Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (704)

Search Parameters:
Keywords = antenna beam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3314 KiB  
Article
Antenna Model with Pattern Optimization Based on Genetic Algorithm for Satellite-Based SAR Mission
by Saray Sánchez-Sevilleja, Marcos García-Rodríguez, José Luis Masa-Campos and Juan Manuel Cuerda-Muñoz
Sensors 2025, 25(15), 4835; https://doi.org/10.3390/s25154835 - 6 Aug 2025
Abstract
Synthetic aperture radar (SAR) systems are of paramount importance to remote sensing applications, including Earth observation and environmental monitoring. Accurate calibration of these systems is imperative to ensuring the accuracy and reliability of the acquired data. A central component of the calibration process [...] Read more.
Synthetic aperture radar (SAR) systems are of paramount importance to remote sensing applications, including Earth observation and environmental monitoring. Accurate calibration of these systems is imperative to ensuring the accuracy and reliability of the acquired data. A central component of the calibration process is the antenna model, which serves as a fundamental reference for characterizing the radiation pattern, gain, and overall performance of SAR systems. The present paper sets out to describe the implementation and validation of a phased-array antenna model for Synthetic Aperture Radar Systems (SARAS) in MATLAB R2024a. The antenna model was developed for utilization in the Spanish Earth observation missions PAZ and PRECURSOR-ECO. The antenna model incorporates a number of functions, which are divided into two primary modules: the first of these is the antenna pattern generation (APG) module, and the second is the antenna excitation generation (AEG) module. The present document focuses on the AEG, the function of which is to generate patterns for all required beams. These patterns are optimized and matched to specific calculated masks using an ad hoc genetic algorithm (GA). In consideration of the aforementioned factors, the AEG module generates a set of complex excitations corresponding to the required beam from different satellite operational beams, based on several radiometrically defined parameters.  Full article
(This article belongs to the Special Issue Recent Advances in Synthetic Aperture Radar (SAR) Remote Sensing)
15 pages, 6688 KiB  
Article
Integrated Additive Manufacturing of TGV Interconnects and High-Frequency Circuits via Bipolar-Controlled EHD Jetting
by Dongqiao Bai, Jin Huang, Hongxiao Gong, Jianjun Wang, Yunna Pu, Jiaying Zhang, Peng Sun, Zihan Zhu, Pan Li, Huagui Wang, Pengbing Zhao and Chaoyu Liang
Micromachines 2025, 16(8), 907; https://doi.org/10.3390/mi16080907 (registering DOI) - 2 Aug 2025
Viewed by 183
Abstract
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to [...] Read more.
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to drive ink into deep and narrow vias; sufficiently high ink viscosity to prevent gravity-induced leakage; and stable meniscus dynamics to avoid satellite droplets and charge accumulation on the glass surface. By coupling electrostatic field analysis with transient level-set simulations, we establish a dimensionless regime map that delineates stable cone-jetting regime; these predictions are validated by high-speed imaging and surface profilometry. Operating within this window, the platform achieves complete, void-free filling of 200 µm × 1.52 mm TGVs and continuous 10 µm-wide traces in a single print pass. Demonstrating its capabilities, we fabricate transparent Ku-band substrate-integrated waveguide antennas on borosilicate glass: the printed vias and arc feed elements exhibit a reflection coefficient minimum of −18 dB at 14.2 GHz, a −10 dB bandwidth of 12.8–16.2 GHz, and an 8 dBi peak gain with 37° beam tilt, closely matching full-wave predictions. This physics-driven, all-in-one EHD approach provides a scalable route to high-performance, glass-integrated RF devices and transparent electronics. Full article
Show Figures

