Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (916)

Search Parameters:
Keywords = anti-PD-1 therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1727 KiB  
Review
Immune Evasion in Head and Neck Squamous Cell Carcinoma: Roles of Cancer-Associated Fibroblasts, Immune Checkpoints, and TP53 Mutations in the Tumor Microenvironment
by Chung-Che Tsai, Yi-Chiung Hsu, Tin-Yi Chu, Po-Chih Hsu and Chan-Yen Kuo
Cancers 2025, 17(15), 2590; https://doi.org/10.3390/cancers17152590 - 7 Aug 2025
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive malignancy characterized by complex interactions within the tumor microenvironment (TME) that facilitate immune evasion and tumor progression. The TME consists of diverse cellular components, including cancer-associated fibroblasts, immune and endothelial cells, and [...] Read more.
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive malignancy characterized by complex interactions within the tumor microenvironment (TME) that facilitate immune evasion and tumor progression. The TME consists of diverse cellular components, including cancer-associated fibroblasts, immune and endothelial cells, and extracellular matrix elements, that collectively modulate tumor growth, metastasis, and resistance to therapy. Immune evasion in HNSCC is orchestrated through multiple mechanisms, including the suppression of cytotoxic T lymphocytes, recruitment of immunosuppressive cells, such as regulatory T and myeloid-derived suppressor cells, and upregulation of immune checkpoint molecules (e.g., PD-1/PD-L1 and CTLA-4). Natural killer (NK) cells, which play a crucial role in anti-tumor immunity, are often dysfunctional within the HNSCC TME due to inhibitory signaling and metabolic constraints. Additionally, endothelial cells contribute to tumor angiogenesis and immune suppression, further exacerbating disease progression. Recent advancements in immunotherapy, particularly immune checkpoint inhibitors and NK cell-based strategies, have shown promise in restoring anti-tumor immunity. Moreover, TP53 mutations, frequently observed in HNSCC, influence tumor behavior and therapeutic responses, highlighting the need for personalized treatment approaches. This review provides a comprehensive analysis of the molecular and cellular mechanisms governing immune evasion in HNSCC with a focus on novel therapeutic strategies aimed at improving patient outcomes. Full article
(This article belongs to the Special Issue Oral Cancer: Prevention and Early Detection (2nd Edition))
Show Figures

Figure 1

17 pages, 2609 KiB  
Article
Residual Tumor Resection After Anti-PD-1 Therapy: A Promising Treatment Strategy for Overcoming Immune Evasive Phenotype Induced by Anti-PD-1 Therapy in Gastric Cancer
by Hajime Matsuida, Kosaku Mimura, Shotaro Nakajima, Katsuharu Saito, Sohei Hayashishita, Chiaki Takiguchi, Azuma Nirei, Tomohiro Kikuchi, Hiroyuki Hanayama, Hirokazu Okayama, Motonobu Saito, Tomoyuki Momma, Zenichiro Saze and Koji Kono
Cells 2025, 14(15), 1212; https://doi.org/10.3390/cells14151212 - 6 Aug 2025
Abstract
Background: Anti-programmed death 1 receptor (PD-1) therapy is a promising treatment strategy for patients with unresectable advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer. However, its response rate and survival benefits are still limited; an immunological analysis of the residual tumor after anti-PD-1 therapy [...] Read more.
Background: Anti-programmed death 1 receptor (PD-1) therapy is a promising treatment strategy for patients with unresectable advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer. However, its response rate and survival benefits are still limited; an immunological analysis of the residual tumor after anti-PD-1 therapy would be important. Methods: We evaluated the clinical efficacy of tumor resection (TR) after chemotherapy or anti-PD-1 therapy in patients with unresectable advanced or recurrent G/GEJ cancer and analyzed the immune status of tumor microenvironment (TME) by immunohistochemistry using their surgically resected specimens. Results: Patients treated with TR after anti-PD-1 therapy had significantly longer survival compared to those treated with chemotherapy and anti-PD-1 therapy alone. Expression of human leukocyte antigen (HLA) class I and major histocompatibility complex (MHC) class II on tumor cells was markedly downregulated after anti-PD-1 therapy compared to chemotherapy. Furthermore, the downregulation of HLA class I may be associated with the activation of transforming growth factor-β signaling pathway in the TME. Conclusions: Immune escape from cytotoxic T lymphocytes may be induced in the TME in patients with unresectable advanced or recurrent G/GEJ cancer after anti-PD-1 therapy due to the downregulation of HLA class I and MHC class II expression on tumor cells. TR may be a promising treatment strategy for these patients when TR is feasible after anti-PD-1 therapy. Full article
Show Figures

