Antiplatelet Therapy Mitigates Brain Metastasis Risk in Non-Small Cell Lung Cancer: Insights from a Comprehensive Retrospective Study
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Type
2.2. Ethics
2.3. Patients
2.4. Study Variables
2.5. Outcome
2.6. Statistics
3. Results
3.1. Patients Most Benefiting from the Effects of Antiplatelet Therapy Are Those with Advanced Stages at the Time of Diagnosis
3.2. Antiplatelet Therapy Reduces the Risk of Presenting Brain Metastases at Diagnosis
3.3. Antiplatelet Therapy Reduces the Risk of Developing Brain Metastases Throughout the Disease, Especially in Patients with Advanced Stages at Diagnosis
3.4. Initiating Antiplatelet Therapy After the Diagnosis of NSCLC May Have a Positive Effect in Preventing the Development of Brain Metastases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global Epidemiology of Lung Cancer. Ann. Glob. Health 2019, 85, 8. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Miller, M.; Hanna, N. Advances in Systemic Therapy for Non-Small Cell Lung Cancer. BMJ 2021, 375, n2363. [Google Scholar] [CrossRef]
- Yuzhalin, A.E.; Yu, D. Brain Metastasis Organotropism. Cold Spring Harb. Perspect. Med. 2020, 10, a037242. [Google Scholar] [CrossRef]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic Non-Small Cell Lung Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2018, 29, iv192–iv237. [Google Scholar] [CrossRef]
- Hendriks, L.E.; Hochstenbag, M.; Dingemans, A.-M. Screening for Brain Metastases in Resectable Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2017, 12, e21. [Google Scholar] [CrossRef]
- Waqar, S.N.; Samson, P.P.; Robinson, C.G.; Bradley, J.; Devarakonda, S.; Du, L.; Govindan, R.; Gao, F.; Puri, V.; Morgensztern, D. Non–Small-Cell Lung Cancer with Brain Metastasis at Presentation. Clin. Lung Cancer 2018, 19, e373–e379. [Google Scholar] [CrossRef]
- Steindl, A.; Yadavalli, S.; Gruber, K.; Seiwald, M.; Gatterbauer, B.; Dieckmann, K.; Frischer, J.M.; Klikovits, T.; Zöchbauer-Müller, S.; Grisold, A.; et al. Neurological Symptom Burden Impacts Survival Prognosis in Patients with Newly Diagnosed Non–Small Cell Lung Cancer Brain Metastases. Cancer 2020, 126, 4341–4352. [Google Scholar] [CrossRef]
- Steindl, A.; Yadavalli, S.; Gruber, K.A.; Seiwald, M.; Frischer, J.M.; Gatterbauer, B.; Dieckmann, K.; Marosi, C.; Widhalm, G.; Preusser, M.; et al. Impact of Neurological Symptom Burden on the Survival Prognosis in a Real-Life Cohort of Patients with Non-Small Cell Lung Cancer Brain Metastases. Ann. Oncol. 2019, 30, v148. [Google Scholar] [CrossRef]
- Lin, N.U.; Wefel, J.S.; Lee, E.Q.; Schiff, D.; van den Bent, M.J.; Soffietti, R.; Suh, J.H.; Vogelbaum, M.A.; Mehta, M.P.; Dancey, J.; et al. Challenges Relating to Solid Tumour Brain Metastases in Clinical Trials, Part 2: Neurocognitive, Neurological, and Quality-of-Life Outcomes. A Report from the RANO Group. Lancet Oncol. 2013, 14, e407–e416. [Google Scholar] [CrossRef]