Figure 1

29 pages, 5407 KiB  
Article
Noncontact Breathing Pattern Monitoring Using a 120 GHz Dual Radar System with Motion Interference Suppression
by Zihan Yang, Yinzhe Liu, Hao Yang, Jing Shi, Anyong Hu, Jun Xu, Xiaodong Zhuge and Jungang Miao
Biosensors 2025, 15(8), 486; https://doi.org/10.3390/bios15080486 - 28 Jul 2025
Viewed by 386
Abstract
Continuous monitoring of respiratory patterns is essential for disease diagnosis and daily health care. Contact medical devices enable reliable respiratory monitoring, but can cause discomfort and are limited in some settings. Radar offers a noncontact respiration measurement method for continuous, real-time, high-precision monitoring. [...] Read more.
Continuous monitoring of respiratory patterns is essential for disease diagnosis and daily health care. Contact medical devices enable reliable respiratory monitoring, but can cause discomfort and are limited in some settings. Radar offers a noncontact respiration measurement method for continuous, real-time, high-precision monitoring. However, it is difficult for a single radar to characterize the coordination of chest and abdominal movements during measured breathing. Moreover, motion interference during prolonged measurements can seriously affect accuracy. This study proposes a dual radar system with customized narrow-beam antennas and signals to measure the chest and abdomen separately, and an adaptive dynamic time warping (DTW) algorithm is used to effectively suppress motion interference. The system is capable of reconstructing respiratory waveforms of the chest and abdomen, and robustly extracting various respiratory parameters via motion interference. Experiments on 35 healthy subjects, 2 patients with chronic obstructive pulmonary disease (COPD), and 1 patient with heart failure showed a high correlation between radar and respiratory belt signals, with correlation coefficients of 0.92 for both the chest and abdomen, a root mean square error of 0.80 bpm for the respiratory rate, and a mean absolute error of 3.4° for the thoracoabdominal phase angle. This system provides a noncontact method for prolonged respiratory monitoring, measurement of chest and abdominal asynchrony and apnea detection, showing promise for applications in respiratory disorder detection and home monitoring. Full article
(This article belongs to the Section Wearable Biosensors)
Show Figures

Figure 1

19 pages, 3810 KiB  
Article
Compact and High-Efficiency Linear Six-Element mm-Wave Antenna Array with Integrated Power Divider for 5G Wireless Communication
by Muhammad Asfar Saeed, Augustine O. Nwajana and Muneeb Ahmad
Electronics 2025, 14(15), 2933; https://doi.org/10.3390/electronics14152933 - 23 Jul 2025
Viewed by 285
Abstract
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × [...] Read more.
Millimeter-wave frequencies are crucial for meeting the high-capacity, low-latency demands of 5G communication systems, thereby driving the need for compact, high-gain antenna arrays capable of efficient beamforming. This paper presents the design, simulation, fabrication, and experimental validation of a compact, high-efficiency 1 × 6 linear series-fed microstrip patch antenna array for 5G millimeter-wave communication operating at 28 GHz. The proposed antenna is fabricated on a low-loss Rogers RO3003 substrate and incorporates an integrated symmetric two-way microstrip power divider to ensure balanced feeding and phase uniformity across elements. The antenna achieves a simulated peak gain of 11.5 dBi and a broad simulated impedance bandwidth of 30.21%, with measured results confirming strong impedance matching and a return loss better than −20 dB. The far-field radiation patterns demonstrate a narrow, highly directive beam in the E-plane, and the H-plane results reveal beam tilting behavior, validating the antenna’s capability for passive beam steering through feedline geometry and element spacing (~0.5λ). Surface current distribution analysis confirms uniform excitation and efficient radiation, further validating the design’s stability. The fabricated prototype shows excellent agreement with the simulation, with minor discrepancies attributed to fabrication tolerances. These results establish the proposed antenna as a promising candidate for applications requiring compact, high-gain, and beam-steerable solutions, such as 5G mm-wave wireless communication systems, point-to-point wireless backhaul, and automotive radar sensing. Full article
(This article belongs to the Special Issue Advances in MIMO Systems)
Show Figures

