Manufacturing Process and Characteristics of Silica Nanostructures for Anti-Reflection at 355 nm
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Preparation
2.2. Topographical Measurements and Analysis
2.3. Reflectance, Transmission, Absorption, and Light Scattering Measurements
2.4. Laser-Induced Damage Threshold (LIDT) Measurements
3. Results and Discussion
3.1. Morphological and Surface Analysis
3.2. Optical Properties and the Calculation of the Effective Refractive Index
3.3. Laser-Induced Damage Threshold (LIDT) Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Falmbigl, M.; Godin, K.; George, J.; Mühlig, C.; Rubin, B. Effect of annealing on properties and performance of HfO2/SiO2 optical coatings for UV-applications. Opt. Express 2022, 30, 12326–12336. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L. Laserinduzierte Zerstörung in Oxidischen Schichtsystemen für den UV Bereich; Gottfried Wilhelm Leibniz Universität Hannover: Hannover, Germany, 2014. [Google Scholar]
- Arnold, B.M.; Rashvand, C.; Willis, L.; Dabney, M.S. UV fatigue of laser optics: Laser-induced contamination. Laser-Induc. Damage Opt. Mater. 2022, 2022, 12300. [Google Scholar]
- Stolz, C.J.; Caputo, M.; Griffin, A.J.; Thomas, M.D. BDS thin film UV antireflection laser damage competition. Laser-Induc. Damage Opt. Mater. 2010, 2010, 7842. [Google Scholar]
- Juškevičius, K.; Buzelis, R.; Abromavičius, G.; Samuilovas, R.; Abbas, S.; Belosludtsev, A.; Drazdys, R.; Kičas, S. Argon plasma etching of fused silica substrates for manufacturing high laser damage resistance optical interference coatings. Opt. Mater. Express 2017, 7, 3598–3607. [Google Scholar] [CrossRef]
- Alam, S.; Paul, P.; Beladiya, V.; Schmitt, P.; Stenzel, O.; Trost, M.; Wilbrandt, S.; Mühlig, C.; Schröder, S.; Matthäus, G.; et al. Heterostructure films of SiO2 and HfO2 for high-power laser optics prepared by plasma-enhanced atomic layer deposition. Coatings 2023, 13, 278. [Google Scholar] [CrossRef]
- Weiss, M.; Davenport, A.; Lucas, S.C.; Pamedytytė, D.; Galinis, J.; Melninkaitis, A.; Siehien, J.; Siehien, W.; Chicoine, M.; Schiettekatte, F.; et al. Laser damage of UV hafnia-based multilayer dielectric coatings at 355 nm wavelength. Laser-Induc. Damage Opt. Mater. 2024, 2024, 13190. [Google Scholar]
- Yin, C.; Zhu, M.; Zeng, T.; Song, C.; Chai, Y.; Shao, Y.; Zhang, R.; Zhao, J.; Li, D.; Shao, J. HfO2/SiO2 anti-reflection films for UV lasers via plasma-enhanced atomic layer deposition. J. Alloys Compd. 2021, 859, 157875. [Google Scholar] [CrossRef]
- ISO 21254-1:2011; Lasers and Laser-Related equipment—Test Methods for Laser-Radiation-Induced Damage Threshold—Part 1: Definitions and General Principles. International Organization for Standardization: London, UK, 2011.