- Schoenmaekers, J.J.A.O.; Dingemans, A.-M.C.; Hendriks, L.E.L. Brain Imaging in Early Stage Non-Small Cell Lung Cancer: Still a Controversial Topic? J. Thorac. Dis. 2018, 10, S2168–S2171. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, H.; Lu, J.; Christiani, D.C.; Lin, X.; Wang, Z. Association of Brain Metastasis in Non-Small Cell Lung Cancer. J. Clin. Oncol. 2013, 31, e19081. [Google Scholar] [CrossRef]
- Hsu, F.; De Caluwe, A.; Anderson, D.; Nichol, A.; Toriumi, T.; Ho, C. EGFR Mutation Status on Brain Metastases from Non-Small Cell Lung Cancer. Lung Cancer 2016, 96, 101–107. [Google Scholar] [CrossRef]
- Zhang, F.; Zheng, W.; Ying, L.; Wu, J.; Wu, S.; Ma, S.; Su, D. A Nomogram to Predict Brain Metastases of Resected Non-Small Cell Lung Cancer Patients. Ann. Surg. Oncol. 2016, 23, 3033–3039. [Google Scholar] [CrossRef]
- Gillespie, C.S.; Mustafa, M.A.; Richardson, G.E.; Alam, A.M.; Lee, K.S.; Hughes, D.M.; Escriu, C.; Zakaria, R. Genomic Alterations and the Incidence of Brain Metastases in Advanced and Metastatic NSCLC: A Systematic Review and Meta-Analysis. J. Thorac. Oncol. 2023, 18, 1703–1713. [Google Scholar] [CrossRef]
- Chen, S.; Hua, X.; Jia, J.; Wu, Y.; Wei, S.; Xu, L.; Han, S.; Zhang, H.; Zhu, X. Risk Factors for Brain Metastases in Patients with Non-Small Cell Lung Cancer: A Meta-Analysis of 43 Studies. Ann. Palliat. Med. 2021, 10, 3657–3672. [Google Scholar] [CrossRef]
- Cacho-Díaz, B.; Cuapaténcatl, L.D.; Rodríguez, J.A.; Garcilazo-Reyes, Y.J.; Reynoso-Noverón, N.; Arrieta, O. Identification of a high-risk group for brain metastases in non-small cell lung cancer patients. J. Neurooncol. 2021, 155, 101–106. [Google Scholar] [CrossRef]
- Sekine, A.; Satoh, H.; Iwasawa, T.; Tamura, K.; Hayashihara, K.; Saito, T.; Kato, T.; Arai, M.; Okudela, K.; Ohashi, K.; et al. Prognostic factors for brain metastases from non-small cell lung cancer with EGFR mutation: Influence of stable extracranial disease and erlotinib therapy. Med. Oncol. 2014, 31, 228. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, T.Y.; Lee, J.Y.; Lee, S.-M.; Yim, J.-J.; Yoo, C.-G.; Kim, Y.W.; Han, S.K.; Yang, S.-C. Prognostic Significance of Initial Platelet Counts and Fibrinogen Level in Advanced Non-Small Cell Lung Cancer. J. Korean Med. Sci. 2014, 29, 507. [Google Scholar] [CrossRef]
- Tomita, M.; Shimizu, T.; Ayabe, T.; Onitsuka, T. Prognostic Significance of the Combined Use of Preoperative Platelet Count and Serum Carcinoembryonic Antigen Level in Non-Small-Cell Lung Cancer. Gen. Thorac. Cardiovasc. Surg. 2010, 58, 573–576. [Google Scholar] [CrossRef]
- Ma, Y.; Li, G.; Yu, M.; Sun, X.; Nian, J.; Gao, Y.; Li, X.; Ding, T.; Wang, X. Prognostic Significance of Thrombocytosis in Lung Cancer: A Systematic Review and Meta-Analysis. Platelets 2021, 32, 919–927. [Google Scholar] [CrossRef]
