Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (366)

Search Parameters:
Keywords = anti-platelet agent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 2713 KiB  
Article
Anti-Inflammatory and Antiplatelet Interactions on PAF and ADP Pathways of NSAIDs, Analgesic and Antihypertensive Drugs for Cardioprotection—In Vitro Assessment in Human Platelets
by Makrina Katsanopoulou, Zisis Zannas, Anna Ofrydopoulou, Chatzikamari Maria, Xenophon Krokidis, Dimitra A. Lambropoulou and Alexandros Tsoupras
Medicina 2025, 61(8), 1413; https://doi.org/10.3390/medicina61081413 - 4 Aug 2025
Viewed by 214
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, with pathophysiological mechanisms often involving platelet activation and chronic inflammation. While antiplatelet agents targeting adenosine diphosphate (ADP)-mediated pathways are well established in CVD management, less is known about drug interactions with the platelet-activating [...] Read more.
Cardiovascular disease (CVD) is the leading cause of death worldwide, with pathophysiological mechanisms often involving platelet activation and chronic inflammation. While antiplatelet agents targeting adenosine diphosphate (ADP)-mediated pathways are well established in CVD management, less is known about drug interactions with the platelet-activating factor (PAF) pathway, a key mediator of inflammation. This study aimed to evaluate the effects of several commonly used cardiovascular and anti-inflammatory drug classes—including clopidogrel, non-steroidal anti-inflammatory drugs (NSAIDs), angiotensin II receptor blockers (ARBs), β-blockers, and analgesics—on platelet function via both the ADP and PAF pathways. Using human platelet-rich plasma (hPRP) from healthy donors, we assessed platelet aggregation in response to these two agonists in the absence and presence of graded concentrations of each of these drugs or of their usually prescribed combinations. The study identified differential drug effects on platelet aggregation, with some agents showing pathway-specific activity. Clopidogrel and NSAIDs demonstrated expected antiplatelet effects, while some (not all) antihypertensives exhibited additional anti-inflammatory potential. These findings highlight the relevance of evaluating pharmacological activity beyond traditional targets, particularly in relation to PAF-mediated inflammation and thrombosis. This dual-pathway analysis may contribute to a broader understanding of drug mechanisms and inform the development of more comprehensive therapeutic strategies for the prevention and treatment of cardiovascular, hypertension, and inflammation-driven diseases. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

14 pages, 1467 KiB  
Article
GSNO as a Modulator of Vascular Tone in Human Saphenous Veins: Potential Implications for Graft Spasm
by Deniz Kaleli Durman, Nurdan Dağtekin, Erkan Civelek, Taner İyigün, Önder Teskin and Birsel Sönmez Uydeş Doğan
Life 2025, 15(7), 1139; https://doi.org/10.3390/life15071139 - 19 Jul 2025
Viewed by 291
Abstract
S-nitrosoglutathione (GSNO), a promising S-nitrosothiol, has been recognized for its ability to modulate vascular tone through its vasodilatory, antiplatelet, and antiproliferative effects. However, data on its vasodilatory effects in human vessels remain limited, and its mechanisms of action have yet to be fully [...] Read more.
S-nitrosoglutathione (GSNO), a promising S-nitrosothiol, has been recognized for its ability to modulate vascular tone through its vasodilatory, antiplatelet, and antiproliferative effects. However, data on its vasodilatory effects in human vessels remain limited, and its mechanisms of action have yet to be fully elucidated. In this study, we aimed to investigate the vasorelaxant effect of GSNO and its underlying mechanisms, with particular focus on the soluble guanylate cyclase (sGC)/nitric oxide (NO) pathway and potassium channels in isolated human saphenous veins (SVs) obtained from patients undergoing coronary artery bypass grafting (CABG). GSNO (10−8–10−4 M) produced concentration-dependent relaxations in SV rings precontracted with phenylephrine. These relaxations were unaffected by NO synthase inhibition with L-NAME (10−4 M, 30 min) or NO scavenging with PTIO (10−4 M, 30 min), but were significantly reduced by the sGC inhibitor, ODQ (10−5 M, 30 min). Inhibition of ATP-sensitive (glibenclamid; 10−5 M, 30 min.), high-conductance Ca2+-activated (charybdotoxin; 10−7 M, 30 min), small-conductance Ca2+-activated (apamin; 10−6 M, 30 min), or voltage-dependent (4-aminopyridine; 10−3 M, 30 min) potassium channels did not alter the maximum relaxant responses to GSNO. Furthermore, pretreatment with GSNO (10−4 M, 30 min) significantly attenuated both the contractile response and sensitivity to phenylephrine. Collectively, these findings demonstrate that GSNO exerts acute vasorelaxant and modulatory effects in human SV primarily via cGMP-dependent mechanisms, highlighting its potential as a local therapeutic agent for preventing graft spasm in CABG. Full article
Show Figures