Figure 1

12 pages, 693 KiB  
Article
Efficacy and Safety of the Combination of Durvalumab Plus Gemcitabine and Cisplatin in Patients with Advanced Biliary Tract Cancer: A Real-World Retrospective Cohort Study
by Eishin Kurihara, Satoru Kakizaki, Masashi Ijima, Takeshi Hatanaka, Norio Kubo, Yuhei Suzuki, Hidetoshi Yasuoka, Takashi Hoshino, Atsushi Naganuma, Noriyuki Tani, Yuichi Yamazaki and Toshio Uraoka
Biomedicines 2025, 13(8), 1915; https://doi.org/10.3390/biomedicines13081915 - 6 Aug 2025
Abstract
Background/Objectives: The TOPAZ-1 phase III trial reported a survival benefit of using durvalumab, an anti-programmed death ligand 1 (anti-PD-L1) antibody, in combination with gemcitabine and cisplatin (GCD) treatment in patients with advanced biliary tract cancer. This retrospective study investigated the efficacy and [...] Read more.
Background/Objectives: The TOPAZ-1 phase III trial reported a survival benefit of using durvalumab, an anti-programmed death ligand 1 (anti-PD-L1) antibody, in combination with gemcitabine and cisplatin (GCD) treatment in patients with advanced biliary tract cancer. This retrospective study investigated the efficacy and safety of GCD treatment for advanced biliary tract cancer in real-world conditions. Methods: The study subjects were 52 patients with biliary tract cancer who received GCD therapy between January 2023 and May 2024. The observation parameters included the modified Glasgow Prognostic Score (mGPS), neutrophil–lymphocyte ratio (NLR), platelet–lymphocyte ratio (PLR), tumor markers (CEA, CA19-9), overall response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and adverse events. Results: The cohort included 36 men and 16 women, with a median age of 73.0 years. There were 36 cases of cholangiocarcinoma (distal: 10, perihilar: 19, intrahepatic: 7), 13 cases of gallbladder cancer, and 3 cases of ampullary carcinoma. The stages were locally advanced in 30 cases and metastatic in 22 cases. Biliary drainage was performed in 30 cases. There were 38 cases receiving first-line therapy and 14 cases receiving second-line or later treatments. The median values at the start of GCD therapy were ALB 3.7 g/dL, CRP 0.39 mg/dL, NLR 2.4, PLR 162.5, CEA 4.8 ng/mL, and CA19-9 255.9 U/mL. The mGPS distribution was 0:23 cases, 1:18 cases, and 2:11 cases. The treatment outcomes were ORR 25.0% (CR 2 cases, PR 11 cases), DCR 78.8% (SD 28 cases, PD 10 cases, NE 1 case), median PFS 8.6 months, and median OS 13.9 months. The PLR was suggested to be useful for predicting PFS. A decrease in CEA at six weeks after the start of treatment was a significant predictor of PFS and OS. Gallbladder cancer had a significantly poorer prognosis compared to other cancers. The immune-related adverse events included hypothyroidism in two cases, cholangitis in one case, and colitis in one case. Conclusions: The ORR, DCR, and PFS were comparable to those in the TOPAZ-1 trial. Although limited by its retrospective design and small sample size, this study suggests that GCD therapy is an effective treatment regimen for unresectable biliary tract cancer in real-world clinical practice. Full article
(This article belongs to the Special Issue Advanced Research in Anticancer Inhibitors and Targeted Therapy)
Show Figures