- Suh, J.H.; Kotecha, R.; Chao, S.T.; Ahluwalia, M.S.; Sahgal, A.; Chang, E.L. Current Approaches to the Management of Brain Metastases. Nat. Rev. Clin. Oncol. 2020, 17, 279–299. [Google Scholar] [CrossRef]
- Le Rhun, E.; Guckenberger, M.; Smits, M.; Dummer, R.; Bachelot, T.; Sahm, F.; Galldiks, N.; de Azambuja, E.; Berghoff, A.S.; Metellus, P.; et al. EANO–ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up of Patients with Brain Metastasis from Solid Tumours. Ann. Oncol. 2021, 32, 1332–1347. [Google Scholar] [CrossRef]
- Vogelbaum, M.A.; Brown, P.D.; Messersmith, H.; Brastianos, P.K.; Burri, S.; Cahill, D.; Dunn, I.F.; Gaspar, L.E.; Gatson, N.T.N.; Gondi, V.; et al. Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline. J. Clin. Oncol. 2022, 40, 492–516. [Google Scholar] [CrossRef]
- Achrol, A.S.; Rennert, R.C.; Anders, C.; Soffietti, R.; Ahluwalia, M.S.; Nayak, L.; Peters, S.; Arvold, N.D.; Harsh, G.R.; Steeg, P.S.; et al. Brain Metastases. Nat. Rev. Dis. Primers 2019, 5, 5. [Google Scholar] [CrossRef]
- Zarà, M.; Canobbio, I.; Visconte, C.; Canino, J.; Torti, M.; Guidetti, G.F. Molecular Mechanisms of Platelet Activation and Aggregation Induced by Breast Cancer Cells. Cell. Signal. 2018, 48, 45–53. [Google Scholar] [CrossRef]
- Heinmöller, E.; Weinel, R.J.; Heidtmann, H.H.; Salge, U.; Seitz, R.; Schmitz, I.; Müller, K.M.; Zirngibl, H. Studies on Tumor-Cell-Induced Platelet Aggregation in Human Lung Cancer Cell Lines. J. Cancer Res. Clin. Oncol. 1996, 122, 735–744. [Google Scholar] [CrossRef]
- Heinmöller, E.; Schropp, T.; Kisker, O.; Simon, B.; Seitz, R.; Weinel, R.J. Tumor Cell-Induced Platelet Aggregation in Vitro by Human Pancreatic Cancer Cell Lines. Scand. J. Gastroenterol. 1995, 30, 1008–1016. [Google Scholar] [CrossRef]
- Strasenburg, W.; Jóźwicki, J.; Durślewicz, J.; Kuffel, B.; Kulczyk, M.P.; Kowalewski, A.; Grzanka, D.; Drewa, T.; Adamowicz, J. Tumor Cell-Induced Platelet Aggregation as an Emerging Therapeutic Target for Cancer Therapy. Front. Oncol. 2022, 12, 909767. [Google Scholar] [CrossRef]
- Liao, K.; Zhang, X.; Liu, J.; Teng, F.; He, Y.; Cheng, J.; Yang, Q.; Zhang, W.; Xie, Y.; Guo, D.; et al. The Role of Platelets in the Regulation of Tumor Growth and Metastasis: The Mechanisms and Targeted Therapy. MedComm 2023, 4, e350. [Google Scholar] [CrossRef]
- Braun, A.; Anders, H.-J.; Gudermann, T.; Mammadova-Bach, E. Platelet-Cancer Interplay: Molecular Mechanisms and New Therapeutic Avenues. Front. Oncol. 2021, 11, 665534. [Google Scholar] [CrossRef]
- Schlesinger, M. Role of Platelets and Platelet Receptors in Cancer Metastasis. J. Hematol. Oncol. 2018, 11, 125. [Google Scholar] [CrossRef]
- Li, N. Platelets in Cancer Metastasis: To Help the “Villain” to Do Evil. Int. J. Cancer 2016, 138, 2078–2087. [Google Scholar] [CrossRef]
