Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (261)

Search Parameters:
Keywords = anti-reflection coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2289 KiB  
Communication
Raman Gas Analysis with External Power Build-Up Cavity of Line-Narrowed 407-nm Laser Diode
by Zhongyi Yao, Xinbing Wang and Duluo Zuo
Sensors 2025, 25(15), 4600; https://doi.org/10.3390/s25154600 - 25 Jul 2025
Viewed by 203
Abstract
An external power build-up cavity of a line-narrowed 407-nm laser diode for Raman gas analysis was demonstrated to possess good gas detection capabilities. By employing an ordinary laser diode without anti-reflection coating or and a bandpass interference filter in an external cavity resonance, [...] Read more.
An external power build-up cavity of a line-narrowed 407-nm laser diode for Raman gas analysis was demonstrated to possess good gas detection capabilities. By employing an ordinary laser diode without anti-reflection coating or and a bandpass interference filter in an external cavity resonance, the laser linewidth was narrowed by resonant optical feedback, and tens of watts of external cavity power were built up. The coupling mechanism between the semiconductor laser and the external cavity are discussed, as well as the noise background in the experimental results. The Raman spectrum of ambient air was analyzed, achieving a methane detection limit of 1 ppm. Full article
(This article belongs to the Special Issue Spectroscopy Gas Sensing and Applications)
Show Figures

Figure 1

18 pages, 2524 KiB  
Article
Measuring Optical Scattering in Relation to Coatings on Crystalline X-Ray Scintillator Screens
by Matthias Diez and Simon Zabler
Crystals 2025, 15(7), 605; https://doi.org/10.3390/cryst15070605 - 27 Jun 2025
Viewed by 343
Abstract
Scattered light makes up a significant amount of recorded intensities during tomographic imaging, thereby leading to severe misinterpretation and artifacts in the reconstructed volume images. Correcting artificial intensities that stem from scattered light, therefore, is of primary interest and demands quantitative measurements. While [...] Read more.
Scattered light makes up a significant amount of recorded intensities during tomographic imaging, thereby leading to severe misinterpretation and artifacts in the reconstructed volume images. Correcting artificial intensities that stem from scattered light, therefore, is of primary interest and demands quantitative measurements. While numerous methods have been developed to reduce X-ray scattering artifacts, fewer methods deal with optical scattering. In this study, a measurement method for determining optical scattering in scintillators is presented with the aim of further developing correction algorithms. A theoretical model based on internal multiple reflections was developed for this purpose. This model assumes an additive exponential kernel with a certain scattering length to the system’s point spread function. This assumption was confirmed, and the scatter length was estimated from three new different kinds of experiments (hgap, rect, and LSF) on the BM18 beamline of the European synchrotron. The experiments further revealed significant differences in scattering proportion and length when different coatings are applied to the front and back faces of crystalline LuAG scintillators. Anti-reflective coatings on the backside show an effect of reducing the scattering magnitude while reflective coatings on the front side increase the proportion of the unscattered signal and, thus, show proportionally less scattering than black coating or no front coating. In particular, roughened black coating is found to worsen optical scattering. In summary, our results indicate that a combination of reflective (front) and anti-reflective (back) coatings yields the least optical scattering and, hence, the best image quality. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