Figure 1

18 pages, 2563 KiB  
Article
The Potential Anti-Cancer Effects of Polish Ethanolic Extract of Propolis and Quercetin on Glioma Cells Under Hypoxic Conditions
by Małgorzata Kłósek, Anna Kurek-Górecka, Radosław Balwierz, Grażyna Pietsz and Zenon P. Czuba
Molecules 2025, 30(14), 3008; https://doi.org/10.3390/molecules30143008 - 17 Jul 2025
Viewed by 658
Abstract
Tissue hypoxia is commonly observed in head cancers and contributes to both molecular and functional changes in tumour cells. It is known to stimulate erythropoiesis, angiogenesis, and metabolic alterations within tumour cells. Glioblastoma, a type of brain tumour, is characterized by rapid proliferation [...] Read more.
Tissue hypoxia is commonly observed in head cancers and contributes to both molecular and functional changes in tumour cells. It is known to stimulate erythropoiesis, angiogenesis, and metabolic alterations within tumour cells. Glioblastoma, a type of brain tumour, is characterized by rapid proliferation and aggressive growth. Recent studies have indicated that natural products may hold potential as components of cancer therapy. Among these, Polish propolis and its active compound, quercetin, have demonstrated promising anti-cancer properties. The aim of this study was to evaluate the concentrations of selected cytokines—specifically IL-6, IL-9, vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-BB), interferon gamma-induced protein 10 (IP-10), and monocyte chemoattractant protein-1 (MCP-1)—produced by astrocytes of the CCF-STTG1 cell line. The cytotoxic effects of ethanolic extract of propolis (EEP) and quercetin were assessed using the MTT assay. Astrocytes were stimulated with lipopolysaccharide (LPS, 200 ng/mL) and/or IFN-α (100 U/mL), followed by treatment with EEP or quercetin (25–50 µg/mL) under hypoxic conditions for two hours. Cytokine concentrations were measured using the xMAP Luminex Multiplex Immunoassay and the Multiplex Bead-Based Cytokine Kit. Our study demonstrated that Polish propolis and its component quercetin modulate the tumour microenvironment in vitro, primarily by altering the levels of specific cytokines. The HCA analysis revealed that IL-6 and MCP-1 formed a distinct cluster at the highest linkage distance (approximately 100% of Dmax), suggesting that their expression patterns are significantly different from those of the other cytokines and that they are more similar to each other than to the rest. PCA analysis showed that EEP-PL (50 μg/mL) with IFN-α and EEP-PL (50 μg/mL) with LPS exert similar activities on cytokine secretion by astrocytes. Similar effects were demonstrated for EEP-PL 50 μg/mL + LPS + IFN-α, EEP-PL 25 μg/mL + IFN-α and EEP-PL 25 μg/mL + LPS + IFN-α. Our findings suggest that Polish propolis and quercetin may serve as promising natural agents to support the treatment of stage IV malignant astrocytoma. Nonetheless, further research is needed to confirm these results. Full article
Show Figures