- Kopp, H.-G.; Placke, T.; Salih, H.R. Platelet-Derived Transforming Growth Factor-β Down-Regulates NKG2D Thereby Inhibiting Natural Killer Cell Antitumor Reactivity. Cancer Res. 2009, 69, 7775–7783. [Google Scholar] [CrossRef]
- Mammadova-Bach, E.; Zigrino, P.; Brucker, C.; Bourdon, C.; Freund, M.; De Arcangelis, A.; Abrams, S.I.; Orend, G.; Gachet, C.; Mangin, P.H. Platelet Integrin A6β1 Controls Lung Metastasis through Direct Binding to Cancer Cell–Derived ADAM9. JCI Insight 2016, 1, e88245. [Google Scholar] [CrossRef]
- Li, Z.; Riesenberg, B.; Metelli, A.; Li, A.; Wu, B.X. The Role of Platelets in Tumor Growth, Metastasis, and Immune Evasion. In Platelets; Elsevier: Amsterdam, The Netherlands, 2019; pp. 547–561. [Google Scholar]
- Mezouar, S.; Frère, C.; Darbousset, R.; Mege, D.; Crescence, L.; Dignat-George, F.; Panicot-Dubois, L.; Dubois, C. Role of Platelets in Cancer and Cancer-Associated Thrombosis: Experimental and Clinical Evidences. Thromb. Res. 2016, 139, 65–76. [Google Scholar] [CrossRef]
- Amirkhosravi, A.; Mousa, S.; Amaya, M.; Blaydes, S.; Desai, H.; Meyer, T.; Francis, J. Inhibition of Tumor Cell-Induced Platelet Aggregation and Lung Metastasis by the Oral GpIIb/IIIa Antagonist XV454. Thromb. Haemost. 2003, 90, 549–554. [Google Scholar] [CrossRef]
- Nourshargh, S.; Alon, R. Leukocyte Migration into Inflamed Tissues. Immunity 2014, 41, 694–707. [Google Scholar] [CrossRef]
- Tao, D.L.; Tassi Yunga, S.; Williams, C.D.; McCarty, O.J.T. Aspirin and Antiplatelet Treatments in Cancer. Blood 2021, 137, 3201–3211. [Google Scholar] [CrossRef]
- Morris, K.; Schnoor, B.; Papa, A.-L. Platelet Cancer Cell Interplay as a New Therapeutic Target. Biochim. Et. Biophys. Acta (BBA) Rev. Cancer 2022, 1877, 188770. [Google Scholar] [CrossRef]
- Ballerini, P.; Contursi, A.; Bruno, A.; Mucci, M.; Tacconelli, S.; Patrignani, P. Inflammation and Cancer: From the Development of Personalized Indicators to Novel Therapeutic Strategies. Front. Pharmacol. 2022, 13, 838079. [Google Scholar] [CrossRef]
- Lucotti, S.; Cerutti, C.; Soyer, M.; Gil-Bernabé, A.M.; Gomes, A.L.; Allen, P.D.; Smart, S.; Markelc, B.; Watson, K.; Armstrong, P.C.; et al. Aspirin Blocks Formation of Metastatic Intravascular Niches by Inhibiting Platelet-Derived COX-1/Thromboxane A2. J. Clin. Investig. 2019, 129, 1845–1862. [Google Scholar] [CrossRef] [PubMed]
- Shiao, J.; Thomas, K.M.; Rahimi, A.S.; Rao, R.; Yan, J.; Xie, X.-J.; DaSilva, M.; Spangler, A.; Leitch, M.; Wooldridge, R.; et al. Aspirin/Antiplatelet Agent Use Improves Disease-Free Survival and Reduces the Risk of Distant Metastases in Stage II and III Triple-Negative Breast Cancer Patients. Breast Cancer Res. Treat. 2017, 161, 463–471. [Google Scholar] [CrossRef]
