GSNO as a Modulator of Vascular Tone in Human Saphenous Veins: Potential Implications for Graft Spasm
Abstract
1. Introduction
2. Materials and Methods
2.1. Harvesting and Preparation of Human Saphenous Veins
2.2. Experimental Protocol
2.2.1. Investigation of the Relaxant Effect of GSNO on Isolated Human SV Rings
2.2.2. Investigation of the Involvement of the NO Pathway in the Vasorelaxant Effect of GSNO
2.2.3. Investigation of the Involvement of K+ Channels in the Vasorelaxant Effect of GSNO
2.2.4. Investigation of the Preventive Effect of GSNO on Vascular Reactivity
2.3. Statistical Analysis
2.4. Chemicals
3. Results
3.1. Patient Characteristics
3.2. Relaxant Effects of GSNO on Isolated Human SV Rings
3.3. Role of the NO Pathway in the Vasorelaxant Effect of GSNO
3.4. Role of K+ Channels in the Vasorelaxant Effects of GSNO
3.5. Preventive Effect of GSNO on Vascular Reactivity
4. Discussion
Limitations of the Study
5. Conclusions
Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Belder, A.J.; Radomski, M.W. Nitric oxide in the clinical arena. J. Hypertens. 1994, 12, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Megson, I.L.; Webb, D.J. Nitric oxide donor drugs: Current status and future trends. Expert Opin. Investig. Drugs 2002, 11, 587–601. [Google Scholar] [CrossRef] [PubMed]
- Moncada, S.; Higgs, E.A. The discovery of nitric oxide and its role in vascular biology. Br. J. Pharmacol. 2006, 147 (Suppl. S1), S193–S201. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miller, M.R.; Megson, I.L. Recent developments in nitric oxide donor drugs. Br. J. Pharmacol. 2007, 151, 305–321. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Nacharaju, P.; Friedman, A.; Friedman, J.M. Nitric oxide generating/releasing materials. Future Sci. OA 2015, 1, FSO54. [Google Scholar] [CrossRef] [PubMed]
- Andrabi, S.M.; Sharma, N.S.; Karan, A.; Shahriar, S.M.S.; Cordon, B.; Ma, B.; Xie, J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. Adv. Sci. 2023, 10, e2303259. [Google Scholar] [CrossRef] [PubMed]
- Tabish, T.A.; Crabtree, M.J.; Townley, H.E.; Winyard, P.G.; Lygate, C.A. Nitric Oxide Releasing Nanomaterials for Cardiovascular Applications. JACC. Basic Transl. Sci. 2023, 9, 691–709. [Google Scholar] [CrossRef] [PubMed]
- Al-Sa’doni, H.; Ferro, A. S-Nitrosothiols: A class of nitric oxide-donor drugs. Clin. Sci. 2000, 98, 507–520. [Google Scholar] [CrossRef]
- Hogg, N. Biological chemistry and clinical potential of S-nitrosothiols. Free Radic. Biol. Med. 2000, W 28, 1478–1486. [Google Scholar] [CrossRef] [PubMed]
- Wanstall, J.C.; Homer, K.L.; Doggrell, S.A. Evidence for, and importance of, cGMP-independent mechanisms with NO and NO donors on blood vessels and platelets. Curr. Vasc. Pharmacol. 2005, 3, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Megson, I.L.; Miller, M.R. NO and sGC-stimulating NO donors. In Handbook of Experimental Pharmacology; Springer Nature: Berlin/Heidelberg, Germany, 2009; Volume 191, pp. 247–276. [Google Scholar] [CrossRef]
- Gordge, M.P.; Xiao, F. S-nitrosothiols as selective antithrombotic agents—Possible mechanisms. Br. J. Pharmacol. 2010, 159, 1572–1580. [Google Scholar] [CrossRef] [PubMed]
- Kevil, C.G.; Patel, R.P. S-Nitrosothiol biology and therapeutic potential in metabolic disease. Curr. Opin. Investig. Drugs 2010, 11, 1127–1134. [Google Scholar] [PubMed]