Figure 1

17 pages, 820 KiB  
Article
Optimized Hybrid Precoding for Wideband Terahertz Massive MIMO Systems with Angular Spread
by Ye Wang, Chuxin Chen, Ran Zhang and Yiqiao Mei
Electronics 2025, 14(14), 2830; https://doi.org/10.3390/electronics14142830 - 15 Jul 2025
Viewed by 258
Abstract
Terahertz (THz) communication is regarded as a promising technology for future 6G networks because of its advances in providing a bandwidth that is orders of magnitude wider than current wireless networks. However, the large bandwidth and the large number of antennas in THz [...] Read more.
Terahertz (THz) communication is regarded as a promising technology for future 6G networks because of its advances in providing a bandwidth that is orders of magnitude wider than current wireless networks. However, the large bandwidth and the large number of antennas in THz massive multiple-input multiple-output (MIMO) systems induce a pronounced beam split effect, leading to a serious array gain loss. To mitigate the beam split effect, this paper considers a delay-phase precoding (DPP) architecture in which a true-time-delay (TTD) network is introduced between radio-frequency (RF) chains and phase shifters (PSs) in the standard hybrid precoding architecture. Then, we propose a fast Riemannian conjugate gradient optimization-based alternating minimization (FRCG-AltMin) algorithm to jointly optimize the digital precoding, analog precoding, and delay matrix, aiming to maximize the spectral efficiency. Different from the existing method, which solves an approximated version of the analog precoding design problem, we adopt an FRCG method to deal with the original problem directly. Simulation results demonstrate that our proposed algorithm can improve the spectral efficiency, and achieve superior performance over the existing algorithm for wideband THz massive MIMO systems with angular spread. Full article
Show Figures

Figure 1

23 pages, 2620 KiB  
Article
An Efficient SAR Raw Signal Simulator Accounting for Large Trajectory Deviation
by Shaoqi Dai, Haiyan Zhang, Cheng Wang, Zhongwei Lin, Yi Zhang and Jinhe Ran
Sensors 2025, 25(14), 4260; https://doi.org/10.3390/s25144260 - 9 Jul 2025
Viewed by 237
Abstract
A synthetic aperture radar (SAR) raw signal simulator is useful for supporting algorithm innovation, system scheme verification, etc. Trajectory deviation is a realistic factor that should be considered in a SAR raw signal simulator and is very important for applications such as motion [...] Read more.
A synthetic aperture radar (SAR) raw signal simulator is useful for supporting algorithm innovation, system scheme verification, etc. Trajectory deviation is a realistic factor that should be considered in a SAR raw signal simulator and is very important for applications such as motion composition and image formation for a SAR with nonlinear trajectory. However, existing efficient simulators become deteriorated and even invalid when the magnitude of trajectory deviation increases. Therefore, we designed an efficient SAR raw signal simulator that accounts for large trajectory deviation. Based on spatial spectrum analysis of the SAR raw signal, it is disclosed and verified that the 2D spatial frequency spectrum of the SAR raw signal is an arc of a circle at a fixed transmitted signal frequency. Based on this finding, the proposed method calculates the SAR raw signal by curvilinear integral in the 2D frequency domain. Compared with existing methods, it can precisely simulate the SAR raw signal in the case that the deviation radius is much larger. Moreover, taking advantage of the fast Fourier transform (FFT), the computational complexity of this method is much less than the time-domain ones. Furthermore, this method is applicable for multiple SAR acquisition modes and diverse waveforms and compatible with radar antenna beam width, squint angle, radar signal bandwidth, and trajectory fluctuation. Experimental results show its outstanding performance for simulating the raw signal of SAR with large trajectory deviation. Full article
(This article belongs to the Special Issue Application of SAR and Remote Sensing Technology in Earth Observation)
Show Figures