- Lyngnes, O.; Ode, A.; Ness, D.C. Anti-reflection coating damage threshold dependence on substrate material. In Laser-Induced Damage in Optical Materials; SPIE: Bellingham, WA, USA, 2009; Volume 7504. [Google Scholar]
- Zhu, M.; Xing, H.; Chai, Y.; Yi, K.; Sun, J.; Wang, J.; Shao, J. Improving the laser-induced damage threshold of 532-nm antireflection coating using plasma ion cleaning. Opt. Eng. 2017, 56, 011003. [Google Scholar] [CrossRef]
- Hobbs, D.S. Laser damage threshold measurements of anti-reflection microstructures operating in the near UV and mid-infrared. In Laser-Induced Damage in Optical Materials; SPIE: Bellingham, WA, USA, 2010; Volume 7842. [Google Scholar]
- Chen, M.; Chang, H.C.; Chang, A.S.; Lin, S.Y.; Xi, J.Q.; Schubert, E.F. Design of optical path for wide-angle gradient-index antireflection coatings. Appl. Opt. 2007, 46, 6533–6538. [Google Scholar] [CrossRef]
- Xi, J.Q.; Schubert, M.F.; Kim, J.K.; Schubert, E.F.; Chen, M.; Lin, S.Y.; Liu, W.; Smart, J.A. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photonics 2007, 1, 176–179. [Google Scholar] [CrossRef]
- Dobrowolski, J.A.; Poitras, D.; Ma, P.; Vakil, H.; Acree, M. Toward perfect antireflection coatings: Numerical investigation. Appl. Opt. 2002, 41, 3075–3083. [Google Scholar] [CrossRef] [PubMed]
- Minot, M.J. The angluar reflectance of single-layer gradient refractive-index films. J. Opt. Soc. Am. 1977, 67, 1046–1050. [Google Scholar] [CrossRef]
- Southwell, W.H. Gradient-index antireflection coatings. Opt. Lett. 1983, 8, 584–586. [Google Scholar] [CrossRef] [PubMed]
- Southwell, W.H. Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces. J. Opt. Soc. Am. A 1991, 8, 549–553. [Google Scholar] [CrossRef]
- Brunner, R.; Sandfuchs, O.; Pacholski, C.; Morhard, C.; Spatz, J. Lessons from nature: Biomimetic subwavelength structures for high-performance optics. Laser Photonics Rev. 2012, 6, 641–659. [Google Scholar] [CrossRef]
- Bruynooghe, S.; Schulze, M.; Helgert, M.; Challier, M.; Tonova, D.; Sundermann, M.; Koch, T.; Gatto, A.; Kley, E.-B. Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures. J. Nanophotonics 2016, 10, 033002. [Google Scholar] [CrossRef]
- Chhajed, S.; Schubert, M.F.; Kim, J.K.; Schubert, E.F. Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics. Appl. Phys. Lett. 2008, 93, 251108. [Google Scholar] [CrossRef]
- Tolenis, T.; Grinevičiūtė, L.; Buzelis, R.; Smalakys, L.; Pupka, E.; Melnikas, S.; Selskis, A.; Drazdys, R.; Melninkaitis, A. Sculptured anti-reflection coatings for high power lasers. Opt. Mater. Express 2017, 7, 1249–1258. [Google Scholar] [CrossRef]
- Chi, F.; Pan, N.; Ding, C.; Wang, X.; Yi, F.; Li, X.; Lei, J. Ultraviolet laser-induced damage of freestanding silica nanoparticle films. Appl. Surf. Sci. 2019, 463, 566–572. [Google Scholar] [CrossRef]
- Ting, C.-J.; Chen, C.-F.; Chou, C. Subwavelength structures for broadband antireflection application. Opt. Commun. 2009, 282, 434–438. [Google Scholar] [CrossRef]
- Wang, S.; Yu, X.Z.; Fan, H.T. Simple lithographic approach for subwavelength structure antireflection. Appl. Phys. Lett. 2007, 91, 061105. [Google Scholar] [CrossRef]
- Hobbs, D.S.; MacLeod, B.D. High laser damage threshold surface relief micro-structures for anti-reflection applications. Laser-Induc. Damage Opt. Mater. 2007, 2007, 6720. [Google Scholar]
- Okabe, T.; Yano, T.; Yatagawa, K.; Taniguchi, J. Polyimide moth-eye nanostructures formed by oxygen ion beam etching for anti-reflection layers. Microelectron. Eng. 2021, 242, 111559. [Google Scholar] [CrossRef]
- Barlow, A.J.; Sano, N.; Murdoch, B.J.; Portoles, J.F.; Pigram, P.J.; Cumpson, P.J. Observing the evolution of regular nanostructured indium phosphide after gas cluster ion beam etching. Appl. Surf. Sci. 2018, 459, 678–685. [Google Scholar] [CrossRef]
- Prachachet, R.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Samransuksamer, B.; Lertvanithphol, T.; Buranasiri, P.; Muthitamongkol, P.; Boonruang, S. A comparative study on omnidirectional anti-reflection SiO2 nanostructure films coating by glancing angle deposition. Oxide-Based Mater. Devices IX 2018, 2018, 10533. [Google Scholar]
- Gärtner, A.; Seifert, T.; Rickelt, F.; Schulz, U.; Tünnermann, A. Xanthine: A promising organic material for the development of nanostructured anti-reflective layers. Adv. Opt. Thin Film. VII 2021, 2021, 11872. [Google Scholar]
- Duparré, A.; Ferre-Borrull, J.; Gliech, S.; Notni, G.; Steinert, J.; Bennett, J.M. Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components. Appl. Opt. 2002, 41, 154–171. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Wilbrandt, S.; Stenzel, O. In Situ and Ex Situ Spectrophotometric Characterization of Single-and Multilayer-Coatings II: Experimental Technique and Application Examples. In Optical Characterization of Thin Solid Films; Springer International Publishing: Cham, Switzerland, 2018; pp. 203–232. [Google Scholar]
- Stover, J. Optical Scattering: Measurement and Analysis, 3rd ed.; SPIE: Bellingham, WA, USA, 2012. [Google Scholar]
- Schröder, S.; Unglaub, D.; Trost, M.; Cheng, X.; Zhang, J.; Duparré, A. Spectral angle resolved scattering of thin film coatings. Appl. Opt. 2014, 53, A35–A41. [Google Scholar] [CrossRef]
- Bublitz, S.; Mühlig, C. Absolute absorption measurements in optical coatings by laser induced deflection. Coatings 2019, 9, 473. [Google Scholar] [CrossRef]
- Mydlář, M.; Vanda, J.; Mureșan, M.G.; Čech, P.; Brajer, J.; Mocek, T. Mobile LIDT. In Proceedings of the Optics and Measurement International Conference, Liberec, Czech Republic, 8–10 October 2019; p. 11385. [Google Scholar]
- ISO 21254-2:2011; Lasers and Laser-Related Equipment—Test Methods for Laser-Radiation-Induced Damage Threshold—Part 2: Threshold Determination. International Organization for Standardization: London, UK, 2011.