- Algra, A.M.; Rothwell, P.M. Effects of Regular Aspirin on Long-Term Cancer Incidence and Metastasis: A Systematic Comparison of Evidence from Observational Studies versus Randomised Trials. Lancet Oncol. 2012, 13, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.-H.; Hsu, R.-J.; Wang, T.-H.; Wu, C.-T.; Huang, S.-Y.; Hsu, C.-Y.; Hsu, W.-L.; Liu, D.-W. Aspirin and Primary Cancer Risk Reduction in Ischemic Cardiac or Cerebrovascular Disease Survivors: A Nationwide Population-Based Propensity-Matched Cohort Study. Cancers 2022, 15, 97. [Google Scholar] [CrossRef]
- Smeda, M.; Przyborowski, K.; Stojak, M.; Chlopicki, S. The Endothelial Barrier and Cancer Metastasis: Does the Protective Facet of Platelet Function Matter? Biochem. Pharmacol. 2020, 176, 113886. [Google Scholar] [CrossRef]
- Contursi, A.; Tacconelli, S.; Di Berardino, S.; De Michele, A.; Patrignani, P. Platelets as Crucial Players in the Dynamic Interplay of Inflammation, Immunity, and Cancer: Unveiling New Strategies for Cancer Prevention. Front. Pharmacol. 2024, 15, 1520488. [Google Scholar] [CrossRef]
- Rovati, G.; Contursi, A.; Bruno, A.; Tacconelli, S.; Ballerini, P.; Patrignani, P. Antiplatelet Agents Affecting GPCR Signaling Implicated in Tumor Metastasis. Cells 2022, 11, 725. [Google Scholar] [CrossRef]
- Jurasz, P.; Alonso-Escolano, D.; Radomski, M.W. Platelet–Cancer Interactions: Mechanisms and Pharmacology of Tumour Cell-induced Platelet Aggregation. Br. J. Pharmacol. 2004, 143, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Su, B.B.; Chen, J.H.; Shi, H.; Chen, Q.Q.; Wan, J. Aspirin May Modify Tumor Microenvironment via Antiplatelet Effect. Med. Hypotheses 2014, 83, 148–150. [Google Scholar] [CrossRef]
- Placke, T.; Örgel, M.; Schaller, M.; Jung, G.; Rammensee, H.-G.; Kopp, H.-G.; Salih, H.R. Platelet-Derived MHC Class I Confers a Pseudonormal Phenotype to Cancer Cells That Subverts the Antitumor Reactivity of Natural Killer Immune Cells. Cancer Res. 2012, 72, 440–448. [Google Scholar] [CrossRef]
- Huong, P.T.; Nguyen, L.T.; Nguyen, X.-B.; Lee, S.K.; Bach, D.-H. The Role of Platelets in the Tumor-Microenvironment and the Drug Resistance of Cancer Cells. Cancers 2019, 11, 240. [Google Scholar] [CrossRef]
- Miller, E.J.; Patell, R.; Uhlmann, E.J.; Ren, S.; Southard, H.; Elavalakanar, P.; Weber, G.M.; Neuberg, D.; Zwicker, J.I. Antiplatelet Medications and Risk of Intracranial Hemorrhage in Patients with Metastatic Brain Tumors. Blood Adv. 2022, 6, 1559–1565. [Google Scholar] [CrossRef]
Variable | Mean (SD) Count (%) | |
---|---|---|
Age at diagnosis | 67.23 (SD = 10.94) | |
Gender (Men:Women) | 459:192 | |
Hypertension | 313 (48.1%) | |
Diabetes | 169 (26.0%) | |
Cardiac failure | 87 (13.4%) | |
Renal failure | 37 (5.7%) | |
Hypercholesterolemia | 252 (38.7% | |
COPD | 189 (29.0%) | |
Pack-Year | 45.81 (SD = 31.55) | |
Initial symptom | Asymptomatic | 264 (40.6%) |
Respiratory | 212 (32.6%) | |
Respiratory and worsening in general condition | 50 (7.7%) | |
Neurological | 40 (6.1%) | |
Pain | 40 (6.1%) | |
Worsening in general condition | 36 (5.5%) | |
Superior large vein syndrome | 1 (0.2%) | |