Figure 1

21 pages, 2797 KiB  
Article
Model-Driven Meta-Learning-Aided Fast Beam Prediction in Millimeter-Wave Communications
by Wenqin Lu, Xueqin Jiang, Yuwen Cao, Tomoaki Ohtsuki and Enjian Bai
Electronics 2025, 14(13), 2734; https://doi.org/10.3390/electronics14132734 - 7 Jul 2025
Viewed by 297
Abstract
Beamforming plays a key role in improving the spectrum utilization efficiency of multi-antenna systems. However, we observe that (i) conventional beam prediction solutions suffer from high model training overhead and computational latency and thus cannot adapt quickly to changing wireless environments, and (ii) [...] Read more.
Beamforming plays a key role in improving the spectrum utilization efficiency of multi-antenna systems. However, we observe that (i) conventional beam prediction solutions suffer from high model training overhead and computational latency and thus cannot adapt quickly to changing wireless environments, and (ii) deep-learning-based beamforming may face the risk of catastrophic oblivion in dynamically changing environments, which can significantly degrade system performance. Inspired by the above challenges, we propose a continuous-learning-inspired beam prediction model for fast beamforming adaptation in dynamic downlink millimeter-wave (mmWave) communications. More specifically, we develop a meta-empirical replay (MER)-based beam prediction model. It combines empirical replay and optimization-based meta-learning. This approach optimizes the trade-offs between transmission and interference in dynamic environments, enabling effective fast beamforming adaptation. Finally, the high-performance gains brought by the proposed model in dynamic communication environments are verified through simulations. The simulation results show that our proposed model not only maintains a high-performance memory for old tasks but also adapts quickly to new tasks. Full article
Show Figures

Figure 1

12 pages, 1145 KiB  
Article
Non-Iterative Reconstruction and Selection Network-Assisted Channel Estimation for mmWave MIMO Communications
by Jing Yang, Yabo Guo, Xinying Guo and Pengpeng Wang
Sensors 2025, 25(13), 4172; https://doi.org/10.3390/s25134172 - 4 Jul 2025
Viewed by 269
Abstract
Millimeter-wave (mmWave) MIMO systems have emerged as a key enabling technology for next-generation wireless networks, addressing the growing demand for ultra-high data rates through the utilization of wide bandwidths and large-scale antenna configurations. Beyond communication capabilities, these systems offer inherent advantages for integrated [...] Read more.
Millimeter-wave (mmWave) MIMO systems have emerged as a key enabling technology for next-generation wireless networks, addressing the growing demand for ultra-high data rates through the utilization of wide bandwidths and large-scale antenna configurations. Beyond communication capabilities, these systems offer inherent advantages for integrated sensing applications, particularly in scenarios requiring precise object detection and localization. The sparse mmWave channel in the beamspace domain allows fewer radio-frequency (RF) chains by selecting dominant beams, boosting both communication efficiency and sensing resolution. However, existing channel estimation methods, such as learned approximate message passing (LAMP) networks, rely on computationally intensive iterations. This becomes particularly problematic in large-scale system deployments, where estimation inaccuracies can severely degrade sensing performance. To address these limitations, we propose a low-complexity channel estimator using a non-iterative reconstruction network (NIRNet) with a learning-based selection matrix (LSM). NIRNet employs a convolutional layer for efficient, non-iterative beamspace channel reconstruction, significantly reducing computational overhead compared to LAMP-based methods, which is vital for real-time sensing. The LSM generates a signal-aware Gaussian measurement matrix, outperforming traditional Bernoulli matrices, while a denoising network enhances accuracy under low SNR conditions, improving sensing resolution. Simulations show the NIRNet-based algorithm achieves a superior normalized mean squared error (NMSE) and an achievable sum rate (ASR) with lower complexity and reduced training overhead. Full article
Show Figures

Figure 1

26 pages, 389 KiB  
Review
Recent Advancements in Millimeter-Wave Antennas and Arrays: From Compact Wearable Designs to Beam-Steering Technologies
by Faisal Mehmood and Asif Mehmood
Electronics 2025, 14(13), 2705; https://doi.org/10.3390/electronics14132705 - 4 Jul 2025
Viewed by 1091
Abstract
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave [...] Read more.
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave antennas has intensified. This article highlights recent advancements in mmWave antenna technologies, including hybrid beamforming using phased arrays, dynamic beam-steering enabled by liquid crystal and MEMS-based structures, and high-capacity MIMO architectures. We also examine the integration of metamaterials and metasurfaces for miniaturization and gain enhancement. Applications covered include wearable antennas with low-SAR textile substrates, conformal antennas for UAV-based mmWave relays, and high-resolution radar arrays for autonomous vehicles. The study further analyzes innovative fabrication methods such as inkjet and aerosol jet printing, micromachining, and laser direct structuring, along with advanced materials like Kapton, PDMS, and graphene. Numerical modeling techniques such as full-wave EM simulation and machine learning-based optimization are discussed alongside experimental validation approaches. Beyond communications, we assess mmWave systems for biomedical imaging, security screening, and industrial sensing. Key challenges addressed include efficiency degradation at high frequencies, interference mitigation in dense environments, and system-level integration. Finally, future directions, including AI-driven design automation, intelligent reconfigurable surfaces, and integration with quantum and terahertz technologies, are outlined. This comprehensive synthesis aims to serve as a valuable reference for advancing next-generation mmWave antenna systems. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

