Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = anti-DENV drugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1930 KiB  
Article
Sofalcone Suppresses Dengue Virus Replication by Activating Heme Oxygenase-1-Mediated Antiviral Interferon Responses
by Yu-Lun Ou, Wei-Chun Chen, Chia-Hung Yen, Wangta Liu, Chun-Kuang Lin, Shun-Chieh Yu, Mei-Yueh Lee and Jin-Ching Lee
Int. J. Mol. Sci. 2025, 26(13), 5921; https://doi.org/10.3390/ijms26135921 - 20 Jun 2025
Viewed by 406
Abstract
Dengue virus (DENV) infection is strongly associated with dengue hemorrhagic fever and dengue shock syndrome, both of which carry mortality risks. Addressing the urgent need for effective dengue therapeutics, we identified sofalcone, a gastroprotective agent with antioxidant and anti-inflammatory properties, as a potential [...] Read more.
Dengue virus (DENV) infection is strongly associated with dengue hemorrhagic fever and dengue shock syndrome, both of which carry mortality risks. Addressing the urgent need for effective dengue therapeutics, we identified sofalcone, a gastroprotective agent with antioxidant and anti-inflammatory properties, as a potential inhibitor of DENV replication. Sofalcone demonstrated efficacy against all four DENV serotypes, with the dose inhibiting 50% (IC50) value of 28.1 ± 0.42 μM against viral replication of DENV serotype 2, without significant cytotoxicity. Additionally, sofalcone significantly improved survival rates and reduced viral titers in DENV-infected ICR-suckling mice. Mechanistically, sofalcone induced heme oxygenase-1 (HO-1) expression via the nuclear factor-erythroid 2-reated factor 2 (Nrf2) pathway, which in turn suppressed viral protease activity and restored antiviral interferon (IFN) responses. This included dose-dependent stimulation of IFN downstream antiviral genes such as 2′-5′-oligoadenylate synthetase 1 (OAS1), OAS2, and OAS3. Given its established clinical use as an anti-gastric ulcer drug, sofalcone offers promising potential for rapid application in treating DENV infection. Full article
Show Figures

Figure 1

27 pages, 11687 KiB  
Article
Modeling and Molecular Dynamics Studies of Flavone―DENV E-3 Protein―SWCNT Interaction at the Flavonoid Binding Sites
by Cecilia Espíndola
Viruses 2025, 17(4), 525; https://doi.org/10.3390/v17040525 - 4 Apr 2025
Cited by 1 | Viewed by 630
Abstract
The DENV virus circulates freely in endemic regions and causes dengue disease. The vectors are Aedes aegypti and Aedes albopictus. The difficulties inherent in the nature of the DENV virus, its epidemiology, and its increasing incidence in recent years have led to [...] Read more.
The DENV virus circulates freely in endemic regions and causes dengue disease. The vectors are Aedes aegypti and Aedes albopictus. The difficulties inherent in the nature of the DENV virus, its epidemiology, and its increasing incidence in recent years have led to the development of viable alternatives in the search for effective solutions for the treatment of this severe disease. Flavones such as tropoflavin, baicalein, and luteolin have anti-DENV activity. Molecular docking studies were performed between the flavones tropoflavin, baicalein, and luteolin and the DENV E-3 protein. Flavone—DENV E-3 complex interactions were analyzed at the flavonoid binding sites domain I of the B chain and domain II of the A chain reported in the literature. H-bond, π-π stacking, and π-cation interactions between flavones and the DENV E-3 protein at different binding energies were evaluated. Molecular dynamics studies for these interactions were performed to determine the molecular stability of the Flavone—DENV E-3 complexes. I also present here the results of the molecular interactions of the Flavone—DENV E-3―SWCNT complex. Due to recent advances in nanotechnology and their physicochemical properties, the utilization of nanoparticles such as SWCNT has increased in antiviral drug delivery. Full article
Show Figures