Figure 1

25 pages, 1860 KiB  
Review
Advances in Pathophysiology and Novel Therapeutic Strategies for Coronary No-Reflow Phenomenon
by Hubert Borzuta, Wiktor Kociemba, Oliwia Bochenek, Monika Jarowicz and Agnieszka Wsół
Biomedicines 2025, 13(7), 1716; https://doi.org/10.3390/biomedicines13071716 - 14 Jul 2025
Viewed by 428
Abstract
Coronary no-reflow (CNR) is the failure of blood to reperfuse ischemic myocardial tissue after restoration of the vasculature. CNR poses a significant clinical challenge in the treatment of patients with ST-segment elevation myocardial infarction (STEMI), as it increases mortality and the risk of [...] Read more.
Coronary no-reflow (CNR) is the failure of blood to reperfuse ischemic myocardial tissue after restoration of the vasculature. CNR poses a significant clinical challenge in the treatment of patients with ST-segment elevation myocardial infarction (STEMI), as it increases mortality and the risk of major adverse cardiac events (MACEs). Myocardial ischemia with subsequent reperfusion results in severe damage to the cardiac microcirculation. The pathophysiological causes of CNR include cardiomyocyte vulnerability, capillary and endothelial damage, leukocyte activation, reactive oxygen species (ROS) production, and changes in microRNA profiles and related gene expression. The impact of percutaneous coronary intervention (PCI) on the occurrence of CNR cannot be overlooked, as it can provoke distal atherothrombotic embolization. Current standards of pharmacological therapy for CNR are confined to intracoronary vasodilators and antiplatelet agents. As our understanding of the pathogenesis of the CNR phenomenon improves, opportunities emerge for developing novel therapeutic strategies. The following literature review provides an overview of the pathophysiology of the no-reflow phenomenon (based on animal and preclinical studies), contemporary treatment trends, and current therapeutic approaches. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

24 pages, 1710 KiB  
Review
Navigating the Dry Eye Therapeutic Puzzle: A Mechanism-Based Overview of Current Treatments
by Jason Betz and Anat Galor
Pharmaceuticals 2025, 18(7), 994; https://doi.org/10.3390/ph18070994 - 2 Jul 2025
Viewed by 819
Abstract
Background/Objectives: Dry eye disease (DED) is a multifactorial condition with complex pathophysiology involving tear film instability, ocular surface inflammation, and nerve dysfunction. This review summarizes current evidence on the different available therapies targeting these mechanisms. Methods: A review of clinical studies [...] Read more.
Background/Objectives: Dry eye disease (DED) is a multifactorial condition with complex pathophysiology involving tear film instability, ocular surface inflammation, and nerve dysfunction. This review summarizes current evidence on the different available therapies targeting these mechanisms. Methods: A review of clinical studies evaluating treatment outcomes for therapies targeting aqueous tear deficiency, Meibomian gland dysfunction, ocular surface inflammation, and ocular pain was conducted, with an emphasis on randomized controlled trials and meta-analyses where available. Results: Artificial tears provide symptomatic relief with limited impact on tear film stability. Punctal plugs improve tear retention but show variable efficacy across studies. Treatments targeting MGD—such as lipid-based lubricants, eyelid hygiene, thermal pulsation (LipiFlow, iLux), and intense pulsed light (IPL)—demonstrate improvements in gland function, though outcomes vary. Anti-inflammatory agents including cyclosporine, lifitegrast, and short-term corticosteroids improve ocular surface signs, with mixed symptom relief. Biologic therapies like autologous serum tears and platelet-rich plasma show promise for both signs and symptoms, but data remain inconsistent. Nerve-targeted therapies, including oral neuromodulators (gabapentin, antidepressants), botulinum toxin, and transcutaneous nerve stimulation, have shown potential for managing neuropathic ocular pain, although randomized data are limited. Overall, variability in study designs, patient populations, and outcome measures highlights the need for more rigorous research. Conclusions: Personalized, mechanism-based treatment strategies are essential for optimizing outcomes in DED. Future research should prioritize well-designed, controlled studies to clarify the role of emerging therapies and guide the individualized management of this heterogeneous condition. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