Figure 1

24 pages, 2475 KiB  
Article
An Immunomodulating Peptide with Potential to Promote Anticancer Immunity Without Compromising Immune Tolerance
by Michael Agrez, Christopher Chandler, Amanda L. Johnson, Marlena Sorensen, Kirstin Cho, Stephen Parker, Benjamin Blyth, Darryl Turner, Justyna Rzepecka, Gavin Knox, Anastasia Nika, Andrew M. Hall, Hayley Gooding and Laura Gallagher
Biomedicines 2025, 13(8), 1908; https://doi.org/10.3390/biomedicines13081908 - 5 Aug 2025
Abstract
Background: Immune checkpoint inhibitor therapy in patients with lung cancer and metastatic melanoma is associated with exacerbation of autoimmune-related diseases. The efficacy of treatment targeting the programmed cell death receptor-1 (PD-1) checkpoint relies upon a feedback loop between interferon gamma (IFN-γ) and the [...] Read more.
Background: Immune checkpoint inhibitor therapy in patients with lung cancer and metastatic melanoma is associated with exacerbation of autoimmune-related diseases. The efficacy of treatment targeting the programmed cell death receptor-1 (PD-1) checkpoint relies upon a feedback loop between interferon gamma (IFN-γ) and the interleukin-12 isoform, IL-12p40. Paradoxically, both cytokines and the anti-PD-1 antibody worsen psoriasis. We previously reported an immunomodulating peptide, designated IK14004, that inhibits progression of Lewis lung cancer in mice yet uncouples IFN-γ from IL-12p40 production in human immune cells. Methods: Immune cells obtained from healthy donors were exposed to IK14004 in vitro to further characterise the signalling pathways affected by this peptide. Using C57BL/6 immunocompetent mice, the effect of IK14004 was tested in models of lung melanoma and psoriatic skin. Results: Differential effects of IK14004 on the expression of IFN-α/β, the interleukin-15 (IL-15) receptor and signal transducers and activators of transcription were consistent with immune responses relevant to both cancer surveillance and immune tolerance. Moreover, both melanoma and psoriasis were inhibited by the peptide. Conclusions: Taken together, these findings suggest mechanisms underlying immune homeostasis that could be exploited in the setting of cancer and autoimmune pathologies. Peptide administered together with checkpoint blockers in relevant models of autoimmunity and cancer may offer an opportunity to gain further insight into how immune tolerance can be retained in patients receiving cancer immunotherapy. Full article
(This article belongs to the Special Issue Peptides and Amino Acids in Drug Development: Here and Now)
Show Figures

Figure 1

23 pages, 19687 KiB  
Article
Intranasal Mitochondrial Transplantation Restores Mitochondrial Function and Modulates Glial–Neuronal Interactions in a Genetic Parkinson’s Disease Model of UQCRC1 Mutation
by Jui-Chih Chang, Chin-Hsien Lin, Cheng-Yi Yeh, Mei-Fang Cheng, Yi-Chieh Chen, Chi-Han Wu, Hui-Ju Chang and Chin-San Liu
Cells 2025, 14(15), 1148; https://doi.org/10.3390/cells14151148 - 25 Jul 2025
Viewed by 609
Abstract
The intranasal delivery of exogenous mitochondria is a potential therapy for Parkinson’s disease (PD). The regulatory mechanisms and effectiveness in genetic models remains uncertain, as well as the impact of modulating the mitochondrial permeability transition pore (mPTP) in grafts. Utilizing UQCRC1 (p.Tyr314Ser) knock-in [...] Read more.
The intranasal delivery of exogenous mitochondria is a potential therapy for Parkinson’s disease (PD). The regulatory mechanisms and effectiveness in genetic models remains uncertain, as well as the impact of modulating the mitochondrial permeability transition pore (mPTP) in grafts. Utilizing UQCRC1 (p.Tyr314Ser) knock-in mice, and a cellular model, this study validated the transplantation of mitochondria with or without cyclosporin A (CsA) preloading as a method to treat mitochondrial dysfunction and improve disease progression through intranasal delivery. Liver-derived mitochondria were labeled with bromodeoxyuridine (BrdU), incubated with CsA to inhibit mPTP opening, and were administered weekly via the nasal route to 6-month-old mice for six months. Both treatment groups showed significant locomotor improvements in open-field tests. PET imaging showed increased striatal tracer uptake, indicating enhanced dopamine synthesis capacity. The immunohistochemical analysis revealed increased neuron survival in the dentate gyrus, a higher number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) and striatum (ST), and a thicker granule cell layer. In SN neurons, the function of mitochondrial complex III was reinstated. Additionally, the CsA-accumulated mitochondria reduced more proinflammatory cytokine levels, yet their therapeutic effectiveness was similar to that of unmodified mitochondria. External mitochondria were detected in multiple brain areas through BrdU tracking, showing a 3.6-fold increase in the ST compared to the SN. In the ST, about 47% of TH-positive neurons incorporated exogenous mitochondria compared to 8% in the SN. Notably, GFAP-labeled striatal astrocytes (ASTs) also displayed external mitochondria, while MBP-labeled striatal oligodendrocytes (OLs) did not. On the other hand, fewer ASTs and increased OLs were noted, along with lower S100β levels, indicating reduced reactive gliosis and a more supportive environment for OLs. Intranasally, mitochondrial transplantation showed neuroprotective effects in genetic PD, validating a noninvasive therapeutic approach. This supports mitochondrial recovery and is linked to anti-inflammatory responses and glial modulation. Full article
Show Figures