Figure 1

20 pages, 3204 KiB  
Article
In Vitro Evaluation of the Anti-Chikungunya Virus Activity of an Active Fraction Obtained from Euphorbia grandicornis Latex
by José Angel Santiago-Cruz, Araceli Posadas-Mondragón, Angélica Pérez-Juárez, Norma Estela Herrera-González, José Miguel Chin-Chan, Joab Eli Aguilar-González and José Leopoldo Aguilar-Faisal
Viruses 2024, 16(12), 1929; https://doi.org/10.3390/v16121929 - 17 Dec 2024
Viewed by 1190
Abstract
Chikungunya virus (CHIKV) is classified as a pathogen with the potential to cause a pandemic. This situation becomes more alarming since no approved drug exists to combat the virus. The present research aims to demonstrate the anti-CHIKV activity of molecules present in the [...] Read more.
Chikungunya virus (CHIKV) is classified as a pathogen with the potential to cause a pandemic. This situation becomes more alarming since no approved drug exists to combat the virus. The present research aims to demonstrate the anti-CHIKV activity of molecules present in the latex of Euphorbia grandicornis. Therefore, a biodirected assay was carried out to find the molecules with anti-CHIKV activity. Extractions with hexane, dichloromethane, and methanol and subsequent purification by column chromatography were carried out to later evaluate cytotoxic activity by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and antiviral activity by plaque assay. Our findings show that unlike the others, methanolic extract has a low cytotoxic effect and a good anti-CHIKV effect (EC50 = 26.41 µg/mL), which increases when obtaining the purified active fraction (pAFeg1) (EC50 = 0.4835 µg/mL). Time-of-addition suggests that the possible mechanism of action of pAFeg1 could be inhibiting any of the non-structural proteins of CHIKV. In addition, both the cytotoxic and anti-CHIKV activity of pAFeg1 demonstrate selectivity since it killed cancer cells and could not inhibit DENV2. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

16 pages, 4428 KiB  
Article
Dengue Envelope Protein as a Cytotoxic Factor Inducing Hemorrhage and Endothelial Cell Death in Mice
by Te-Sheng Lien, Der-Shan Sun, Wen-Sheng Wu and Hsin-Hou Chang
Int. J. Mol. Sci. 2024, 25(19), 10858; https://doi.org/10.3390/ijms251910858 - 9 Oct 2024
Cited by 1 | Viewed by 1605
Abstract
Dengue virus (DENV) infection, prevalent in tropical and subtropical regions, can progress to dengue hemorrhagic fever (DHF), which increases mortality during secondary infections. DHF is characterized by endothelial damage and vascular leakage. Despite its severity, no specific antiviral treatments exist, and the viral [...] Read more.
Dengue virus (DENV) infection, prevalent in tropical and subtropical regions, can progress to dengue hemorrhagic fever (DHF), which increases mortality during secondary infections. DHF is characterized by endothelial damage and vascular leakage. Despite its severity, no specific antiviral treatments exist, and the viral factors responsible for endothelial damage remain unclear. This study examines the role of the DENV envelope protein domain III (EIII) in inducing endothelial apoptosis using a mouse model. Additionally, we aim to explore whether cell death-inducing pathways could serve as drug targets to ameliorate EIII-induced endothelial injury and hemorrhage. In vitro experiments using human endothelial HMEC-1 cells demonstrated that both recombinant EIII (rEIII) and DENV markedly induced caspase-3-mediated endothelial cell death, an effect that was attenuated by co-treatment with chondroitin sulfate B (CSB), N-acetyl cysteine (NAC), and the caspase-3 inhibitor z-DEVD-FMK. In vivo, sequential injections of rEIII and anti-platelet immunoglobulin in mice, designed to mimic the clinical phase of DHF with peak viremia followed by an increase in DENV-induced Ig, including autoantibodies, revealed that these dual treatments markedly triggered caspase-3-dependent apoptosis in vascular endothelial cells at hemorrhage sites. Treatments with z-DEVD-FMK effectively reduced DHF-like symptoms such as thrombocytopenia, hemorrhage, inflammation, hypercoagulation, and endothelial damage. Additionally, CSB and NAC alleviated hemorrhagic symptoms in the mice. These results suggest that targeting EIII, reactive oxygen species, and caspase-3-mediated apoptosis could offer potential therapeutic strategies for addressing EIII-induced hemorrhagic pathogenesis. Full article
Show Figures