Aphonia | 2 (0.3%) | |
Dysphagia | 3 (0.5%) | |
Pleural effusion | 3 (0.5%) | |
Histological diagnosis | Adenocarcinoma | 413 (63.4%) |
Epidermoid | 178 (27.3%) | |
Other | 60 (9.2%) | |
EGFR mutation (n = 398) | 55 (12.4%) | |
ALK mutation (n = 364) | 9 (2.2%) | |
ROS1 expression (n = 168) | 1 (0.6%) | |
PDL1 expression (n = 121) | 52 (39.4%) | |
BRAF mutation (n = 51) | 5 (9.8%) | |
Pathological staging | Stage 0 and I | 148 (22.8%) |
Stage II | 43 (6.6%) | |
Stage III | 154 (23.8%) | |
Stage IV | 303 (46.8%) | |
Treatment | Surgery | 114 (17.5%) |
Chemotherapy (CT) | 203 (31.2%) | |
Radiotherapy (RT) | 26 (4.0%) | |
CT + RT | 60 (9.2%) | |
Palliative | 119 (18.3%) | |
Surgery + CT | 61 (9.4%) | |
Surgery + CT + RT | 6 (0.9%) | |
Surgery + RT | 2 (0.3%) | |
No treatment | 40 (6.2%) | |
Laser therapy | 1 (0.2%) | |
Follow-up | 4 (0.6%) | |
Brain metastasis development | 103 (15.8%) | |
Brain metastasis at diagnosis | 62 (9.5%) |
Non-Use of Antiplatelets (n = 446) | Use of Antiplatelets (n = 204) | p-Value | ||
---|---|---|---|---|
Variable | Mean (SD) Count (%) | Mean (SD) Count (%) | ||
Age at diagnosis | 65.19 (SD = 10.97) | 71.66 (SD = 9.51) | <0.001 | |
Gender (Men:Women) | 300:146 | 158:46 | 0.009 | |
Hypertension | 175 (39.2%) | 137 (67.2%) | <0.001 | |
Diabetes | 89 (20.0%) | 79 (38.7%) | <0.001 | |
Cardiac failure | 29 (6.5%) | 57 (27.9%) | <0.001 | |
Renal failure | 15 (3.4%) | 22 (10.8%) | <0.001 | |
Hypercholesterolemia | 144 (32.3%) | 107 (52.5% | <0.001 | |
COPD | 122 (27.4%) | 67 (32.8%) | 0.163 | |
Pack-Year | 44.93 (SD = 31.31) | 47.89 (SD = 32.08) | 0.220 | |
Initial symptom | Asymptomatic | 175 (39.2%) | 88 (43.1%) | 0.442 |
Respiratory | 148 (33.2%) | 64 (31.4%) | ||
Respiratory and worsening in general condition | 35 (7.8%) | 15 (7.4%) | ||
Neurological | 33 (7.4%) | 7 (3.4%) | ||
Pain | 28 (6.3%) | 12 (5.9%) | ||
Worsening in general condition | 23 (5.2%) | 13 (6.4%) | ||
Superior large vein syndrome | 1 (0.2%) | - | ||
Aphonia | 1 (0.2%) | 1 (0.5%) | ||
Dysphagia | 1 (0.2%) | 2 (1.0%) | ||
Pleural effusion | 1 (0.2%) | 2 (1.0%) | ||
Histological diagnosis | Adenocarcinoma | 285 (63.9%) | 127 (62.3%) | 0.809 |
Epidermoid | 122 (27.4%) | 56 (27.5%) | ||
Other | 39 (8.7%) | 21 (10.3%) | ||
EGFR mutation (n = 398) | 40 (13.1%) | 15 (10.9%) | 0.539 | |
ALK mutation (n = 364) | 7 (2.5%) | 2 (1.6%) | 0.726 | |
ROS1 expression (n = 168) | 1 (0.8%) | - | 1.000 | |
PDL1 expression (n = 121) | 34 (36.2%) | 17 (45.9%) | 0.325 | |
BRAF mutation (n = 51) | 4 (9.8%) | 2 (13.3%) | 0.654 | |
Pathological staging | Stage 0 and I | 80 (18.1%) | 67 (32.8%) | <0.001 |
Stage II | 31 (7.0%) | 12 (5.9%) | ||
Stage III | 105 (23.7%) | 49 (24.0%) | ||
Stage IV | 227 (51.2%) | 76 (37.3%) | ||
Treatment | Surgery | 72 (16.2%) | 41 (20.1%) | 0.026 |
Chemotherapy (CT) | 154 (34.6%) | 49 (24.0%) | ||
Radiotherapy (RT) | 11 (2.5%) | 15 (7.4%) | ||