Graphical abstract

20 pages, 3657 KiB  
Article
Evaluating Therapeutic Efficacy of Intravesical Xenogeneic Urothelial Cell Treatment Alone and in Combination with Chemotherapy or Immune Checkpoint Inhibition in a Mouse Non-Muscle-Invasive Bladder Cancer Model
by Chih-Rong Shyr, Ching-Feng Wu, Kai-Cheng Yang, Wen-Lung Ma and Chi-Ping Huang
Cancers 2025, 17(15), 2448; https://doi.org/10.3390/cancers17152448 - 24 Jul 2025
Viewed by 333
Abstract
Background/Objectives: Bladder cancer is a malignant disease that causes more than 199,922 deaths a year globally, in which ~75% of all newly diagnosed cases are non-muscle-invasive bladder cancer (NMIBC). Despite a number of treatments available, most NMIBC patients with high-grade tumors eventually [...] Read more.
Background/Objectives: Bladder cancer is a malignant disease that causes more than 199,922 deaths a year globally, in which ~75% of all newly diagnosed cases are non-muscle-invasive bladder cancer (NMIBC). Despite a number of treatments available, most NMIBC patients with high-grade tumors eventually recur. To add a novel therapy to complement the deficits of the current treatments, this study assesses the antitumor activity and mechanisms of action of intravesical xenogeneic urothelial cell (XUC) treatment as monotherapy and in combination with either chemotherapy or immune checkpoint inhibition (ICI). Methods: The orthotopic NMIBC graft tumor-bearing mice were randomly assigned into different treatment groups, receiving either intravesical XUCs, gemcitabine, anti-programmed death-ligand 1 (PD-L1) antibodies alone or in combination with gemcitabine or anti-PD-1 antibodies. The tumor responses, survival, and immune reactions were analyzed. Results: Intravesical XUC treatment exhibited significantly more antitumor activity to delay tumor progression than the control group and a similar effect to chemotherapy and ICI. In addition, there were significantly higher effects in the combined groups than single treatments. Immune tumor microenvironment and immune cell proliferation, cytotoxicity, and cytokine secretion were also activated by XUC treatment. Moreover, the combined groups have the highest effects. Conclusions: In vivo and ex vivo studies showed increased antitumor efficacy and immune responses by intravesical XUC treatment in single and combined treatments, suggesting a potential utility of this xenogeneic cell immunotherapeutic agent. Intravesical XUC treatment has the potential to address the substantial unmet need in NMIBC therapy as a bladder-sparing treatment option for NMIBC. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

18 pages, 1515 KiB  
Article
Enhancing Professional Periodontal Therapy with a Novel PMA-Zeolite Application: A Clinical Study on Periodontal Outcomes and Microbiological Changes
by Ines Đapić, Andrej Aurer, Jurica Žučko, Marinka Mravak-Stipetić, Marinka Baranović Baričević, Krešimir Pavelić, Fusun Ozer and Sandra Kraljević Pavelić
J. Funct. Biomater. 2025, 16(8), 270; https://doi.org/10.3390/jfb16080270 - 22 Jul 2025
Viewed by 482
Abstract
Periodontitis is a chronic, multifactorial inflammatory disease characterized by the progressive destruction of the periodontal supporting tissues, including alveolar bone, potentially resulting in tooth loss. Etiopathogenesis involves a dysbiotic shift in the subgingival microbiota where the presence of pathogenic species such as Porphyromonas [...] Read more.
Periodontitis is a chronic, multifactorial inflammatory disease characterized by the progressive destruction of the periodontal supporting tissues, including alveolar bone, potentially resulting in tooth loss. Etiopathogenesis involves a dysbiotic shift in the subgingival microbiota where the presence of pathogenic species such as Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Treponema denticola has been documented. This disbalance is combined with an inadequate host immune response, often exacerbated by other systemic comorbidities including diabetes mellitus and cardiovascular diseases. Conventional therapy typically comprises mechanical debridement and adjunctive local or systemic antimicrobials, but emerging antibiotic resistance highlights a need for alternative adjuvant therapeutic strategies. The present descriptive analysis of microbiome and clinical trends study evaluated the adjuvant effects of a clinoptilolite-based zeolite material, namely PMA-zeolite, with professional prophylaxis on clinical and microbiological parameters in patients with chronic periodontitis over a 10-week period. Clinical assessment revealed significant reductions in bleeding on probing (BoP) and periodontal pocket depth (PD), indicating improved inflammatory status. Microbiome profiling demonstrated a marked decrease in key periodontal pathogens, suggesting that PMA-zeolite can help rebalance the oral microbiome. These findings suggest that the combined therapy exhibits promising anti-inflammatory and antimicrobial properties, indicating its role in promoting microbial homeostasis and reducing periodontal inflammation. However, further investigation through larger, controlled clinical trials is needed to validate the efficacy of the therapy. Full article
(This article belongs to the Special Issue Active Biomedical Materials and Their Applications, 2nd Edition)
Show Figures