Figure 1

22 pages, 4072 KiB  
Review
The Inhibition of NS2B/NS3 Protease: A New Therapeutic Opportunity to Treat Dengue and Zika Virus Infection
by Josè Starvaggi, Santo Previti, Maria Zappalà and Roberta Ettari
Int. J. Mol. Sci. 2024, 25(8), 4376; https://doi.org/10.3390/ijms25084376 - 16 Apr 2024
Cited by 13 | Viewed by 4633
Abstract
In the global pandemic scenario, dengue and zika viruses (DENV and ZIKV, respectively), both mosquito-borne members of the flaviviridae family, represent a serious health problem, and considering the absence of specific antiviral drugs and available vaccines, there is a dire need to identify [...] Read more.
In the global pandemic scenario, dengue and zika viruses (DENV and ZIKV, respectively), both mosquito-borne members of the flaviviridae family, represent a serious health problem, and considering the absence of specific antiviral drugs and available vaccines, there is a dire need to identify new targets to treat these types of viral infections. Within this drug discovery process, the protease NS2B/NS3 is considered the primary target for the development of novel anti-flavivirus drugs. The NS2B/NS3 is a serine protease that has a dual function both in the viral replication process and in the elusion of the innate immunity. To date, two main classes of NS2B/NS3 of DENV and ZIKV protease inhibitors have been discovered: those that bind to the orthosteric site and those that act at the allosteric site. Therefore, this perspective article aims to discuss the main features of the use of the most potent NS2B/NS3 inhibitors and their impact at the social level. Full article
(This article belongs to the Special Issue Organic Compounds: Structure, Function and Drug Design)
Show Figures

Figure 1

15 pages, 2360 KiB  
Communication
Sofosbuvir Suppresses the Genome Replication of DENV1 in Human Hepatic Huh7 Cells
by Madoka Kurosawa, Fumihiro Kato, Takayuki Hishiki, Saori Ito, Hiroki Fujisawa, Tatsuo Yamaguchi, Misato Moriguchi, Kohei Hosokawa, Tadashi Watanabe, Noriko Saito-Tarashima, Noriaki Minakawa and Masahiro Fujimuro
Int. J. Mol. Sci. 2024, 25(4), 2022; https://doi.org/10.3390/ijms25042022 - 7 Feb 2024
Cited by 2 | Viewed by 2386
Abstract
Dengue virus (DENV) causes dengue fever and dengue hemorrhagic fever, and DENV infection kills 20,000 people annually worldwide. Therefore, the development of anti-DENV drugs is urgently needed. Sofosbuvir (SOF) is an effective drug for HCV-related diseases, and its triphosphorylated metabolite inhibits viral RNA [...] Read more.
Dengue virus (DENV) causes dengue fever and dengue hemorrhagic fever, and DENV infection kills 20,000 people annually worldwide. Therefore, the development of anti-DENV drugs is urgently needed. Sofosbuvir (SOF) is an effective drug for HCV-related diseases, and its triphosphorylated metabolite inhibits viral RNA synthesis by the RNA-dependent RNA polymerase (RdRp) of HCV. (2′R)-2′-Deoxy-2′-fluoro-2′-methyluridine (FMeU) is the dephosphorylated metabolite produced from SOF. The effects of SOF and FMeU on DENV1 replication were analyzed using two DENV1 replicon-based methods that we previously established. First, a replicon-harboring cell assay showed that DENV1 replicon replication in human hepatic Huh7 cells was decreased by SOF but not by FMeU. Second, a transient replicon assay showed that DENV1 replicon replication in Huh7 cells was decreased by SOF; however, in hamster kidney BHK-21 cells, it was not suppressed by SOF. Additionally, the replicon replication in Huh7 and BHK-21 cells was not affected by FMeU. Moreover, we assessed the effects of SOF on infectious DENV1 production. SOF suppressed infectious DENV1 production in Huh7 cells but not in monkey kidney Vero cells. To examine the substrate recognition of the HCV and DENV1 RdRps, the complex conformation of SOF-containing DENV1 RdRp or HCV RdRp was predicted using AlphaFold 2. These results indicate that SOF may be used as a treatment for DENV1 infection. Full article
(This article belongs to the Special Issue The Interaction Between Cell and Virus, 2nd Edition)
Show Figures