20 pages, 3209 KiB  
Article
Experimental Evaluation of GAGG:Ce Crystalline Scintillator Properties Under X-Ray Radiation
by Anastasios Dimitrakopoulos, Christos Michail, Ioannis Valais, George Fountos, Ioannis Kandarakis and Nektarios Kalyvas
Crystals 2025, 15(7), 590; https://doi.org/10.3390/cryst15070590 - 23 Jun 2025
Viewed by 584
Abstract
The scope of this study was to evaluate the response of Ce-doped gadolinium aluminum gallium garnet (GAGG:Ce) crystalline scintillator under medical X-ray irradiation for medical imaging applications. A 10 × 10 × 10 mm3 crystal was irradiated at X-ray tube voltages ranging [...] Read more.
The scope of this study was to evaluate the response of Ce-doped gadolinium aluminum gallium garnet (GAGG:Ce) crystalline scintillator under medical X-ray irradiation for medical imaging applications. A 10 × 10 × 10 mm3 crystal was irradiated at X-ray tube voltages ranging from 50 kVp to 150 kVp. The crystal’s compatibility with several commercially available optical photon detectors was evaluated using the spectral matching factor (SMF) along with the absolute efficiency (AE) and the effective efficiency (EE). In addition, the energy-absorption efficiency (EAE), the quantum-detection efficiency (QDE) as well as the zero-frequency detective quantum detection efficiency DQE(0) were determined. The crystal demonstrated satisfactory AE values as high as 26.3 E.U. (where 1 E.U. = 1 μW∙m−2/(mR∙s−1)) at 150 kVp, similar, or in some cases, even superior to other cerium-doped scintillator materials. It also exhibits adequate DQE(0) performance ranging from 0.99 to 0.95 across all the examined X-ray tube voltages. Moreover, it showed high spectral compatibility with commonly used photoreceptors in modern day such as complementary metal–oxide–semiconductors (CMOS) and charge-coupled-devices (CCD) with SMF values of 0.95 for CCD with broadband anti-reflection coating and 0.99 for hybrid CMOS blue. The aforementioned properties of this scintillator material were indicative of its superior efficiency in the examined medical energy range, compared to other commonly used scintillators. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
Show Figures

Figure 1

23 pages, 3507 KiB  
Article
Third-Order Optical Nonlinearities in Antireflection Coatings: Model, Simulation, and Design
by Steffen Wilbrandt and Olaf Stenzel
Modelling 2025, 6(2), 48; https://doi.org/10.3390/modelling6020048 - 12 Jun 2025
Viewed by 815
Abstract
We present a practical numerical model for calculating transmittance and reflectance of multilayer antireflection coatings taking third-order optical nonlinearities into account. Thereby, the impact of different types of discretization of the complex refractive index profile on the predicted system performance is investigated. Additionally, [...] Read more.
We present a practical numerical model for calculating transmittance and reflectance of multilayer antireflection coatings taking third-order optical nonlinearities into account. Thereby, the impact of different types of discretization of the complex refractive index profile on the predicted system performance is investigated. Additionally, aspects of parallelism of the calculations are discussed. It is shown that the inclusion of nonlinearity is essential when large laser intensities are incident to the coating. The developed method is applied for the design of different antireflective coatings matching various types of targets. Full article
Show Figures

Figure 1

22 pages, 4799 KiB  
Article
Design and Deposition of Ultra-Broadband Beam-Splitting Coatings
by Yunyun Shi, Haochuan Li, Sibao Zhang, Changxin Luo, Jiangheng Sun, Chenrui Lv, Jiaoteng Ding and Yongsheng Yao
Coatings 2025, 15(6), 695; https://doi.org/10.3390/coatings15060695 - 9 Jun 2025
Viewed by 365
Abstract
This study aims to develop a stress-optimized ultra-broadband beam-splitting coating that integrates four spectral bands by analyzing the beam-splitting properties of coatings spanning visible to medium and long-wave infrared regions. A beam-splitting coating was deposited on a Ge substrate using ion-beam-assisted thermal evaporation, [...] Read more.
This study aims to develop a stress-optimized ultra-broadband beam-splitting coating that integrates four spectral bands by analyzing the beam-splitting properties of coatings spanning visible to medium and long-wave infrared regions. A beam-splitting coating was deposited on a Ge substrate using ion-beam-assisted thermal evaporation, employing Ge, ZnS, and YbF3 as coating materials. The designed coating exhibits high reflectance in the 0.5–0.8 μm and 0.9–1.7 μm wavelength bands while maintaining high transmittance in the 3–5 μm and 8–12 μm bands. The optimal deposition process for a single-layer coating was established, at a 45° incidence angle, the beam-splitting coating achieved an average reflectance (Rave) of 86.6% in the 0.9–1.7 μm band and 93.7% in the 0.9–1.7 μm band, alongside an average transmittance (Tave) of 91.36% in the 3–5 μm band and 91.3% in the 8–12 μm band. The antireflection coating achieved a single-side Tave of 98.5% in the 3–5 μm band and 97% in the 8–12 μm band. The coating uniformity exceeded 99.6%. To optimize the surface profile, a single-layer Ge coating was added to the rear surface, resulting in a root mean square deviation of less than 0.0007 μm, achieved the same precision of the surface profile successfully. The deposited beam-splitting coating possessed high surface profile precision, and successfully achieved high reflectance in the visible to short-wave infrared range and high transmittance in the medium- and long-wave infrared range. The coating demonstrated excellent adhesion, abrasion resistance, and structural integrity, with no wrinkling, cracking, or delamination. Full article
Show Figures