9 pages, 200 KiB  
Article
Use of Cangrelor in Patients Undergoing Percutaneous Coronary Intervention: Insights and Outcomes from District General Hospital
by Ibrahim Antoun, Sotirios Dardas, Falik Sher, Mueed Akram, Navid Munir, Georgia R. Layton, Mustafa Zakkar, Kamal Chitkara, Riyaz Somani and Andre Ng
Hearts 2025, 6(3), 16; https://doi.org/10.3390/hearts6030016 - 22 Jun 2025
Viewed by 393
Abstract
Background/Objectives: Cangrelor, an intravenous P2Y12 inhibitor, is increasingly used during percutaneous coronary intervention (PCI) for rapid and reversible platelet inhibition in patients unable to take oral antiplatelet agents, particularly in emergencies such as ST-elevation myocardial infarction (STEMI), cardiac arrest, or cardiogenic shock. [...] Read more.
Background/Objectives: Cangrelor, an intravenous P2Y12 inhibitor, is increasingly used during percutaneous coronary intervention (PCI) for rapid and reversible platelet inhibition in patients unable to take oral antiplatelet agents, particularly in emergencies such as ST-elevation myocardial infarction (STEMI), cardiac arrest, or cardiogenic shock. This single-centre study evaluates cangrelor and outcomes in a non-surgical centre. Methods: Between June 2017 and December 2021, all the patients for whom cangrelor was used at a district general hospital (DGH) in the UK were included in this study. Data collection included baseline characteristics, admission, procedural details, and patient outcomes. The primary outcome was a composite of all-cause mortality, bleeding, and cardiovascular events, including myocardial infarction, stent thrombosis, and stroke, within 48 h. Secondary outcomes included predictors of the composite outcome at 48 h. Results: During the study period, cangrelor was administered peri-procedurally to 93 patients. Males comprised 85% of the patients; the mean age was 65.5 ± 10.6 years. A total of 1 patient (1.1%) had a cardiovascular event within 48 h of cangrelor administration, whereas all-cause mortality occurred in 17 patients (18%) within 48 h. No major bleeding events were noted at 48 h following cangrelor administration. Regression analysis did not find predictors of composite outcomes at 48 h. Conclusions: Cangrelor offers a potential alternative to oral P2Y12 inhibitors in specific high-risk scenarios. Further research is needed to validate its role in broader populations. Full article
20 pages, 847 KiB  
Article
Antiplatelet Therapy Mitigates Brain Metastasis Risk in Non-Small Cell Lung Cancer: Insights from a Comprehensive Retrospective Study
by Carla Martín-Abreu, María García-Gil, Margarita Méndez-Monge, Helga Fariña-Jerónimo and Julio Plata-Bello
Cancers 2025, 17(13), 2059; https://doi.org/10.3390/cancers17132059 - 20 Jun 2025
Viewed by 470
Abstract
Background: Brain metastases are a common and devastating complication of non-small cell lung cancer (NSCLC), severely affecting prognosis and quality of life. Despite increasing interest in the role of platelets in tumor progression and dissemination, the potential impact of antiplatelet therapy on brain [...] Read more.
Background: Brain metastases are a common and devastating complication of non-small cell lung cancer (NSCLC), severely affecting prognosis and quality of life. Despite increasing interest in the role of platelets in tumor progression and dissemination, the potential impact of antiplatelet therapy on brain metastasis in NSCLC remains underexplored. Methods: In this retrospective observational study, we analyzed data from 650 patients diagnosed with NSCLC over a four-year period to evaluate whether prior or subsequent exposure to antiplatelet agents correlates with a reduced incidence of brain metastases. Results: Patients exposed to antiplatelet therapy, predominantly aspirin, presented with more comorbidities and were generally older. Despite these differences, they showed a significantly lower risk of developing brain metastases during the disease course (6.9% vs. 20.0%, p < 0.001), particularly among those with advanced-stage disease at diagnosis. A longer time to metastasis development was also observed in antiplatelet users (77.5 vs. 62.6 months, p < 0.001), along with improved progression-free survival. Additionally, patients on antiplatelets before diagnosis had a lower probability of presenting brain metastases at the time of diagnosis (3.9% vs. 12.1%, p = 0.014), and no cases of brain metastases occurred in patients who started antiplatelet therapy shortly after diagnosis. These findings highlight the potential of antiplatelet agents to interfere with key mechanisms of metastatic spread, including immune evasion and premetastatic niche formation. Conclusions: Importantly, this study provides one of the first real-world analyses suggesting a consistent and stage-dependent association between antiplatelet use and reduced brain metastatic burden in NSCLC. By bridging the gap between preclinical insights and clinical outcomes, our work offers a novel and clinically relevant perspective that supports further research into the integration of antiplatelet therapy in NSCLC management. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