Figure 1

12 pages, 2416 KiB  
Article
A Novel, Comprehensive A129 Mouse Model for Investigating Dengue Vaccines and Evaluating Pathogenesis
by Mya Myat Ngwe Tun, Khine Mya Nwe, Jean Claude Balingit, Yuki Takamatsu, Shingo Inoue, Basu Dev Pandey, Takeshi Urano, Michinori Kohara, Kyoko Tsukiyama-Kohara and Kouichi Morita
Vaccines 2023, 11(12), 1857; https://doi.org/10.3390/vaccines11121857 - 15 Dec 2023
Cited by 1 | Viewed by 3275
Abstract
In search of a mouse model for use in evaluating dengue vaccines, we assessed A129 mice that lacked IFN-α/β receptors, rendering them susceptible to dengue virus (DENV) infection. To our knowledge, no reports have evaluated dengue vaccine efficiency using A129 mice. A129 mice [...] Read more.
In search of a mouse model for use in evaluating dengue vaccines, we assessed A129 mice that lacked IFN-α/β receptors, rendering them susceptible to dengue virus (DENV) infection. To our knowledge, no reports have evaluated dengue vaccine efficiency using A129 mice. A129 mice were given a single intraperitoneal (IP) or subcutaneous (SC) injection of the vaccine, Dengvaxia. After 14 days of immunization via the IP or SC injection of Dengvaxia, the A129 mice exhibited notably elevated levels of anti-DENV immunoglobulin G and neutralizing antibodies (NAb) targeting all four DENV serotypes, with DENV-4 displaying the highest NAb levels. After challenge with DENV-2, Dengvaxia and mock-immunized mice survived, while only the mock group exhibited signs of morbidity. Viral genome levels in the serum and tissues (excluding the brain) were considerably lower in the immunized mice compared to those in the mock group. The SC administration of Dengvaxia resulted in lower viremia levels than IP administration did. Therefore, given that A129 mice manifest dengue-related morbidity, including viremia in the serum and other tissues, these mice represent a valuable model for investigating novel dengue vaccines and antiviral drugs and for exploring dengue pathogenesis. Full article
(This article belongs to the Special Issue Flaviviruses: Immunity and Vaccine Development)
Show Figures

Figure 1

22 pages, 9239 KiB  
Article
Design, Synthesis, Evaluation and Molecular Dynamics Simulation of Dengue Virus NS5-RdRp Inhibitors
by Keli Zong, Wei Li, Yijie Xu, Xu Zhao, Ruiyuan Cao, Hong Yan and Xingzhou Li
Pharmaceuticals 2023, 16(11), 1625; https://doi.org/10.3390/ph16111625 - 17 Nov 2023
Cited by 6 | Viewed by 2656
Abstract
Dengue virus (DENV) is a major mosquito-borne human pathogen in tropical countries; however, there are currently no targeted antiviral treatments for DENV infection. Compounds 27 and 29 have been reported to be allosteric inhibitors of DENV RdRp with potent inhibitory effects. In this [...] Read more.
Dengue virus (DENV) is a major mosquito-borne human pathogen in tropical countries; however, there are currently no targeted antiviral treatments for DENV infection. Compounds 27 and 29 have been reported to be allosteric inhibitors of DENV RdRp with potent inhibitory effects. In this study, the structures of compounds 27 and 29 were optimized using computer-aided drug design (CADD) approaches. Nine novel compounds were synthesized based on rational considerations, including molecular docking scores, free energy of binding to receptor proteins, predicted Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) parameters, structural diversity, and feasibility of synthesis. Subsequently, the anti-DENV activity was assessed. In the cytopathic effect (CPE) assay conducted on BHK-21 cells using the DENV2 NGC strain, both SW-b and SW-d demonstrated comparable or superior activity against DENV2, with IC50 values of 3.58 ± 0.29 μM and 23.94 ± 1.00 μM, respectively, compared to that of compound 27 (IC50 = 19.67 ± 1.12 μM). Importantly, both SW-b and SW-d exhibited low cytotoxicity, with CC50 values of 24.65 μmol and 133.70 μmol, respectively, resulting in selectivity indices of 6.89 and 5.58, respectively. Furthermore, when compared to the positive control compound 3′-dATP (IC50 = 30.09 ± 8.26 μM), SW-b and SW-d displayed superior inhibitory activity in an enzyme inhibitory assay, with IC50 values of 11.54 ± 1.30 μM and 13.54 ± 0.32 μM, respectively. Molecular dynamics (MD) simulations elucidated the mode of action of SW-b and SW-d, highlighting their ability to enhance π–π packing interactions between benzene rings and residue W795 in the S1 fragment, compared to compounds 27 and 29. Although the transacylsulphonamide fragment reduced the interaction between T794 and NH, it augmented the interaction between R729 and T794. In summary, our study underscores the potential of SW-b and SW-d as allosteric inhibitors targeting the DENV NS5 RdRp domain. However, further in vivo studies are warranted to assess their pharmacology and toxicity profiles. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