- Rychter, M.; Gaucher, C.; Boudier, A.; Leroy, P.; Lulek, J. S-Nitrosothiols-NO donors regulating cardiovascular cell proliferation: Insight into intracellular pathway alterations. Int. J. Biochem. Cell Biol. 2016, 78, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Langford, E.J.; Wainwright, R.J.; Martin, J.F. Platelet activation in acute myocardial infarction and unstable angina is inhibited by nitric oxide donors. Arterioscler. Thromb. Vasc. Biol. 1996, 16, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Lees, C.; Langford, E.; Brown, A.S.; de Belder, A.; Pickles, A.; Martin, J.F.; Campbell, S. The effects of S-nitrosoglutathione on platelet activation, hypertension, and uterine and fetal Doppler in severe preeclampsia. Obstet. Gynecol. 1996, 88, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Salas, E.; Langford, E.J.; Marrinan, M.T.; Martin, J.F.; Moncada, S.; de Belder, A.J. S-nitrosoglutathione inhibits platelet activation and deposition in coronary artery saphenous vein grafts in vitro and in vivo. Heart 1998, 80, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Molloy, J.; Martin, J.F.; Baskerville, P.A.; Fraser, S.C.; Markus, H.S. S-nitrosoglutathione reduces the rate of embolization in humans. Circulation 1998, 98, 1372–1375. [Google Scholar] [CrossRef] [PubMed]
- Young, D.V.; Serebryanik, D.; Janero, D.R.; Tam, S.W. Suppression of proliferation of human coronary artery smooth muscle cells by the nitric oxide donor, S-nitrosoglutathione, is cGMP-independent. Mol. Cell Biol. Res. Commun. MCBRC 2000, 4, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Kaposzta, Z.; Clifton, A.; Molloy, J.; Martin, J.F.; Markus, H.S. S-nitrosoglutathione reduces asymptomatic embolization after carotid angioplasty. Circulation 2002, 106, 3057–3062. [Google Scholar] [CrossRef] [PubMed]
- Rassaf, T.; Kleinbongard, P.; Preik, M.; Dejam, A.; Gharini, P.; Lauer, T.; Erckenbrecht, J.; Duschin, A.; Schulz, R.; Heusch, G.; et al. Plasma nitrosothiols contribute to the systemic vasodilator effects of intravenously applied NO: Experimental and clinical Study on the fate of NO in human blood. Circ. Res. 2002, 91, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Hornyák, I.; Pankotai, E.; Kiss, L.; Lacza, Z. Current developments in the therapeutic potential of S-nitrosoglutathione, an endogenous NO-donor molecule. Curr. Pharm. Biotechnol. 2011, 12, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Broniowska, K.A.; Diers, A.R.; Hogg, N. S-nitrosoglutathione. Biochim. Biophys. Acta 2013, 1830, 3173–3181. [Google Scholar] [CrossRef] [PubMed]
- Kowaluk, E.A.; Fung, H.L. Spontaneous liberation of nitric oxide cannot account for in vitro vascular relaxation by S-nitrosothiols. J. Pharmacol. Exp. Ther. 1990, 255, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Ceron, P.I.; Cremonez, D.C.; Bendhack, L.M.; Tedesco, A.C. The relaxation induced by S-nitroso-glutathione and S-nitroso-N-acetylcysteine in rat aorta is not related to nitric oxide production. J. Pharmacol. Exp. Ther. 2001, 298, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Alencar, J.L.; Lobysheva, I.; Chalupsky, K.; Geffard, M.; Nepveu, F.; Stoclet, J.C.; Muller, B. S-nitrosating nitric oxide donors induce long-lasting inhibition of contraction in isolated arteries. J. Pharmacol. Exp. Ther. 2003, 307, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Berenyiova, A.; Grman, M.; Mijuskovic, A.; Stasko, A.; Misak, A.; Nagy, P.; Ondriasova, E.; Cacanyiova, S.; Brezova, V.; Feelisch, M.; et al. The reaction products of sulfide and S-nitrosoglutathione are potent vasorelaxants. Nitric Oxide Biol. Chem. 2015, 46, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Perrin-Sarrado, C.; Pongas, M.; Dahboul, F.; Leroy, P.; Pompella, A.; Lartaud, I. Reduced Activity of the Aortic Gamma-Glutamyltransferase Does Not Decrease S-Nitrosoglutathione Induced Vasorelaxation of Rat Aortic Rings. Front. Physiol. 2016, 7, 630. [Google Scholar] [CrossRef] [PubMed]