Graphical abstract

10 pages, 1167 KiB  
Article
Investigation of UV Picosecond Laser Damage Threshold of Anti-Reflection Coated Windows
by Priyadarshani Narayanasamy, Martin Mydlář, Hana Turčičová, Mihai George Mureșan, Ondřej Novák, Jan Vanda and Jan Brajer
J. Manuf. Mater. Process. 2025, 9(6), 180; https://doi.org/10.3390/jmmp9060180 - 29 May 2025
Viewed by 708
Abstract
Long-term stability and laser-induced damage resistance of optical components in the UV region are critical for enhancing their performance in UV high-power laser applications. This study evaluates the laser-induced damage threshold (LIDT) of commercially available UV optical windows with anti-reflective (AR) coating, produced [...] Read more.
Long-term stability and laser-induced damage resistance of optical components in the UV region are critical for enhancing their performance in UV high-power laser applications. This study evaluates the laser-induced damage threshold (LIDT) of commercially available UV optical windows with anti-reflective (AR) coating, produced through various coating techniques and designed for high-power lasers. A third-harmonic (343 nm) wavelength with good beam quality was generated in the picosecond regime to investigate the LIDT of optical components. The LIDT for each sample was measured under controlled conditions and compared based on their coating techniques. The sample coated with Al2O3/SiO2 through ion beam sputtering has the best LIDT value, of 0.6 J/cm2, among the tested samples, based on the hundred-thousand-pulses methodology. The damage threshold curve and the corresponding damage morphology are discussed in detail, and these findings provide insights into the durability and susceptibility of UV optics for advanced laser systems available in the market. Full article
Show Figures

Figure 1

23 pages, 10361 KiB  
Article
Analysis of the Material and Coating of the Nameplate of Vila D. Bosco in Macau
by Liang Zheng, Jianyi Zheng, Xiyue He and Yile Chen
Materials 2025, 18(10), 2190; https://doi.org/10.3390/ma18102190 - 9 May 2025
Viewed by 655
Abstract
This study focuses on the nameplate of Vila D. Bosco, a modern building in Macau from the time of Portuguese rule, and looks at the types of metal materials and surface coatings used, as well as how they corrode due to the tropical [...] Read more.
This study focuses on the nameplate of Vila D. Bosco, a modern building in Macau from the time of Portuguese rule, and looks at the types of metal materials and surface coatings used, as well as how they corrode due to the tropical marine climate affecting the building’s metal parts. The study uses different techniques, such as X-ray fluorescence spectroscopy (XRF), scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and cross-sectional microscopic analysis, to carefully look at the metal, corrosion products, and coating of the nameplate. The results show that (1) the nameplate matrix is a resulfurized steel with a high sulfur content (Fe up to 97.3% and S up to 1.98%), and the sulfur element is evenly distributed inside, which is one of the internal factors that induce corrosion. (2) Rust is composed of polycrystalline iron oxides such as goethite (α-FeOOH), hematite (α-Fe2O3), and magnetite (Fe3O4) and has typical characteristics of atmospheric oxidation. (3) The white and yellow-green coatings on the nameplate are oil-modified alkyd resin paints, and the color pigments are TiO2, PbCrO4, etc. The surface layer of the letters is protected by a polyvinyl alcohol layer. The paint application process leads to differences in the thickness of the paint in different regions, which directly affects the anti-rust performance. The study reveals the deterioration mechanism of resulfurized steel components in a subtropical polluted environment and puts forward repair suggestions that consider both material compatibility and reversibility, providing a reference for the protection practice of modern and contemporary architectural metal heritage in Macau and even in similar geographical environments. Full article
(This article belongs to the Special Issue Materials in Cultural Heritage: Analysis, Testing, and Preservation)
Show Figures