14 pages, 24376 KiB  
Article
The Antiviral Activity of Varenicline against Dengue Virus Replication during the Post-Entry Stage
by Ching-Lin Lin, Yan-Tung Kiu, Ju-Ying Kan, Yu-Jen Chang, Ping-Yi Hung, Chih-Hao Lu, Wen-Ling Lin, Yow-Wen Hsieh, Jung-Yie Kao, Nien-Jen Hu and Cheng-Wen Lin
Biomedicines 2023, 11(10), 2754; https://doi.org/10.3390/biomedicines11102754 - 11 Oct 2023
Cited by 4 | Viewed by 2202
Abstract
Dengue virus (DENV) poses a significant global health challenge, with millions of cases each year. Developing effective antiviral drugs against DENV remains a major hurdle. Varenicline is a medication used to aid smoking cessation, with anti-inflammatory and antioxidant effects. In this study, varenicline [...] Read more.
Dengue virus (DENV) poses a significant global health challenge, with millions of cases each year. Developing effective antiviral drugs against DENV remains a major hurdle. Varenicline is a medication used to aid smoking cessation, with anti-inflammatory and antioxidant effects. In this study, varenicline was investigated for its antiviral potential against DENV. This study provides evidence of the antiviral activity of varenicline against DENV, regardless of the virus serotype or cell type used. Varenicline demonstrated dose-dependent effects in reducing viral protein expression, infectivity, and virus yield in Vero and A549 cells infected with DENV-1 and DENV-2, with EC50 values ranging from 0.44 to 1.66 μM. Time-of-addition and removal experiments demonstrated that varenicline had a stronger inhibitory effect on the post-entry stage of DENV-2 replication than on the entry stage, as well as the preinfection and virus attachment stages. Furthermore, cell-based trans-cleavage assays indicated that varenicline dose-dependently inhibited the proteolytic activity of DENV-2 NS2B-NS3 protease. Docking models revealed the formation of hydrogen bonds and van der Waals forces between varenicline and specific residues in the DENV-1 and DENV-2 NS2B-NS3 proteases. These results highlight the antiviral activity and potential mechanism of varenicline against DENV, offering valuable insights for further research and development in the treatment of DENV infection. Full article
Show Figures