- ISO 21254-3:2011; Lasers and Laser-Related Equipment—Test Methods for Laser-Radiation-Induced Damage Threshold—Part 3: Assurance of Laser Power (Energy) Handling Capabilities. International Organization for Standardization: London, UK, 2011.
- ISO 21254-4:2011; Lasers and Laser-Related Equipment—Test Methods for Laser-Radiation-Induced Damage Threshold—Part 4: Inspection, Detection and Measurement. International Organization for Standardization: London, UK, 2011.
- Cheng, X.; Wang, Z. Defect-related properties of optical coatings. Adv. Opt. Technol. 2014, 3, 65–90. [Google Scholar] [CrossRef]
- Xia, S.; Cai, J.; Zhang, X.; Li, J.; Jin, G.; Chang, X. Study on thermal stress of the the fused silica irradiated by millisecond–nanosecond combined pulse laser. Pramana 2021, 95, 1–8. [Google Scholar] [CrossRef]
- Negres, R.A.; Norton, M.A.; Cross, D.A.; Carr, C.W. Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation. Opt. Express 2010, 18, 19966–19976. [Google Scholar] [CrossRef] [PubMed]
- Génin, F.Y.; Feit, M.D.; Kozlowski, M.R.; Rubenchik, A.M.; Salleo, A.; Yoshiyama, J. Rear-surface laser damage on 355-nm silica optics owing to Fresnel diffraction on front-surface contamination particles. Appl. Opt. 2000, 39, 3654–3663. [Google Scholar] [CrossRef]
Sample | 1-on-1 [J/cm2] | 10-on-1 [J/cm2] | R-on-1 [J/cm2] |
---|---|---|---|
Nanostructure | 4.38 ± 0.34 | 2.87 ± 0.20 | 1.37 ± 0.42 |
Substrate | 6.49 ± 0.50 | 4.26 ± 0.30 | 2.28 ± 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gärtner, A.; Mureșan, M.-G.; Mühlig, C.; Herffurth, T.; Felde, N.; Wagner, H.; Schulz, U.; Bingel, A.; Schröder, S.; Mocek, T.; et al. Manufacturing Process and Characteristics of Silica Nanostructures for Anti-Reflection at 355 nm. Coatings 2025, 15, 556. https://doi.org/10.3390/coatings15050556
Gärtner A, Mureșan M-G, Mühlig C, Herffurth T, Felde N, Wagner H, Schulz U, Bingel A, Schröder S, Mocek T, et al. Manufacturing Process and Characteristics of Silica Nanostructures for Anti-Reflection at 355 nm. Coatings. 2025; 15(5):556. https://doi.org/10.3390/coatings15050556
Chicago/Turabian StyleGärtner, Anne, Mihai-George Mureșan, Christian Mühlig, Tobias Herffurth, Nadja Felde, Hanjörg Wagner, Ulrike Schulz, Astrid Bingel, Sven Schröder, Tomáš Mocek, and et al. 2025. "Manufacturing Process and Characteristics of Silica Nanostructures for Anti-Reflection at 355 nm" Coatings 15, no. 5: 556. https://doi.org/10.3390/coatings15050556
APA StyleGärtner, A., Mureșan, M.-G., Mühlig, C., Herffurth, T., Felde, N., Wagner, H., Schulz, U., Bingel, A., Schröder, S., Mocek, T., & Tünnermann, A. (2025). Manufacturing Process and Characteristics of Silica Nanostructures for Anti-Reflection at 355 nm. Coatings, 15(5), 556. https://doi.org/10.3390/coatings15050556