Figure 1

14 pages, 7058 KiB  
Article
Manufacturing Process and Characteristics of Silica Nanostructures for Anti-Reflection at 355 nm
by Anne Gärtner, Mihai-George Mureșan, Christian Mühlig, Tobias Herffurth, Nadja Felde, Hanjörg Wagner, Ulrike Schulz, Astrid Bingel, Sven Schröder, Tomáš Mocek and Andreas Tünnermann
Coatings 2025, 15(5), 556; https://doi.org/10.3390/coatings15050556 - 6 May 2025
Viewed by 420
Abstract
Recent advancements in photonics have intensified the performance requirements for optical systems and present significant challenges for optical coating technologies. Conventional interference coating systems often prove to be insufficient, especially in applications requiring large angles of light incidence or a wide wavelength range. [...] Read more.
Recent advancements in photonics have intensified the performance requirements for optical systems and present significant challenges for optical coating technologies. Conventional interference coating systems often prove to be insufficient, especially in applications requiring large angles of light incidence or a wide wavelength range. Nanostructures, which consist of an air material mixture, offer promising alternatives. In this work, silica nanostructures are manufactured by the AR-plas2 method, in which first an organic layer is evaporated onto a substrate. This organic layer forms self-organizing nanostructures by a plasma etching step, which are subsequently coated with silica. Finally, the organic residues are removed by additional plasma etching and heat treatment steps, which results in hollow silica structures. The work examines the optical and functional properties of these structures designed for 355 nm to demonstrate their use as anti-reflective coatings for advanced optical systems. Full article
Show Figures

Graphical abstract

16 pages, 5788 KiB  
Article
Research on Thermal Effect and Laser-Induced Damage Threshold of 10.6 µm Antireflection Coatings Deposited on Diamond and ZnSe Substrates
by Xiong Zi, Xinshang Niu, Hongfei Jiao, Shuai Jiao, Xiaochuan Ji, Dongdong Li, Binbin Jiang, Jinlong Zhang, Xinbin Cheng, Zhanshan Wang and Zihua Xin
Coatings 2025, 15(5), 536; https://doi.org/10.3390/coatings15050536 - 30 Apr 2025
Viewed by 646
Abstract
In this study, ZnS/YbF3-10.6 µm antireflection (AR) coatings were fabricated on CVD single-crystal diamond and ZnSe substrates. The spectral characteristics of the coatings and their performance under continuous wave laser radiation at 10.6 µm were systematically investigated. The fabricated AR coatings [...] Read more.
In this study, ZnS/YbF3-10.6 µm antireflection (AR) coatings were fabricated on CVD single-crystal diamond and ZnSe substrates. The spectral characteristics of the coatings and their performance under continuous wave laser radiation at 10.6 µm were systematically investigated. The fabricated AR coatings exhibited excellent spectral properties in the target wavelength range. Both theoretical calculations and experimental results indicated that, at the same power density, the 10.6 µm AR coatings on diamond substrates exhibited a lower temperature rise compared to those deposited on ZnSe substrates. Due to its high thermal conductivity, the diamond substrate is expected to exhibit reduced thermally induced surface distortion. The laser-induced damage threshold (LIDT) test results indicate that the AR coating deposited on the ZnSe substrate exhibits a damage threshold of 11,890 W/cm2, whereas the AR coating on the diamond substrate achieves a threshold of 15,287 W/cm2, representing a 28.5% improvement over the ZnSe substrate. Additionally, graphite formation occurs on the diamond substrate under high power density. These findings provide both theoretical and experimental support for the potential application of diamond materials in high-power laser systems. Full article
Show Figures