- Askew, S.C.; Butler, A.R.; Flitney, F.W.; Kemp, G.D.; Megson, I.L. Chemical mechanisms underlying the vasodilator and platelet anti-aggregating properties of S-nitroso-N-acetyl-DL-penicillamine and S-nitrosoglutathione. Bioorg. Med. Chem. 1995, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Schroeder, H.J.; Zhang, M.; Wilson, S.M.; Terry, M.H.; Longo, L.D.; Power, G.G.; Blood, A.B. S-nitrosothiols dilate the mesenteric artery more potently than the femoral artery by a cGMP and L-type calcium channel-dependent mechanism. Nitric Oxide Biol. Chem. 2016, 58, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Megson, I.L.; Greig, I.R.; Gray, G.A.; Webb, D.J.; Butler, A.R. Prolonged effect of a novel S-nitrosated glyco-amino acid in endothelium-denuded rat femoral arteries: Potential as a slow release nitric oxide donor drug. Br. J. Pharmacol. 1997, 122, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R.; Roseberry, M.J.; Mazzei, F.A.; Butler, A.R.; Webb, D.J.; Megson, I.L. Novel S-nitrosothiols do not engender vascular tolerance and remain effective in glyceryltrinitrate-tolerant rat femoral arteries. Eur. J. Pharmacol. 2000, 408, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R.; Okubo, K.; Roseberry, M.J.; Webb, D.J.; Megson, I.L. Extracellular nitric oxide release mediates soluble guanylate cyclase-independent vasodilator action of spermine NONOate: Comparison with other nitric oxide donors in isolated rat femoral arteries. J. Cardiovasc. Pharmacol. 2004, 43, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, M.; Terry, M.H.; Schroeder, H.; Wilson, S.M.; Power, G.G.; Li, Q.; Tipple, T.E.; Borchardt, D.; Blood, A.B. Nitrite potentiates the vasodilatory signaling of S-nitrosothiols. Nitric Oxide Biol. Chem. 2018, 75, 60–69. [Google Scholar] [CrossRef] [PubMed]
- MacAllister, R.J.; Calver, A.L.; Riezebos, J.; Collier, J.; Vallance, P. Relative potency and arteriovenous selectivity of nitrovasodilators on human blood vessels: An insight into the targeting of nitric oxide delivery. Br. J. Pharmacol. 1991, 104, 619–628. [Google Scholar] [CrossRef]
- Sogo, N.; Campanella, C.; Webb, D.J.; Megson, I.L. S-nitrosothiols cause prolonged, nitric oxide-mediated relaxation in human saphenous vein and internal mammary artery: Therapeutic potential in bypass surgery. Br. J. Pharmacol. 2000, 131, 1236–1244. [Google Scholar] [CrossRef] [PubMed]
- Alencar, J.L.; Lobysheva, I.; Geffard, M.; Sarr, M.; Schott, C.; Schini-Kerth, V.B.; Nepveu, F.; Stoclet, J.C.; Muller, B. Role of S-nitrosation of cysteine residues in long-lasting inhibitory effect of nitric oxide on arterial tone. Mol. Pharmacol. 2003, 63, 1148–1158. [Google Scholar] [CrossRef] [PubMed]
- Gaucher, C.; Boudier, A.; Dahboul, F.; Parent, M.; Leroy, P. S-nitrosation/denitrosation in cardiovascular pathologies: Facts and concepts for the rational design of S-nitrosothiols. Curr. Pharm. Des. 2013, 19, 458–472. [Google Scholar] [CrossRef] [PubMed]
- Cacanyiova, S.; Krskova, K.; Zorad, S.; Frimmel, K.; Drobna, M.; Valaskova, Z.; Misak, A.; Golas, S.; Breza, J.; Breza, J., Jr.; et al. Arterial Hypertension and Plasma Glucose Modulate the Vasoactive Effects of Nitroso-Sulfide Coupled Signaling in Human Intrarenal Arteries. Molecules 2020, 25, 2886. [Google Scholar] [CrossRef] [PubMed]
- Dashwood, M.R.; Loesch, A. Inducible nitric oxide synthase and vein graft performance in patients undergoing coronary artery bypass surgery: Physiological or pathophysiological role? Curr. Vasc. Pharmacol. 2014, 12, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Caliskan, E.; de Souza, D.R.; Böning, A.; Liakopoulos, O.J.; Choi, Y.H.; Pepper, J.; Gibson, C.M.; Perrault, L.P.; Wolf, R.K.; Kim, K.B.; et al. Saphenous Vein Grafts in Contemporary Coronary Artery Bypass Graft Surgery. Nat. Rev. Cardiol. 2020, 17, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Xenogiannis, I.; Zenati, M.; Bhatt, D.L.; Rao, S.V.; Rodés-Cabau, J.; Goldman, S.; Shunk, K.A.; Mavromatis, K.; Banerjee, S.; Alaswad, K.; et al. Saphenous Vein Graft Failure: From Pathophysiology to Prevention and Treatment Strategies. Circulation 2021, 144, 728–745. [Google Scholar] [CrossRef] [PubMed]