CT + RT | 52 (11.7%) | 21 (10.3%) | ||
Palliative | 76 (17.1%) | 43 (21.1%) | ||
Surgery + CT | 40 (9.0%) | 20 (9.8%) | ||
Surgery + CT + RT | 3 (0.7%) | 3 (1.5%) | ||
Surgery + RT | 2 (0.4%) | - | ||
No treatment | 31 (7.0%) | 9 (4.4%) | ||
Laser therapy | - | 1 (0.5%) | ||
Follow-up | 2 (0.4%) | 2 (1.0%) | ||
Brain metastasis development | 89 (20.0%) | 14 (6.9%) | <0.001 | |
Brain metastasis at diagnosis | 54 (12.1%) | 8 (3.9%) | <0.001 | |
Brain metastasis period (mean, months) | 62.6 [58.7–66.6] | 77.5 [74.0–81.0] | <0.001 | |
Progression-free survival (mean, months) | 38.7 [34.3–43.2] | 49.9 [43.5–56.3] | 0.002 | |
Overall Survival (median, months) | 8.2 [6.8–9.6] | 10.6 [5.8–15.3] | 0.089 |
Univariate | |||||||
---|---|---|---|---|---|---|---|
Variable | B | S.E. | OR | 95% C.I. for EXP(B) | Sig. | ||
Lower | Upper | ||||||
Age | −0.033 | 0.012 | 0.968 | 0.946 | 0.991 | 0.006 | |
Gender (male) | −0.149 | 0.286 | 0.602 | 0.491 | 1.510 | 0.602 | |
Pack-Year | 0.004 | 0.004 | 1.004 | 0.996 | 1.004 | 0.345 | |
COPD | −0.275 | 0.310 | 0.759 | 0.414 | 1.394 | 0.375 | |
Hypertension | −0.426 | 0.273 | 0.653 | 0.382 | 1.117 | 0.120 | |
Diabetes | −0.205 | 0.318 | 0.815 | 0.437 | 1.519 | 0.519 | |
Cardiac failure | −0.868 | 0.530 | 0.420 | 0.148 | 1.187 | 0.102 | |
Renal failure | −0.641 | 0.740 | 0.527 | 0.124 | 2.244 | 0.527 | |
Hypercholesterolemia | −0.227 | 0.281 | 0.797 | 0.459 | 1.384 | 0.421 | |
Histology | Adenocarcinoma | 0.466 | 0.297 | 1.594 | 0.890 | 2.854 | 0.117 |
Epidermoid | −0.494 | 0.334 | 0.610 | 0.317 | 1.175 | 0.139 | |
Other | −0.162 | 0.487 | 0.850 | 0.327 | 2.210 | 0.739 | |
EGFR mutation | 0.210 | 0.437 | 1.234 | 0.524 | 2.907 | 0.630 | |
ALK mutation | - | - | - | - | - | - | |
ROS1 mutation | - | - | - | - | - | - | |
PDL1 expression | −0.288 | 0.640 | 0.750 | 0.214 | 2.630 | 0.653 | |
BRAF mutation | 0.588 | 1.193 | 1.800 | 0.174 | 18.638 | 0.622 | |
Antiplatelet use | −0.926 | 0.390 | 0.396 | 0.185 | 0.851 | 0.018 | |
Multivariate | |||||||
Variable | B | S.E. | OR | 95% C.I. for EXP(B) | Sig. | ||
Lower | Upper | ||||||
Age | −0.026 | 0.012 | 0.974 | 0.951 | 0.998 | 0.033 | |
Antiplatelet use | −0.732 | 0.401 | 0.481 | 0.219 | 1.056 | 0.068 |
Non-Use of Antiplatelets (n = 302) | Use of Antiplatelets (n = 143) | p-Value | ||
---|---|---|---|---|
Variable | Mean (SD) Count (%) | Mean (SD) Count (%) | ||
Age at diagnosis | 64.44 (SD = 10.99) | 70.27 (SD = 9.03) | <0.001 | |
Gender (Men:Women) | 203:99 | 108:35 | 0.078 | |
Hypertension | 120 (39.7%) | 96 (67.1%) | <0.001 | |
Diabetes | 60 (19.9%) | 58 (40.6%) | <0.001 | |
Cardiac failure | 20 (6.6%) | 36 (25.2%) | <0.001 | |
Renal failure | 11 (3.6%) | 15 (10.5%) | 0.008 | |
Hypercholesterolemia | 102 (33.8%) | 80 (55.9% | <0.001 | |
COPD | 81 (26.8%) | 47 (32.9%) | 0.217 | |
Pack-Year | 43.25 (SD = 32.26) | 49.14 (SD = 31.44) | 0.038 | |