Figure 1

37 pages, 4522 KiB  
Review
Molecular Mechanisms of Antiviral Agents against Dengue Virus
by Michelle Felicia Lee, Yuan Seng Wu and Chit Laa Poh
Viruses 2023, 15(3), 705; https://doi.org/10.3390/v15030705 - 8 Mar 2023
Cited by 59 | Viewed by 10226
Abstract
Dengue is a major global health threat causing 390 million dengue infections and 25,000 deaths annually. The lack of efficacy of the licensed Dengvaxia vaccine and the absence of a clinically approved antiviral against dengue virus (DENV) drive the urgent demand for the [...] Read more.
Dengue is a major global health threat causing 390 million dengue infections and 25,000 deaths annually. The lack of efficacy of the licensed Dengvaxia vaccine and the absence of a clinically approved antiviral against dengue virus (DENV) drive the urgent demand for the development of novel anti-DENV therapeutics. Various antiviral agents have been developed and investigated for their anti-DENV activities. This review discusses the mechanisms of action employed by various antiviral agents against DENV. The development of host-directed antivirals targeting host receptors and direct-acting antivirals targeting DENV structural and non-structural proteins are reviewed. In addition, the development of antivirals that target different stages during post-infection such as viral replication, viral maturation, and viral assembly are reviewed. Antiviral agents designed based on these molecular mechanisms of action could lead to the discovery and development of novel anti-DENV therapeutics for the treatment of dengue infections. Evaluations of combinations of antiviral drugs with different mechanisms of action could also lead to the development of synergistic drug combinations for the treatment of dengue at any stage of the infection. Full article
(This article belongs to the Special Issue Antiviral Molecular Mechanisms)
Show Figures

Figure 1

17 pages, 3716 KiB  
Article
N-Butanol Extract of Glycyrrhizae Radix et Rhizoma Inhibits Dengue Virus through Targeting Envelope Protein
by Ling-Zhu Shi, Xi Chen, Hui-Hui Cao, Chun-Yang Tian, Li-Fang Zou, Jian-Hai Yu, Zi-Bin Lu, Wei Zhao, Jun-Shan Liu and Lin-Zhong Yu
Pharmaceuticals 2023, 16(2), 263; https://doi.org/10.3390/ph16020263 - 9 Feb 2023
Cited by 3 | Viewed by 2665
Abstract
Background: At present, about half of the world’s population is at risk of being infected with dengue virus (DENV). However, there are no specific drugs to prevent or treat DENV infection. Glycyrrhizae Radix et Rhizome, a well-known traditional Chinese medicine, performs multiple pharmacological [...] Read more.
Background: At present, about half of the world’s population is at risk of being infected with dengue virus (DENV). However, there are no specific drugs to prevent or treat DENV infection. Glycyrrhizae Radix et Rhizome, a well-known traditional Chinese medicine, performs multiple pharmacological activities, including exerting antiviral effects. The aim of this study was to investigate the anti-DENV effects of n-butanol extract from Glycyrrhizae Radix et Rhizome (GRE). Methods: Compounds analysis of GRE was conducted via ultra-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). The antiviral activities of GRE were determined by the CCK-8 assay, plaque assay, qRT-PCR, Western blotting, and the immunofluorescence assay. The DENV-infected suckling mice model was constructed to explore the antiviral effects of GRE in vivo. Results: Four components in GRE were analyzed by UHPLC-MS/MS, including glycyrrhizic acid, glycyrrhetnic acid, liquiritigenin, and isoliquiritigenin. GRE inhibited the attachment process of the virus replication cycle and reduced the expression of the E protein in cell models. In the in vivo study, GRE significantly relieved clinical symptoms and prolong survival duration. GRE also significantly decreased viremia, reduced the viral load in multiple organs, and inhibited the release of pro-inflammatory cytokines in DENV-infected suckling mice. Conclusions: GRE exhibited significant inhibitory activities in the adsorption stage of the DENV-2 replication cycle by targeting the envelope protein. Thus, GRE might be a promising candidate for the treatment of DENV infection. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