13 pages, 412 KiB  
Article
Anti-Thrombotic Activity of 3-Deoxysappanchalcone via Inhibiting Platelet Aggregation and Thrombin (FIIa)/Activated Factor X (FXa) Activity
by Gyuri Han, Jinhee Lee and Jong-Sup Bae
Molecules 2025, 30(12), 2580; https://doi.org/10.3390/molecules30122580 - 13 Jun 2025
Viewed by 420
Abstract
Naturally occurring plant-based compounds are increasingly being explored for their therapeutic potential in treating a wide range of conditions, particularly those related to vascular health. The compound 3-deoxysappanchalcone (3-DSC), derived from Caesalpinia sappan L., has been proven to exhibit anti-inflammatory, anti-influenza, and anti-allergic [...] Read more.
Naturally occurring plant-based compounds are increasingly being explored for their therapeutic potential in treating a wide range of conditions, particularly those related to vascular health. The compound 3-deoxysappanchalcone (3-DSC), derived from Caesalpinia sappan L., has been proven to exhibit anti-inflammatory, anti-influenza, and anti-allergic properties, though its role in thrombosis and haemostasis remains unexplored. This study aimed to evaluate the anti-thrombotic potential of 3-DSC in both in vitro and in vivo models. The anticoagulant activities of 3-DSC were assessed using activated partial thromboplastin time (aPTT), prothrombin time (PT), and thrombin (FIIa) and activated factor X (FXa) activity assays, as well as fibrin polymerization and platelet aggregation tests. Its effects on plasminogen activator inhibitor type 1 (PAI-1) and tissue-type plasminogen activator (t-PA) expression were evaluated in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs). The results demonstrated that 3-DSC extended aPTT and PT, suppressed thrombin and FXa activities, reduced their production in HUVECs, inhibited thrombin-induced fibrin polymerization and platelet aggregation, and exerted anticoagulant effects in mice. Furthermore, 3-DSC significantly decreased the PAI-1 to t-PA ratio. These findings suggest that 3-DSC possesses potent anti-thrombotic properties by modulating coagulation pathways and fibrinolysis. Its therapeutic potential warrants further investigation for the development of novel anticoagulant agents. Full article
(This article belongs to the Special Issue Anti-Inflammatory Natural Compounds)
Show Figures

Graphical abstract

12 pages, 490 KiB  
Review
Endometriosis and Cardiovascular Disease: Exploring Pathophysiological Interconnections and Risk Mechanisms
by Gabriela Szpila, Julia Szczotka, Alexander Suchodolski and Mariola Szulik
Diagnostics 2025, 15(12), 1458; https://doi.org/10.3390/diagnostics15121458 - 8 Jun 2025
Viewed by 875
Abstract
Endometriosis, traditionally viewed as a gynecological disorder, is increasingly recognized as a systemic disease with significant cardiovascular implications. Recent studies suggest that women with endometriosis are at higher risk for developing atherosclerosis and other cardiovascular diseases (CVDs), due to chronic systemic inflammation, endothelial [...] Read more.
Endometriosis, traditionally viewed as a gynecological disorder, is increasingly recognized as a systemic disease with significant cardiovascular implications. Recent studies suggest that women with endometriosis are at higher risk for developing atherosclerosis and other cardiovascular diseases (CVDs), due to chronic systemic inflammation, endothelial dysfunction, oxidative stress, and metabolic disturbances. This review aimed to summarize current evidence on the vascular implications of endometriosis. A literature search was conducted in PubMed and Google Scholar, focusing on studies exploring the relationship between endometriosis and cardiovascular risk. In rare cases, endometriosis can affect extrapelvic locations such as the diaphragm or pericardium, presenting with cyclical chest pain or dyspnea and mimicking cardiopulmonary conditions. These atypical manifestations often delay diagnosis and highlight the need for heightened clinical awareness. Advances in imaging and minimally invasive techniques, including robotic surgery, have improved the detection and management of such presentations. Shared molecular pathways between endometriosis and CVDs, including pro-inflammatory cytokines and metabolic dysregulation, provide a rationale for exploring novel therapeutic approaches. Emerging pharmacologic options such as statins, metformin, or antiplatelet agents may offer dual benefits for both reproductive and cardiovascular health. Given the multifactorial nature of endometriosis, a multidisciplinary approach involving gynecologists, cardiologists, and primary care providers is essential. These findings highlight the need for early cardiovascular risk assessment and tailored preventive strategies in this population. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Graphical abstract