Graphical abstract

31 pages, 6388 KiB  
Article
Polymers Used in Transparent Face Masks—Characterization, Assessment, and Recommendations for Improvements Including Their Sustainability
by Katie E. Miller, Ann-Carolin Jahn, Brian M. Strohm, Shao M. Demyttenaere, Paul J. Nikolai, Byron D. Behm, Mariam S. Paracha and Massoud J. Miri
Polymers 2025, 17(7), 937; https://doi.org/10.3390/polym17070937 - 30 Mar 2025
Viewed by 941
Abstract
By 2050, 700 million people will have hearing loss, requiring rehabilitation services. For about 80% of deaf and hard-hearing individuals, face coverings hinders their ability to lip-read. Also, the normal hearing population experiences issues socializing when wearing face masks. Therefore, there is a [...] Read more.
By 2050, 700 million people will have hearing loss, requiring rehabilitation services. For about 80% of deaf and hard-hearing individuals, face coverings hinders their ability to lip-read. Also, the normal hearing population experiences issues socializing when wearing face masks. Therefore, there is a need to evaluate and further develop transparent face masks. In this work, the properties of polymers used in ten commercial transparent face masks were determined. The chemical composition of the polymers including nose bridges and ear loops was determined by FTIR spectroscopy. The focus of the characterizations was on the polymers in the transparent portion of each face mask. In half of the masks, the transparent portion contained PET, while in the other masks it consisted of PETG, PC, iPP, PVC, or SR (silicone rubber). Most masks had been coated with anti-fog material, and a few with scratch-resistant compounds, as indicated by XRF/EDX, SEM/EDX, and contact angle measurements. Thermal, molecular weight, and mechanical properties were determined by TGA/DSC, SEC, and tensile tests, respectively. To measure optical properties, UV-Vis reflectance and UV-Vis haze were applied. An assessment of the ten masks and recommendations to develop better transparent face masks were made, including improvement of their sustainability. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

18 pages, 2968 KiB  
Article
Research on the Mechanical and Photoelectric Properties Regulation of the New-Type Ceramic Material Ta2AlC
by Zhongzheng Zhang, Chunhong Zhang, Xinmao Qin and Wanjun Yan
Crystals 2025, 15(4), 309; https://doi.org/10.3390/cryst15040309 - 26 Mar 2025
Viewed by 375
Abstract
Ta2AlC is an emerging ceramic material characterized by its high melting point, high hardness, excellent thermal stability, and superior mechanical properties, which allow for broad application prospects in aerospace and defense fields. This paper investigates the physical mechanisms underlying the modulation [...] Read more.
Ta2AlC is an emerging ceramic material characterized by its high melting point, high hardness, excellent thermal stability, and superior mechanical properties, which allow for broad application prospects in aerospace and defense fields. This paper investigates the physical mechanisms underlying the modulation of the mechanical and photoelectric properties of Ta2AlC through doping using the first-principles pseudopotential plane-wave method. We specifically calculated the geometric structure, mechanical properties, electronic structure, Mulliken population analysis, and optical properties of Ta2AlC doped with V, Ga, or Si. The results indicate that doping induces significant changes in the structural parameters of Ta2AlC. By applying the Born’s criterion as the standard for mechanical stability, we have calculated that the structures of Ta2AlC, both before and after doping, are stable. The mechanical property calculations revealed that V and Si doping weaken the material’s resistance to deformation while enhancing its plasticity. In contrast, Ga doping increases the material’s resistance to lateral deformation and brittleness. Doping also increases the anisotropy of Ta2AlC. Electronic structure calculations confirmed that Ta2AlC is a conductor with excellent electrical conductivity, which is not diminished by doping. The symmetric distribution of spin-up and spin-down electronic state densities indicates that the Ta2AlC system remains non-magnetic after doping. The partial density of states diagrams successfully elucidated the influence of dopant atoms on the band structure and electronic state density. Mulliken population analysis revealed that V and Ga doping enhance the covalent interactions between C-Ta and Al-Ta atoms, whereas Si doping weakens these interactions. Optical property calculations showed that V and Si doping significantly enhance the electromagnetic energy storage capacity and dielectric loss of Ta2AlC, while Ga doping has minimal effect. The reflectivity of doped and undoped Ta2AlC reaches over 90% in the ultraviolet region, indicating its potential as an anti-ultraviolet coating material. In the visible light region, both doped and undoped Ta2AlC exhibit a similar metallic gray appearance, suggesting its potential as a temperature control coating material. The light loss of Ta2AlC is limited to a narrow energy range, indicating that doping does not affect its use as a light storage material. These results demonstrate that different dopants can effectively modulate the mechanical and photoelectric properties of Ta2AlC. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