15 pages, 8084 KiB  
Article
Identification of Polyphenol Derivatives as Novel SARS-CoV-2 and DENV Non-Nucleoside RdRp Inhibitors
by Shenghua Gao, Letian Song, Hongtao Xu, Antonios Fikatas, Merel Oeyen, Steven De Jonghe, Fabao Zhao, Lanlan Jing, Dirk Jochmans, Laura Vangeel, Yusen Cheng, Dongwei Kang, Johan Neyts, Piet Herdewijn, Dominique Schols, Peng Zhan and Xinyong Liu
Molecules 2023, 28(1), 160; https://doi.org/10.3390/molecules28010160 - 25 Dec 2022
Cited by 7 | Viewed by 3527
Abstract
The Coronavirus Disease 2019 (COVID-19) and dengue fever (DF) pandemics both remain to be significant public health concerns in the foreseeable future. Anti-SARS-CoV-2 drugs and vaccines are both indispensable to eliminate the epidemic situation. Here, two piperazine-based polyphenol derivatives DF-47 and DF-51 were [...] Read more.
The Coronavirus Disease 2019 (COVID-19) and dengue fever (DF) pandemics both remain to be significant public health concerns in the foreseeable future. Anti-SARS-CoV-2 drugs and vaccines are both indispensable to eliminate the epidemic situation. Here, two piperazine-based polyphenol derivatives DF-47 and DF-51 were identified as potential inhibitors directly blocking the active site of SARS-CoV-2 and DENV RdRp. Data through RdRp inhibition screening of an in-house library and in vitro antiviral study selected DF-47 and DF-51 as effective inhibitors of SARS-CoV-2/DENV polymerase. Moreover, in silico simulation revealed stable binding modes between the DF-47/DF-51 and SARS-CoV-2/DENV RdRp, respectively, including chelating with Mg2+ near polymerase active site. This work discovered the inhibitory effect of two polyphenols on distinct viral RdRp, which are expected to be developed into broad-spectrum, non-nucleoside RdRp inhibitors with new scaffold. Full article
(This article belongs to the Special Issue Small Molecule Inhibitors of Polymerases Involved in Human Diseases)
Show Figures

Figure 1

31 pages, 5504 KiB  
Review
Inhibitory Potential of Chromene Derivatives on Structural and Non-Structural Proteins of Dengue Virus
by Babitha Thekkiniyedath Dharmapalan, Raja Biswas, Sathianarayanan Sankaran, Baskar Venkidasamy, Muthu Thiruvengadam, Ginson George, Maksim Rebezov, Gokhan Zengin, Monica Gallo, Domenico Montesano, Daniele Naviglio and Mohammad Ali Shariati
Viruses 2022, 14(12), 2656; https://doi.org/10.3390/v14122656 - 28 Nov 2022
Cited by 11 | Viewed by 6491
Abstract
Dengue fever is a mosquito-borne viral disease that has become a serious health issue across the globe. It is caused by a virus of the Flaviviridae family, and it comprises five different serotypes (DENV-1 to DENV-5). As there is no specific medicine or [...] Read more.
Dengue fever is a mosquito-borne viral disease that has become a serious health issue across the globe. It is caused by a virus of the Flaviviridae family, and it comprises five different serotypes (DENV-1 to DENV-5). As there is no specific medicine or effective vaccine for controlling dengue fever, there is an urgent need to develop potential inhibitors against it. Traditionally, various natural products have been used to manage dengue fever and its co-morbid conditions. A detailed analysis of these plants revealed the presence of various chromene derivatives as the major phytochemicals. Inspired by these observations, authors have critically analyzed the anti-dengue virus potential of various 4H chromene derivatives. Further, in silico, in vitro, and in vivo reports of these scaffolds against the dengue virus are detailed in the present manuscript. These analogues exerted their activity by interfering with various stages of viral entry, assembly, and replications. Moreover, these analogues mainly target envelope protein, NS2B-NS3 protease, and NS5 RNA-dependent RNA polymerase, etc. Overall, chromene-containing analogues exerted a potent activity against the dengue virus and the present review will be helpful for the further exploration of these scaffolds for the development of novel antiviral drug candidates. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