25 pages, 857 KiB  
Article
Amphiphilic Bioactives of Freshwater Aquatic Plants Nelumbo nucifera (Indian Lotus) and Lemna sp. with Antioxidant, Anti-Inflammatory and Antithrombotic Activities: In Vitro Study
by Marina Seferli, Melina Lefkaki, Vasileios Manousakis, Anna Ofrydopoulou, Katie Shiels, Sushanta Kumar Saha, Grigorios Krey, Nikolaos Kamidis, Nikolaos Stamatis, Chryssa Anastasiadou and Alexandros Tsoupras
Pharmaceuticals 2025, 18(6), 835; https://doi.org/10.3390/ph18060835 - 2 Jun 2025
Viewed by 709
Abstract
Background-Objectives: Chronic diseases linked to inflammation, such as cardiovascular disease (CVD) and cancer, continue to pose major public health challenges due to their high mortality rates. There is growing interest in natural bioactive compounds, particularly those derived from plants, as potential therapeutic or [...] Read more.
Background-Objectives: Chronic diseases linked to inflammation, such as cardiovascular disease (CVD) and cancer, continue to pose major public health challenges due to their high mortality rates. There is growing interest in natural bioactive compounds, particularly those derived from plants, as potential therapeutic or preventive agents due to their low toxicity profiles. This study aimed to explore two freshwater plants—Nelumbo nucifera (Indian lotus) and Lemna sp.—as potential sources of bioactive compounds with antioxidant, anti-inflammatory, and antithrombotic properties. While N. nucifera has established but incompletely characterized biofunctional properties, Lemna sp. remains largely unexplored in this context. Methods: Amphiphilic extracts from both plant species were analyzed for phenolic and lipid constituents, including unsaturated fatty acids, polar lipids, and carotenoids. Antioxidant capacity was evaluated using DPPH, ABTS, and FRAP assays. Anti-inflammatory and antithrombotic activities were assessed via platelet aggregation assays using PAF and ADP agonists. Structural characterization was performed using Fourier transform infrared spectroscopy (FT-IR) and liquid chromatography–mass spectroscopy (LC-MS) to support structure–activity relationship (SAR) analysis. Results: Extracts, particularly from Lemna sp., showed potent antiplatelet activity against PAF and ADP. LC-MS revealed the presence of polar lipids rich in monounsaturated and omega-3 polyunsaturated fatty acids, with a favorable omega-6/omega-3 ratio, especially in Lemna sp., correlating with strong anti-inflammatory potential. High levels of total phenolics and carotenoids were observed, aligning with substantial antioxidant capacity in both species. Conclusions: These findings suggest that N. nucifera and Lemna sp. are promising sources of bioactive compounds with potential applications in functional foods, cosmetics, and pharmaceuticals targeting inflammation- and thrombosis-related chronic diseases. Further studies are warranted to confirm their safety and efficacy. Full article
Show Figures

Graphical abstract

13 pages, 773 KiB  
Review
Long-Term Antithrombotic Therapy in Patients with Atrial Fibrillation and Percutaneous Coronary Intervention
by Antonio Capolongo, Vincenzo De Sio, Felice Gragnano, Mattia Galli, Natale Guarnaccia, Pasquale Maddaluna, Giuseppe Verde, Vincenzo Acerbo, Pierre Sabouret, Daniele Giacoppo, Matteo Conte, Silvio Coletta, Vincenzo Diana, Michelangelo Luciani, Elisabetta Moscarella, Arturo Cesaro, Francesco Pelliccia and Paolo Calabrò
J. Clin. Med. 2025, 14(11), 3713; https://doi.org/10.3390/jcm14113713 - 26 May 2025
Viewed by 2248
Abstract
The optimal long-term antithrombotic treatment of patients with atrial fibrillation (AF) undergoing percutaneous coronary intervention (PCI) remains controversial. Current guidelines recommend a short initial period of triple antithrombotic therapy (e.g., 1 week), followed by dual therapy consisting of an oral anticoagulation agent and [...] Read more.
The optimal long-term antithrombotic treatment of patients with atrial fibrillation (AF) undergoing percutaneous coronary intervention (PCI) remains controversial. Current guidelines recommend a short initial period of triple antithrombotic therapy (e.g., 1 week), followed by dual therapy consisting of an oral anticoagulation agent and a single antiplatelet agent for 6 months in patients undergoing elective PCI and 12 months in patients with acute coronary syndromes. After this course of combination therapy, anticoagulation monotherapy is recommended. In daily practice, however, the optimal strategy for long-term antithrombotic therapy remains debated. A growing body of evidence supports the safety and efficacy of oral anticoagulation monotherapy, but its use in clinical practice remains inconsistent. This review aims to evaluate the available evidence on chronic antithrombotic regimens in patients with AF undergoing PCI, with a focus on key clinical considerations, such as the selection of optimal long-term therapy that balances ischemic and bleeding risks. It also highlights that, despite robust supporting evidence, significant gaps persist in real-world implementation. Full article
Show Figures