Figure 1

32 pages, 1691 KiB  
Review
Aptamers Targeting Immune Checkpoints for Tumor Immunotherapy
by Amir Mohammed Abker Abdu, Yanfei Liu, Rami Abduljabbar, Yunqi Man, Qiwen Chen and Zhenbao Liu
Pharmaceutics 2025, 17(8), 948; https://doi.org/10.3390/pharmaceutics17080948 - 22 Jul 2025
Viewed by 478
Abstract
Tumor immunotherapy has revolutionized cancer treatment by harnessing the immune system to recognize and eliminate malignant cells, with immune checkpoint inhibitors targeting programmed death receptor 1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) demonstrating remarkable clinical success. However, challenges such [...] Read more.
Tumor immunotherapy has revolutionized cancer treatment by harnessing the immune system to recognize and eliminate malignant cells, with immune checkpoint inhibitors targeting programmed death receptor 1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) demonstrating remarkable clinical success. However, challenges such as treatment resistance, immune-related adverse effects, and high costs highlight the need for novel therapeutic approaches. Aptamers, short, single-stranded oligonucleotides with high specificity and affinity for target molecules, have emerged as promising alternatives to conventional antibody-based therapies. This review provides a comprehensive analysis of aptamer-based strategies targeting immune checkpoints, with a particular focus on PD-1/PD-L1 and CTLA-4. We summarize recent advances in aptamer design, including bispecific and multifunctional aptamers, and explore their potential in overcoming immune resistance and improving therapeutic efficacy. Additionally, we discuss strategies to enhance aptamer stability, bioavailability, and tumor penetration through chemical modifications and nanoparticle conjugation. Preclinical and early clinical studies have demonstrated that aptamers can effectively block immune checkpoint pathways, restore T-cell activity, and synergize with other immunotherapeutic agents to achieve superior anti-tumor responses. By systematically reviewing the current research landscape and identifying key challenges, this review aims to provide valuable insights into the future directions of aptamer-based cancer immunotherapy, paving the way for more effective and personalized treatment strategies. Full article
(This article belongs to the Special Issue Nanomedicines for Overcoming Tumor Immunotherapy Tolerance)
Show Figures

Graphical abstract

37 pages, 1173 KiB  
Review
Advances and Challenges in Immunotherapy for Metastatic Uveal Melanoma: Clinical Strategies and Emerging Targets
by Mariana Grigoruta, Xiaohua Kong and Yong Qin
J. Clin. Med. 2025, 14(14), 5137; https://doi.org/10.3390/jcm14145137 - 19 Jul 2025
Viewed by 468
Abstract
Uveal melanoma (UM), the most common primary intraocular malignancy in adults, poses a unique clinical challenge due to its high propensity for liver metastasis and poor responsiveness to conventional therapies. Despite the expanding landscape of immunotherapy in oncology, progress in managing metastatic uveal [...] Read more.
Uveal melanoma (UM), the most common primary intraocular malignancy in adults, poses a unique clinical challenge due to its high propensity for liver metastasis and poor responsiveness to conventional therapies. Despite the expanding landscape of immunotherapy in oncology, progress in managing metastatic uveal melanoma (mUM) remains limited, and no universally accepted standard of care has been established. In this review, we examine the current state and evolving strategies in immunotherapy for mUM, focusing on immune checkpoint inhibitors (ICIs), T cell receptor (TCR)-engineered therapies, and tumor-targeted vaccines. We also present a meta-analytical comparison of clinical outcomes between ICI monotherapy and combination regimens, alongside the recently FDA-approved T cell engager tebentafusp. Our analysis indicates that the triple combination of Ipilimumab, anti-PD-1 agents, and tebentafusp significantly enhances objective response rates, disease control rates, 1-year overall survival rates, and median overall survival (mOS) compared to ICI monotherapy alone. However, this enhanced efficacy is accompanied by increased toxicity due to broader immune activation. In contrast, tebentafusp offers superior tumor specificity and a more favorable safety profile in HLA-A*02:01-positive patients, positioning it as a preferred therapeutic option for this genetically defined subset of UM. Additionally, early-phase studies involving dendritic cell-based immunotherapies and peptide vaccines has shown encouraging signs of tumor-specific immune activation, along with improved tolerability. Collectively, this review underscores the urgent need for more precise and effective immunotherapeutic approaches tailored to the unique biology of mUM. Full article
(This article belongs to the Special Issue Advances in Diagnosis and Therapeutic Strategies for Uveal Melanoma)
Show Figures