18 pages, 4783 KiB  
Article
A Transcriptomics-Based Bioinformatics Approach for Identification and In Vitro Screening of FDA-Approved Drugs for Repurposing against Dengue Virus-2
by Madhura Punekar, Bhagyashri Kasabe, Poonam Patil, Mahadeo B. Kakade, Deepti Parashar, Kalichamy Alagarasu and Sarah Cherian
Viruses 2022, 14(10), 2150; https://doi.org/10.3390/v14102150 - 29 Sep 2022
Cited by 12 | Viewed by 4686
Abstract
The rising incidence of dengue virus (DENV) infections in the tropical and sub-tropical regions of the world emphasizes the need to identify effective therapeutic drugs against the disease. Repurposing of drugs has emerged as a novel concept to combat pathogens. In this study, [...] Read more.
The rising incidence of dengue virus (DENV) infections in the tropical and sub-tropical regions of the world emphasizes the need to identify effective therapeutic drugs against the disease. Repurposing of drugs has emerged as a novel concept to combat pathogens. In this study, we employed a transcriptomics-based bioinformatics approach for drug identification against DENV. Gene expression omnibus datasets from patients with different grades of dengue disease severity and healthy controls were used to identify differentially expressed genes in dengue cases, which were then applied to the query tool of Connectivity Map to identify the inverse gene–disease–drug relationship. A total of sixteen identified drugs were investigated for their prophylactic, virucidal, and therapeutic effects against DENV. Focus-forming unit assay and quantitative RT-PCR were used to evaluate the antiviral activity. Results revealed that five compounds, viz., resveratrol, doxorubicin, lomibuvir, elvitegravir, and enalaprilat, have significant anti-DENV activity. Further, molecular docking studies showed that these drugs can interact with a variety of protein targets of DENV, including the glycoprotein, the NS5 RdRp, NS2B-NS3 protease, and NS5 methyltransferase The in vitro and in silico results, therefore, reveal that these drugs have the ability to decrease DENV-2 production, suggesting that these drugs or their derivatives could be attempted as therapeutic agents against DENV infections. Full article
(This article belongs to the Special Issue Drug-Repositioning Opportunities for Antiviral Therapy: Volume 2)
Show Figures

Figure 1

20 pages, 4305 KiB  
Article
Pharmacophore-Model-Based Drug Repurposing for the Identification of the Potential Inhibitors Targeting the Allosteric Site in Dengue Virus NS5 RNA-Dependent RNA Polymerase
by Sanjay Kumar, Leena H. Bajrai, Arwa A. Faizo, Aiah M. Khateb, Areej A. Alkhaldy, Rashmi Rana, Esam I. Azhar and Vivek Dhar Dwivedi
Viruses 2022, 14(8), 1827; https://doi.org/10.3390/v14081827 - 20 Aug 2022
Cited by 15 | Viewed by 3937
Abstract
Dengue virus (DENV) is the causative agent of DENV infection. To tackle DENV infection, the development of therapeutic molecules as direct-acting antivirals (DAAs) has been demonstrated as a truly effective approach. Among various DENV drug targets, non-structural protein 5 (NS5)—a highly conserved protein [...] Read more.
Dengue virus (DENV) is the causative agent of DENV infection. To tackle DENV infection, the development of therapeutic molecules as direct-acting antivirals (DAAs) has been demonstrated as a truly effective approach. Among various DENV drug targets, non-structural protein 5 (NS5)—a highly conserved protein among the family Flaviviridae—carries the RNA-dependent RNA polymerase (DENVRdRp) domain at the C-terminal, and its “N-pocket” allosteric site is widely considered for anti-DENV drug development. Therefore, in this study, we developed a pharmacophore model by utilising 41 known inhibitors of the DENVRdRp domain, and performed model screening against the FDA’s approved drug database for drug repurposing against DENVRdRp. Herein, drugs complying with the pharmacophore hypothesis were further processed through standard-precision (SP) and extra-precision (XP) docking scores (DSs) and binding pose refinement based on MM/GBSA binding energy (BE) calculations. This resulted in the identification of four potential potent drugs: (i) desmopressin (DS: −10.52, BE: −69.77 kcal/mol), (ii) rutin (DS: −13.43, BE: −67.06 kcal/mol), (iii) lypressin (DS: −9.84, BE: −67.65 kcal/mol), and (iv) lanreotide (DS: −8.72, BE: −64.7 kcal/mol). The selected drugs exhibited relevant interactions with the allosteric N-pocket of DENVRdRp, including priming-loop and entry-point residues (i.e., R729, R737, K800, and E802). Furthermore, 100 ns explicit-solvent molecular dynamics simulations and end-point binding free energy assessments support the considerable stability and free energy of the selected drugs in the targeted allosteric pocket of DENVRdRp. Hence, these four drugs, repurposed as potent inhibitors of the allosteric site of DENVRdRp, are recommended for further validation using experimental assays. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Graphical abstract

Back to TopTop