- Emmert, M.Y.; Bonatti, J.; Caliskan, E.; Gaudino, M.; Grabenwöger, M.; Grapow, M.T.; Heinisch, P.P.; Kieser-Prieur, T.; Kim, K.B.; Kiss, A.; et al. Consensus Statement-Graft Treatment in Cardiovascular Bypass Graft Surgery. Front. Cardiovasc. Med. 2024, 11, 1285685. [Google Scholar] [CrossRef] [PubMed]
- Lies, B.; Groneberg, D.; Gambaryan, S.; Friebe, A. Lack of effect of ODQ does not exclude cGMP signalling via NO-sensitive guanylyl cyclase. Br. J. Pharmacol. 2013, 170, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Batenburg, W.W.; Popp, R.; Fleming, I.; de Vries, R.; Garrelds, I.M.; Saxena, P.R.; Danser, A.H. Bradykinin-induced relaxation of coronary microarteries: S-nitrosothiols as EDHF? Br. J. Pharmacol. 2004, 142, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Gaucher, C.; Diab, R.; Fries, I.; Xiao, Y.L.; Hu, X.M.; Maincent, P.; Sapin-Minet, A. Time lasting S-nitrosoglutathione polymeric nanoparticles delay cellular protein S-nitrosation. Eur. J. Pharm. Biopharm. 2015, 89, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ming, H.; Zhang, K.; Ge, S.; Shi, Y.; Du, C.; Guo, X.; Zhang, L. A Mini Review of S-Nitrosoglutathione Loaded Nano/Micro-Formulation Strategies. Nanomaterials 2023, 13, 224. [Google Scholar] [CrossRef] [PubMed]
Parameter | n (%) |
---|---|
Age (year) | 60.43 ± 1.97 |
Number of patients Sex -Male -Female | 29 21 (72.4%) 8 (27.6%) |
Diseases | |
Hypercholesterolemia | 16 (55.2%) |
Hypertension | 22 (75.9%) |
Diabetes mellitus | 16 (55.2%) |
Drug therapy | |
β-blockers | 26 (89.7%) |
ACE Inhibitors | 7 (24.1%) |
Diuretics | 19 (65.5%) |
Drug therapy during operation | |
Calcium channel blockers | 1 (3.4%) |
Nitrovasodilators | 16 (55.2%) |
Emax (%) | pEC50 | Precontraction (g) | |
---|---|---|---|
Control | 99.34 ± 3.51 | 6.11 ± 0.24 | 6.89 ± 0.74 |
+L-NAME | 101.50 ± 1.30 | 6.29 ± 0.20 | 7.63 ± 0.96 |
Control | 112.20 ± 7.65 | 6.51 ± 0.16 | 4.98 ± 0.30 |
+PTIO | 98.89 ± 1.51 | 6.28 ± 0.16 | 5.11 ± 0.78 |
Control | 110.10 ± 3.18 | 6.10 ± 0.09 | 6.39 ± 0.78 |
+ODQ | 33.32 ± 6.33 *** | 5.27 ± 0.54 | 5.99 ± 0.73 |
Emax (%) | pEC50 | Precontractions (g) | |
---|---|---|---|
Control | 108.80 ± 3.53 | 6.07 ± 0.18 | 6.44 ± 0.66 |
+Glibenclamide | 103.00 ± 0.61 | 6.39 ± 0.15 ** | 6.22 ± 0.81 |
Control | 110.30 ± 5.90 | 5.91 ± 0.10 | 4.47 ± 0.21 |
+Charybdotoxin | 102.80 ± 2.85 | 6.07 ± 0.13 * | 4.84 ± 0.72 |
Control | 117.80 ± 7.23 | 5.80 ± 0.14 | 4.55 ± 0.23 |
+Apamin | 112.50 ± 8.06 | 6.46 ± 0.17 * | 4.69 ± 0.58 |
Control | 104.70 ± 5.43 | 5.73 ± 0.14 | 5.32 ± 1.59 |
+4-AP | 110.70 ± 5.43 | 5.99 ± 0.22 | 5.12 ± 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaleli Durman, D.; Dağtekin, N.; Civelek, E.; İyigün, T.; Teskin, Ö.; Uydeş Doğan, B.S. GSNO as a Modulator of Vascular Tone in Human Saphenous Veins: Potential Implications for Graft Spasm. Life 2025, 15, 1139. https://doi.org/10.3390/life15071139
Kaleli Durman D, Dağtekin N, Civelek E, İyigün T, Teskin Ö, Uydeş Doğan BS. GSNO as a Modulator of Vascular Tone in Human Saphenous Veins: Potential Implications for Graft Spasm. Life. 2025; 15(7):1139. https://doi.org/10.3390/life15071139
Chicago/Turabian StyleKaleli Durman, Deniz, Nurdan Dağtekin, Erkan Civelek, Taner İyigün, Önder Teskin, and Birsel Sönmez Uydeş Doğan. 2025. "GSNO as a Modulator of Vascular Tone in Human Saphenous Veins: Potential Implications for Graft Spasm" Life 15, no. 7: 1139. https://doi.org/10.3390/life15071139
APA StyleKaleli Durman, D., Dağtekin, N., Civelek, E., İyigün, T., Teskin, Ö., & Uydeş Doğan, B. S. (2025). GSNO as a Modulator of Vascular Tone in Human Saphenous Veins: Potential Implications for Graft Spasm. Life, 15(7), 1139. https://doi.org/10.3390/life15071139