Figure 1

13 pages, 1247 KiB  
Article
Gene Expression Modulation in Bovine Endometrial Cells Infected with Gammaherpesvirus Type 4 and Exposed to Lipopolysaccharide in the Presence of Platelet-Rich Plasma
by Sofía López, Ignacio Álvarez, V. Andreoli, S. Delgado, S. Perez, S. Pereyra, F. Romeo, S. Grolli and Andrea Elizabeth Verna
Viruses 2025, 17(6), 744; https://doi.org/10.3390/v17060744 - 23 May 2025
Viewed by 844
Abstract
Uterine diseases in cattle are frequently linked to bacterial infections, with pathogens commonly isolated from the uterine lumen. Bovine Gammaherpesvirus Type 4 (BoGHV-4) is notably prevalent in certain regions of Argentina and is associated with uterine diseases in postpartum cattle. This study aims [...] Read more.
Uterine diseases in cattle are frequently linked to bacterial infections, with pathogens commonly isolated from the uterine lumen. Bovine Gammaherpesvirus Type 4 (BoGHV-4) is notably prevalent in certain regions of Argentina and is associated with uterine diseases in postpartum cattle. This study aims to evaluate the impact of platelet-rich plasma (PRP) on the gene expression related to BoGHV-4 infection in the presence of lipopolysaccharide (LPS), exploring the potential of PRP as a therapeutic alternative. The interaction between LPS and Toll-like receptor 4 (TLR4) plays a crucial role in inflammatory responses, triggering cytokine production and immune activation. Our results show that PRP modulates TLR4 and TNF-α gene expression, indicating a potential inhibitory role in inflammatory processes. Furthermore, PRP alter the temporal dynamics of BoGHV-4 replication by modulating the expression of the viral immediate–early gene (IE-2) and delaying proinflammatory cytokine responses such as IL-8. Notably, PRP enhances IFN-γ expression, which could help prevent tissue damage caused by bacterial and viral coinfection. These findings highlight the potential of PRP as an anti-inflammatory agent with therapeutic benefits in treating uterine diseases, offering an alternative to traditional antibiotic treatments. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Graphical abstract

28 pages, 1697 KiB  
Review
IL-6 as a Mediator of Platelet Hyper-Responsiveness
by Connor Elliot Webb, Jordan Vautrinot and Ingeborg Hers
Cells 2025, 14(11), 766; https://doi.org/10.3390/cells14110766 - 22 May 2025
Viewed by 1419
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine with critical roles in immune regulation, inflammation, and haematopoiesis. While its functions in host defence and tissue repair are well established, accumulating evidence suggests that IL-6 also can directly and indirectly modulate megakaryocyte and platelet biology. This [...] Read more.
Interleukin-6 (IL-6) is a pleiotropic cytokine with critical roles in immune regulation, inflammation, and haematopoiesis. While its functions in host defence and tissue repair are well established, accumulating evidence suggests that IL-6 also can directly and indirectly modulate megakaryocyte and platelet biology. This review examines the mechanistic basis supporting IL-6-mediated platelet hyper-responsiveness, in addition to its effect on megakaryopoiesis and thrombopoiesis in thromboinflammatory disease states. We discuss how IL-6-mediated trans-signalling may sensitizes platelets to activation, and that this may be exclusive to glycoprotein VI (GPVI) stimulation due to Janus kinase (JAK)–signal transducer 2 crosstalk, in addition to other mechanisms that may contribute to priming platelets. We further highlight clinical evidence linking IL-6 to thrombotic complications in cardiovascular disease and infection (e.g., COVID-19 and sepsis). Given the emerging interest in IL-6-targeting therapies as anti-inflammatory and anti-thrombotic agents, a thorough understanding of how IL-6 can drive platelet responsiveness is crucial. Full article
(This article belongs to the Special Issue Molecular and Cellular Insights into Platelet Function)
Show Figures