22 pages, 6345 KiB  
Article
Modeling and Optimization of Enhanced High-Efficiency InGaP/GaAs Tandem Solar Cells Without Anti-Reflective Coating
by Ikram Zidani, Zouaoui Bensaad, Nadji Hadroug, Abdellah Kouzou, Ahmed Hafaifa, Jose Rodriguez and Mohamed Abdelrahem
Appl. Sci. 2025, 15(7), 3520; https://doi.org/10.3390/app15073520 - 24 Mar 2025
Cited by 1 | Viewed by 825
Abstract
Modern multi-junction solar cell technology offers a pathway to achieving consistent and high photovoltaic conversion efficiencies through enhanced solar spectrum absorption. Indeed, during the last years, the industries of solar cells have focused on optimizing device structures, utilizing both robust and delicate materials [...] Read more.
Modern multi-junction solar cell technology offers a pathway to achieving consistent and high photovoltaic conversion efficiencies through enhanced solar spectrum absorption. Indeed, during the last years, the industries of solar cells have focused on optimizing device structures, utilizing both robust and delicate materials to maximize their performances. This paper presents the modeling and optimization of the electrical and structural properties of high-efficiency InGaP/GaAs double-junction solar cells, specifically without employing an anti-reflective coating. This developed structure has been achieved by introducing a buffer layer in the lower layer and incorporating an upper back surface field layer into the investigated cell structure. Furthermore, the optimization conducted in this paper using Silvaco-Atlas software (version 2018) under the AM1.5G spectrum reveals that the proposed InGaP/GaAs tandem cell configuration exhibits significant performance, reaching conversion efficiency of 41.585%. It can be said that this adapted structure yields a short-circuit current density of 21.65 mA/cm2, an open-circuit voltage of 2.319 V, and a filling factor of 84.001%. Whereas this newly optimized structure demonstrates its effectiveness in enhancing solar cell efficiency performance, presenting highly promising results with potential significance for the devices’ optical and electrical properties. Full article
Show Figures

Figure 1

11 pages, 4280 KiB  
Article
Fog-Proof and Anti-Reflection Nano-Coating Prepared by Atmosphere Plasma Spraying
by Xiqiang Zhong, Zimo Zhou, Guanghua Liu, Dan Wang, Yan Xing and Wei Pan
Coatings 2025, 15(3), 331; https://doi.org/10.3390/coatings15030331 - 13 Mar 2025
Viewed by 860
Abstract
Fog-proof coatings have been widely utilized in various fields, including automobile windshields, curtain walls, and fog-resistant eyewear. To date, numerous methods have been developed for preparing fog-proof coatings. However, the most effective fog-proof surfaces often suffer from poor light transmittance. In this report, [...] Read more.
Fog-proof coatings have been widely utilized in various fields, including automobile windshields, curtain walls, and fog-resistant eyewear. To date, numerous methods have been developed for preparing fog-proof coatings. However, the most effective fog-proof surfaces often suffer from poor light transmittance. In this report, we present a method for preparing fog-proof nano-coatings using atmospheric plasma spraying (APS). Hexamethyldisiloxane (HMDSO) was employed as a precursor solution, resulting in the formation of amorphous nano-coatings on glass substrates with a thickness ranging from 15 to 25 nm. The APS-coated glasses exhibit superhydrophilic properties, excellent fog resistance, and anti-reflective characteristics. Additionally, the APS coatings enhance light transmittance from 90% to 92%. Full article
Show Figures