Figure 1

14 pages, 1865 KiB  
Article
Plasma WFDC2 (HE4) as a Predictive Biomarker for Clinical Outcomes in Cancer Patients Receiving Anti-PD-1 Therapy: A Pilot Study
by Makoto Watanabe, Katsuaki Ieguchi, Takashi Shimizu, Ryotaro Ohkuma, Risako Suzuki, Emiko Mura, Nana Iriguchi, Tomoyuki Ishiguro, Yuya Hirasawa, Go Ikeda, Masahiro Shimokawa, Hirotsugu Ariizumi, Kiyoshi Yoshimura, Atsushi Horiike, Takuya Tsunoda, Mayumi Tsuji, Shinichi Kobayashi, Tatsunori Oguchi, Yuji Kiuchi and Satoshi Wada
Cancers 2025, 17(14), 2384; https://doi.org/10.3390/cancers17142384 - 18 Jul 2025
Viewed by 308
Abstract
Background/Objectives: Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy; however, reliable biomarkers of therapeutic efficacy remain limited. We investigated the clinical utility of plasma WFDC2 levels in patients receiving anti-PD-1 antibody treatment. Methods: Twenty-one patients with non-small cell lung, gastric, or [...] Read more.
Background/Objectives: Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy; however, reliable biomarkers of therapeutic efficacy remain limited. We investigated the clinical utility of plasma WFDC2 levels in patients receiving anti-PD-1 antibody treatment. Methods: Twenty-one patients with non-small cell lung, gastric, or bladder cancer received nivolumab or pembrolizumab. Plasma WFDC2 concentrations were measured by ELISA before ICI treatment (pre-ICI) and after two and four treatment cycles. Associations between WFDC2 expression changes and overall survival (OS), progression-free survival (PFS), and tumor progression were assessed. ROC curve analyses compared the predictive performance of WFDC2, soluble PD-L1 (sPD-L1), soluble PD-1 (sPD-1), and their combinations, with the area under the curve (AUC) evaluating predictive accuracy. Results: Levels of WFDC2 pre-ICI and those after two cycles were significantly higher than levels in healthy donors. However, no significant differences in WFDC2 levels were found between the time points during treatment. Greater increases in WFDC2 levels were significantly correlated with shorter OS (p = 0.002), shorter PFS (p = 0.037), and tumor progression (p = 0.003). ROC analysis revealed that WFDC2 achieved a higher AUC (0.700) than sPD-L1 (0.538) or sPD-1 (0.650). Combining biomarkers improved the predictive accuracy, with sPD-L1 plus WFDC2 showing the highest AUC (0.825). Conclusions: Serial increases in plasma WFDC2 are associated with poor clinical outcomes, highlighting its potential as a biomarker. Baseline plasma WFDC2 outperformed sPD-L1 and sPD-1 diagnostically. These findings should be interpreted as exploratory and hypothesis-generating, requiring confirmation in larger, tumor-specific cohorts with multivariate adjustment. WFDC2 represents a promising minimally invasive biomarker for the early identification of patients unlikely to benefit from ICI therapy. Full article
Show Figures

Figure 1

15 pages, 755 KiB  
Review
Propolis as an Adjunct in Non-Surgical Periodontal Therapy: Current Clinical Perspectives from a Narrative Review
by Vitolante Pezzella, Alessandro Cuozzo, Leopoldo Mauriello, Alessandro Polizzi, Vincenzo Iorio Siciliano, Luca Ramaglia and Andrea Blasi
J. Funct. Biomater. 2025, 16(7), 265; https://doi.org/10.3390/jfb16070265 - 16 Jul 2025
Viewed by 657
Abstract
Non-surgical periodontal therapy (NSPT) represents the gold standard in the treatment of periodontitis, but deep periodontal pockets and complex anatomies may reduce its efficacy. Therefore, in order to enhance NSPT outcomes and reduce the need for surgical intervention, several adjunctive therapies have been [...] Read more.
Non-surgical periodontal therapy (NSPT) represents the gold standard in the treatment of periodontitis, but deep periodontal pockets and complex anatomies may reduce its efficacy. Therefore, in order to enhance NSPT outcomes and reduce the need for surgical intervention, several adjunctive therapies have been proposed. Propolis, a natural substance with antimicrobial, anti-inflammatory, and healing properties, has shown promising results in controlling supragingival biofilm. This narrative review aims to assess the clinical efficacy of propolis as an adjunct to NSPT. A comprehensive search on scientific databases was conducted for randomised clinical trials (RCTs) comparing NSPT with and without propolis, or with other adjuncts or placebos. Probing depth (PD) was the primary outcome. Seven RCTs met the inclusion criteria, using different propolis formulations and application protocols. Statistically significant improvements in clinical outcomes were recorded in all analysed studies compared with NSPT alone or placebo, while benefits were less substantial compared with laser therapy and conflicting when compared with chlorhexidine. Thus propolis may be considered a promising adjunctive agent to NSPT, with the potential to improve clinical outcomes of NSPT. Nonetheless, further long-term clinical trials with larger sample size are needed to validate its clinical efficacy and to determine its adverse effects. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

