistry and Genetics)
Show Figures

Figure 1

23 pages, 5048 KiB  
Article
Vitamin C Industrial Byproduct: A Promising Enhancer for Trichoderma harzianum-Driven Biocontrol of Tomato Pathogenic Fungi
by Wenxin Song, Weichao Yang, Hao Sun, Mingfu Gao and Hui Xu
Agronomy 2025, 15(6), 1298; https://doi.org/10.3390/agronomy15061298 - 26 May 2025
Viewed by 510
Abstract
Trichoderma harzianum, a prominent biocontrol microorganism, often exhibits restricted colonization efficiency in nutrient-poor soil, thus reducing its biocontrol effectiveness. This study investigated the impact of vitamin C industrial fermentation byproduct (residue after evaporation, RAE), which is recognized for enhancing plant growth and [...] Read more.
Trichoderma harzianum, a prominent biocontrol microorganism, often exhibits restricted colonization efficiency in nutrient-poor soil, thus reducing its biocontrol effectiveness. This study investigated the impact of vitamin C industrial fermentation byproduct (residue after evaporation, RAE), which is recognized for enhancing plant growth and stress tolerance, on the colonization ability and anti-pathogenic fungi activity of T. harzianum through in vitro and pot experiments. In vitro experiments demonstrated that RAE and its main component (2-keto-L-gulonic acid, 2KGA) significantly enhanced biomass and spore production (41.44% and 158.46% on average) of two T. harzianum strains in an oligotrophic medium (1/5 PDA). In a more nutrient-limited medium (1/10 PDA), RAE significantly increased the inhibition rates of T. harzianum S against Fusarium graminearum, Botrytis cinerea, and Alternaria alternata by 6.12–7.77%. Pot experiments further revealed that, compared with T. harzianum application alone, the combined application of RAE and T. harzianum S, (1) significantly elevated T. harzianum S abundance by 23.77% while significantly reducing B. cinerea abundance by 33.78% in rhizosphere soil; (2) significantly improved the content of soil available phosphorus (147.63%), ammonium nitrogen (60.05%), and nitrate nitrogen (32.19%); and (3) significantly improved the superoxide dismutase activity (17.39%) and fresh weight of tomato plants (130.74%). Correlation analysis revealed that there were significant positive correlations between T. harzianum S abundances/plant biomass and RAE, and significantly negative correlations between B. cinerea abundance and T. harzianum S/plant biomass/peroxidase activity. Collectively, RAE effectively promoted the growth of T. harzianum and pathogen suppression ability, while improving soil fertility and tomato biomass. This study offers novel insights into RAE’s agricultural application for plant disease control while supporting the sustainable development of vitamin C production. Full article
(This article belongs to the Special Issue Environmentally Friendly Ways to Control Plant Disease)
Show Figures

Figure 1

Back to TopTop