Figure 1

16 pages, 795 KiB  
Article
Tuning Optical Performance of Silicon Solar Cells with Micro-Structured Multilayer Antireflection Coatings
by Ibrahim H. Khawaji, Ala H. Sabeeh, Tawfik Ismail and Basma E. Abu-Elmaaty
Appl. Sci. 2025, 15(6), 3053; https://doi.org/10.3390/app15063053 - 12 Mar 2025
Viewed by 898
Abstract
This study investigates the potential of patterned multiple-layer anti-reflection coatings (MLARCs) integrated with nanocrystalline quantum dots (NQDs) to enhance silicon solar cell (Si-SC) performance by significantly reducing reflection losses. Through a combination of experimental characterization and numerical modeling, the impact of single-layer (SLARCs), [...] Read more.
This study investigates the potential of patterned multiple-layer anti-reflection coatings (MLARCs) integrated with nanocrystalline quantum dots (NQDs) to enhance silicon solar cell (Si-SC) performance by significantly reducing reflection losses. Through a combination of experimental characterization and numerical modeling, the impact of single-layer (SLARCs), continuous MLARCs, and patterned MLARCs on optical and electrical properties was assessed. The results demonstrate substantial improvements in light trapping and absorption through the implementation of patterned MLARCs. Full article
Show Figures

Figure 1

14 pages, 18226 KiB  
Article
Smart Bio-Nanocoatings with Simple Post-Synthesis Reversible Adjustment
by Mikhail Kryuchkov, Zhehui Wang, Jana Valnohova, Vladimir Savitsky, Mirza Karamehmedović, Marc Jobin and Vladimir L. Katanaev
Biomimetics 2025, 10(3), 163; https://doi.org/10.3390/biomimetics10030163 - 7 Mar 2025
Viewed by 925
Abstract
Nanopatterning of signal-transmitting proteins is essential for cell physiology and drug delivery but faces challenges such as high cost, limited pattern variability, and non-biofriendly materials. Arthropods, particularly beetles (Coleoptera), offer a natural model for biomimetic nanopatterning due to their diverse corneal nanostructures. Using [...] Read more.
Nanopatterning of signal-transmitting proteins is essential for cell physiology and drug delivery but faces challenges such as high cost, limited pattern variability, and non-biofriendly materials. Arthropods, particularly beetles (Coleoptera), offer a natural model for biomimetic nanopatterning due to their diverse corneal nanostructures. Using atomic force microscopy (AFM), we analyzed Coleoptera corneal nanocoatings and identified dimpled nanostructures that can transform into maze-like/nipple-like protrusions. Further analysis suggested that these modifications result from a temporary, self-assembled process influenced by surface adhesion. We identified cuticular protein 7 (CP7) as a key component of dimpled nanocoatings. Biophysical analysis revealed CP7’s unique self-assembly properties, allowing us to replicate its nanopatterning ability in vitro. Our findings demonstrate CP7’s potential for bioinspired nanocoatings and provide insights into the evolutionary mechanisms of nanostructure formation. This research paves the way for cost-effective, biomimetic nanopatterning strategies with applications in nanotechnology and biomedicine. Full article
(This article belongs to the Special Issue Advances in Biomimetics: Patents from Nature)
Show Figures

Figure 1

Back to TopTop