31 pages, 1186 KiB  
Review
Immune Checkpoint Molecules in Hodgkin Lymphoma and Other Hematological Malignancies
by Mohamed Nazem Alibrahim, Antonino Carbone, Noor Alsaleh and Annunziata Gloghini
Cancers 2025, 17(14), 2292; https://doi.org/10.3390/cancers17142292 - 10 Jul 2025
Viewed by 512
Abstract
Immune checkpoints such as PD-1/PD-L1, CTLA-4, LAG-3, TIM-3, and TIGIT play critical roles in regulating anti-tumor immunity and are exploited by hematological malignancies to evade immune surveillance. While classic Hodgkin lymphoma (HL) demonstrates notable responsiveness to immune checkpoint inhibitors (ICIs), which is attributed [...] Read more.
Immune checkpoints such as PD-1/PD-L1, CTLA-4, LAG-3, TIM-3, and TIGIT play critical roles in regulating anti-tumor immunity and are exploited by hematological malignancies to evade immune surveillance. While classic Hodgkin lymphoma (HL) demonstrates notable responsiveness to immune checkpoint inhibitors (ICIs), which is attributed to genetic alterations like chromosome 9p24.1 amplification, the responsiveness of non-Hodgkin lymphoma (NHL), acute myeloid leukemia (AML), and multiple myeloma (MM) remain inconsistent and generally modest. In NHL, the heterogeneous immune microenvironment, particularly variations in tumor-infiltrating lymphocytes and PD-L1 expression, drives differential ICI outcomes. AML shows limited responsiveness to monotherapy, but the combination of monotherapy with hypomethylating agents yield encouraging results, particularly in selected patient subsets. Conversely, MM trials have largely failed, potentially due to genetic polymorphisms influencing checkpoint signaling pathways and the inherently immunosuppressive bone marrow microenvironment. Both intrinsic tumor factors (low tumor mutational burden, impaired antigen presentation, IFN-γ pathway alterations) and extrinsic factors (immunosuppressive cells and alternative checkpoint upregulation) contribute significantly to primary and acquired resistance mechanisms. Future strategies to overcome resistance emphasize combination therapies, such as dual checkpoint blockade, epigenetic modulation, and reprogramming the tumor microenvironment, as well as biomarker-driven patient selection, aiming for precision-based, tailored immunotherapy across hematological malignancies. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

16 pages, 1236 KiB  
Communication
Chemoradiation-Altered Micromilieu of Glioblastoma Cells Particularly Impacts M1-like Macrophage Activation
by Mona Shojaei, Benjamin Frey, Florian Putz, Rainer Fietkau, Udo S. Gaipl and Anja Derer
Int. J. Mol. Sci. 2025, 26(14), 6574; https://doi.org/10.3390/ijms26146574 - 8 Jul 2025
Viewed by 464
Abstract
Glioblastoma is a highly aggressive brain tumor with an overall poor prognosis due to its immunosuppressive tumor microenvironment (TME). Microglia and tumor-associated macrophages (TAMs) with pro-tumorigenic properties are dominant populations of immune cells in the glioblastoma TME. To date, several studies targeting TAMs [...] Read more.
Glioblastoma is a highly aggressive brain tumor with an overall poor prognosis due to its immunosuppressive tumor microenvironment (TME). Microglia and tumor-associated macrophages (TAMs) with pro-tumorigenic properties are dominant populations of immune cells in the glioblastoma TME. To date, several studies targeting TAMs to fight tumor progression in different tumor entities have been initiated. However, the impact of standard therapy schemes of glioblastoma cells on macrophage polarization, activation, and phagocytosis remains controversial. The same applies to the relevance of PD-1/PD-L1 blockade in the interaction between macrophages and tumor cells. Our study, therefore, investigated patient-oriented treatment of GLIOBLASTOMA by examining the phagocytic capacity of polarized M1- and M2-like macrophages using GL261-luc2 tumor cells as a preclinical model system. Additionally, we analyzed the expression of activation and immune checkpoint markers on these macrophage subtypes following contact with tumor cells and their microenvironment. These factors were also determined after PD-1 blockade was initiated. The analyses revealed that the immunoregulatory M2-like macrophages generally exhibited a higher phagocytosis rate than the pro-inflammatory M1-like macrophages; however, this was not influenced by the pretreatment of glioblastoma cells with chemo- or radiotherapy. This could not be improved by blocking the PD-1 receptor. Furthermore, there were no modulations in the expression of differentiation, activation, or immune checkpoint molecules of M1- and M2-like macrophages after cell-to-cell contact with glioblastoma cells. But the medium conditioned by tumor cells strongly altered M1-like macrophages toward a more activated state, whereas M2-like cells were only mildly influenced. This was further enhanced by tumor cell treatment, with the most prominent effect after irradiation. These results suggest that conventional GLIOBLASTOMA tumor cell treatment affects the immunogenic status of macrophage subtypes, which is relevant for enhancing the anti-tumor immune response in brain tumors. Full article
(This article belongs to the Special Issue The Role of Macrophages in Cancers)
Show Figures