Initial symptom | Asymptomatic | 143 (47.4%) | 76 (53.1%) | 0.548 |
Respiratory | 102 (33.8%) | 41 (28.7%) | ||
Respiratory and worsening in general condition | 21 (7.0%) | 12 (8.4%) | ||
Neurological | 4 (1.3%) | 1 (0.7%) | ||
Pain | 17 (5.6%) | 7 (4.9%) | ||
Worsening in general condition | 12 (4.0%) | 3 (2.1%) | ||
Superior large vein syndrome | 1 (0.3%) | - | ||
Aphonia | 1 (03%) | - | ||
Dysphagia | - | 1 (0.7%) | ||
Pleural effusion | 1 (0.3%) | 2 (1.4%) | ||
Histological diagnosis | Adenocarcinoma | 195 (64.6%) | 85 (59.2%) | 0.501 |
Epidermoid | 81 (26.8%) | 46 (32.2%) | ||
Other | 26 (8.6%) | 12 (8.4%) | ||
EGFR mutation (n = 307) | 33 (15.6%) | 11 (11.5%) | 0.383 | |
ALK mutation (n = 281) | 6 (3.1%) | 2 (2.3%) | 1.000 | |
ROS1 expression (n = 132) | 1 (1.0%) | - | 1.000 | |
PDL1 expression (n = 101) | 28 (39.4%) | 14 (46.7%) | 0.516 | |
BRAF mutation (n = 38) | 2 (7.7%) | 1(8.3%) | 1.000 | |
Pathological staging | Stage 0 and I | 77 (25.5%) | 62 (43.4%) | 0.001 |
Stage II | 25 (8.3%) | 8 (5.6%) | ||
Stage III | 84 (27.8%) | 36 (25.2%) | ||
Stage IV | 116 (38.4%) | 37 (25.9%) | ||
Treatment | Surgery | 72 (16.2%) | 41 (28.7%) | 0.020 |
Chemotherapy (CT) | 128 (42.4%) | 44 (30.8%) | ||
Radiotherapy (RT) | 11 (3.6%) | 15 (10.5%) | ||
CT + RT | 49 (16.2%) | 21 (14.7%) | ||
Surgery + CT | 39 (12.9%) | 19 (13.3%) | ||
Surgery + CT + RT | 2 (0.7%) | 3 (2.1%) | ||
Surgery + RT | 2 (0.7%) | - | ||
Brain metastasis development | 33 (10.9%) | 6 (4.2%) | 0.019 | |
Progression-free survival (mean, months) | 40.0 [35.4–44.7] | 50.2 [43.4–57.0] | 0.012 | |
Overall Survival (median, months) | 18.2 [13.7–22.7] | 26.5 [18.3–34.7] | 0.216 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Abreu, C.; García-Gil, M.; Méndez-Monge, M.; Fariña-Jerónimo, H.; Plata-Bello, J. Antiplatelet Therapy Mitigates Brain Metastasis Risk in Non-Small Cell Lung Cancer: Insights from a Comprehensive Retrospective Study. Cancers 2025, 17, 2059. https://doi.org/10.3390/cancers17132059
Martín-Abreu C, García-Gil M, Méndez-Monge M, Fariña-Jerónimo H, Plata-Bello J. Antiplatelet Therapy Mitigates Brain Metastasis Risk in Non-Small Cell Lung Cancer: Insights from a Comprehensive Retrospective Study. Cancers. 2025; 17(13):2059. https://doi.org/10.3390/cancers17132059
Chicago/Turabian StyleMartín-Abreu, Carla, María García-Gil, Margarita Méndez-Monge, Helga Fariña-Jerónimo, and Julio Plata-Bello. 2025. "Antiplatelet Therapy Mitigates Brain Metastasis Risk in Non-Small Cell Lung Cancer: Insights from a Comprehensive Retrospective Study" Cancers 17, no. 13: 2059. https://doi.org/10.3390/cancers17132059
APA StyleMartín-Abreu, C., García-Gil, M., Méndez-Monge, M., Fariña-Jerónimo, H., & Plata-Bello, J. (2025). Antiplatelet Therapy Mitigates Brain Metastasis Risk in Non-Small Cell Lung Cancer: Insights from a Comprehensive Retrospective Study. Cancers, 17(13), 2059. https://doi.org/10.3390/cancers17132059