Graphical abstract

21 pages, 2925 KiB  
Review
Biomaterial-Based and Surgical Approaches to Local Hemostasis in Contemporary Oral Surgery: A Narrative Review
by Atanaska Dinkova, Petko Petrov, Dobromira Shopova, Hristo Daskalov and Stanislava Harizanova
J. Funct. Biomater. 2025, 16(5), 190; https://doi.org/10.3390/jfb16050190 - 21 May 2025
Viewed by 1637
Abstract
Effective local hemostasis is essential in oral surgery to prevent complications such as delayed healing, infection, and the need for re-intervention. Postoperative bleeding occurs in 4–6% of cases, increasing to 9–12% in patients receiving anticoagulant or antiplatelet therapy. This review evaluates the efficacy, [...] Read more.
Effective local hemostasis is essential in oral surgery to prevent complications such as delayed healing, infection, and the need for re-intervention. Postoperative bleeding occurs in 4–6% of cases, increasing to 9–12% in patients receiving anticoagulant or antiplatelet therapy. This review evaluates the efficacy, safety, and clinical utility of local hemostatic agents based on 51 studies published between 1990 and 2023. Traditional agents, such as oxidized cellulose and gelatin sponges, control bleeding in over 85% of standard cases but offer limited regenerative benefits. Autologous platelet concentrates (APCs), including platelet-rich plasma (PRP) and leukocyte- and platelet-rich fibrin (L-PRF), reduce bleeding time by 30–50% and enhance soft tissue healing. Studies show the PRP may reduce postoperative bleeding in dental surgery by 30–50%, and in orthopedic and cardiac surgery by 10–30%, particularly in patients on anticoagulants. Tranexamic Acid mouthwash can reduce postoperative bleeding by up to 50–60%. Fibrin sealants achieve a 70–90% reduction in bleeding among high-risk patients, while topical tranexamic acid decreases hemorrhagic events by up to 80% in anticoagulated individuals without increasing thromboembolic risk. However, comparative studies remain limited, particularly in medically compromised populations. Additional gaps persist regarding long-term outcomes, cost-effectiveness, and the standardized use of emerging agents such as nanomaterials. Future research should prioritize high-quality trials across diverse patient groups and develop clinical guidelines that integrate both safety and regenerative outcomes. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

15 pages, 3422 KiB  
Article
Dihydrogeodin from Fennellia flavipes Modulates Platelet Aggregation via Downregulation of Calcium Signaling, αIIbβ3 Integrins, MAPK, and PI3K/Akt Pathways
by Abdul Wahab Akram, Dae-Cheol Choi, Hyung-Kyu Chae, Sung Dae Kim, Dongmi Kwak, Bong-Sik Yun and Man Hee Rhee
Mar. Drugs 2025, 23(5), 212; https://doi.org/10.3390/md23050212 - 17 May 2025
Viewed by 698
Abstract
Cardiovascular disease remains a leading cause of morbidity and mortality worldwide, frequently arising from platelet hyperactivation and subsequent thrombus formation. Although conventional antiplatelet therapies are available, challenges, such as drug resistance and bleeding complications, require the development of novel agents. In this study, [...] Read more.
Cardiovascular disease remains a leading cause of morbidity and mortality worldwide, frequently arising from platelet hyperactivation and subsequent thrombus formation. Although conventional antiplatelet therapies are available, challenges, such as drug resistance and bleeding complications, require the development of novel agents. In this study, dihydrogeodin (DHG) was isolated from Fennellia flavipes and evaluated using platelets derived from Sprague–Dawley rats. Platelet aggregation induced by collagen, adenosine diphosphate, or thrombin was assessed by light transmission aggregometry; DHG significantly reduced aggregation in a dose-dependent manner. Further assays demonstrated that DHG suppressed intracellular calcium mobilization, adenosine triphosphate release, and integrin αIIbβ3-dependent fibrinogen binding, thereby impairing clot retraction. Western blot analysis revealed that DHG reduced the phosphorylation of mitogen-activated protein kinases (ERK, JNK, p38) and PI3K/Akt, indicating inhibition across multiple platelet-signaling pathways. Additionally, SwissADME-assisted pharmacokinetics predicted favorable properties without violations of the Lipinski (Pfizer) filter, Muegge (Bayer) filter, Ghose filter, Veber filter, and Egan filter, and network pharmacology revealed inhibition of calcium and MAPK pathways. These results highlight the potential of DHG as a novel antiplatelet agent with broad-spectrum activity and promising drug-like characteristics. Further studies are warranted to assess its therapeutic window, safety profile, and potential for synergistic use with existing antiplatelet drugs. Full article
Show Figures

Graphical abstract

Back to TopTop