Figure 1

16 pages, 3527 KiB  
Article
Treatment-Induced Gene Expression Changes in Metastatic Renal Cell Carcinoma: Insights from a Syngeneic Mouse Model
by Ko Okabe, Toshiaki Tanaka, Tetsuya Shindo, Yuki Kyoda, Sachiyo Nishida, Kohei Hashimoto, Ko Kobayashi and Naoya Masumori
Curr. Oncol. 2025, 32(7), 391; https://doi.org/10.3390/curroncol32070391 - 8 Jul 2025
Viewed by 485
Abstract
This study aimed to clarify the alterations in gene expression in metastatic renal cell carcinoma (mRCC) during disease progression and in response to treatment with immune checkpoint inhibitors using a syngeneic mouse mRCC model. RENCA cells were orthotopically implanted in BALB/c mice. Mice [...] Read more.
This study aimed to clarify the alterations in gene expression in metastatic renal cell carcinoma (mRCC) during disease progression and in response to treatment with immune checkpoint inhibitors using a syngeneic mouse mRCC model. RENCA cells were orthotopically implanted in BALB/c mice. Mice received first-line treatment with cabozantinib, anti-PD-1 antibody, or a combination. Tumor progression was monitored using serial micro-computed tomography. Lung metastasis samples were collected, and RNA sequencing was performed. Mice with apparent disease progression received second-line treatment with axitinib, everolimus, or lenvatinib after combination therapy. The median overall survival was 28, 34, 34, and 49 days in untreated mice and those treated with cabozantinib, anti-PD-1, or their combination, respectively (p < 0.05). RNA sequencing revealed upregulation of the fibroblast growth factor pathway in lung metastases after monotherapy, whereas mTOR pathway activation was observed only after combination therapy. Treatment-specific gene expression changes occur in mRCC, suggesting that the optimal target for sequential therapy in mRCC varies depending on prior treatment. Full article
Show Figures

Figure 1

14 pages, 362 KiB  
Review
Recent Advances in Immunotherapy for Melanoma: Perspectives on the Development of Novel Treatments: A Mini Review
by Yusuke Muto, Taku Fujimura and Yoshihide Asano
Cancers 2025, 17(13), 2265; https://doi.org/10.3390/cancers17132265 - 7 Jul 2025
Viewed by 526
Abstract
It has been more than a decade since anti-PD-1 and anti-CTLA-4 antibodies were first introduced for the treatment of unresectable melanoma. The advent of these immunotherapies has dramatically transformed the treatment landscape. In recent years, anti-PD-1 antibodies have become the cornerstone of melanoma [...] Read more.
It has been more than a decade since anti-PD-1 and anti-CTLA-4 antibodies were first introduced for the treatment of unresectable melanoma. The advent of these immunotherapies has dramatically transformed the treatment landscape. In recent years, anti-PD-1 antibodies have become the cornerstone of melanoma therapy, and the development of new treatment regimens has advanced rapidly in both Eastern and Western countries. However, clinical practice has revealed lower response rates in East Asian melanoma patients compared to Caucasian populations. This discrepancy may be partially attributed to T cell immune exhaustion within the tumor microenvironment, although the detailed mechanisms remain unclear. Moreover, there is currently no established treatment for BRAF wild-type melanoma that is resistant to anti-PD-1 antibodies. This review discusses the currently available therapeutic strategies for advanced melanoma and addresses the aforementioned challenges, highlighting recent efforts in both Eastern and Western regions. Full article
(This article belongs to the Special Issue Immunotherapy for Skin Cancers)
Show Figures

Figure 1

Back to TopTop