20 pages, 1633 KiB  
Article
A Digital Simulation Model of Broadband Phased Array RF System and Its Application
by Jia Ding, Huaizong Shao, Jianxing Lv and Fake Ding
Sensors 2025, 25(13), 4133; https://doi.org/10.3390/s25134133 - 2 Jul 2025
Viewed by 312
Abstract
The design and application of broadband phased array RF links is a complex and highly precise endeavor. To achieve optimal performance, it is essential to compare and validate multiple schemes during the system design phase. Utilizing simulation models to simulate system structures and [...] Read more.
The design and application of broadband phased array RF links is a complex and highly precise endeavor. To achieve optimal performance, it is essential to compare and validate multiple schemes during the system design phase. Utilizing simulation models to simulate system structures and validate parameters can effectively reduce research and development time and costs. This article takes the broadband phased array RF system (RFS04) currently being developed by Nanhu Laboratory as a reference and constructs a behavioral-level signal simulation model. Through this model, the antenna pattern of RFS04 was generated, and the relationship between beam pointing accuracy and delay quantization bit number was analyzed. The 3 dB beam coverage range of the 18 GHz antenna array was calculated, and the synthesis scheme of multi-phased arrays was explored. Additionally, the correspondence between the angle measurement accuracy and signal-to-noise ratio of the RFS04 system was analyzed. This article also measured the delay module parameters of the RF system and developed a correction strategy for the delay control scheme. Through simulation calculations and laboratory testing, it has been proven that this strategy can effectively improve delay accuracy. After applying the modified delay control scheme to the RFS04 simulation model, the beam pointing accuracy during phased array antenna scanning was significantly enhanced. The model research and integrated simulation software construction of the broadband phased array RF system provide an efficient and accurate simulation tool for system design and optimization. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

27 pages, 9194 KiB  
Article
Experimental Test of Continuous Wave Frequency Diverse Array Doppler Radar
by Nicholas R. Munson, Bill Correll, Ram M. Narayanan and Travis D. Bufler
Appl. Sci. 2025, 15(13), 7337; https://doi.org/10.3390/app15137337 - 30 Jun 2025
Viewed by 297
Abstract
The frequency diverse array (FDA) is an antenna array architecture capable of beamforming in both range and angle. It improves upon the traditional phased array (PA), which can only achieve beamforming in angle. The FDA is configured to simultaneously scan in both range [...] Read more.
The frequency diverse array (FDA) is an antenna array architecture capable of beamforming in both range and angle. It improves upon the traditional phased array (PA), which can only achieve beamforming in angle. The FDA is configured to simultaneously scan in both range and angle using small frequency offsets across radiating elements, allowing beam scanning to occur from low-complexity RF hardware configurations. This work documents experimental data collections from four system evolutions of a prototype linear continuous wave (CW) FDA radar system, with emphasis on validating the system behavior at the signal model level. Data collected from these testing evolutions showcase the system as a potential low-complexity perimeter surveillance system with an auto-scanning mainbeam feature. Full article
(This article belongs to the Special Issue Advanced Antenna Array Technologies and Applications)
Show Figures

Figure 1

16 pages, 34384 KiB  
Article
A Low-Profile Dual-Polarized High-Gain Low Cross-Polarization Phased Array for Ku-Band Satellite Communications
by Yuhan Huang, Jie Zhang, Xiuping Li, Zihang Qi, Fan Lu, Hua Jiang, Xin Xue, Hua Zhu and Xiaobin Guo
Sensors 2025, 25(13), 3986; https://doi.org/10.3390/s25133986 - 26 Jun 2025
Viewed by 434
Abstract
A low-profile dual-polarized shared-aperture phased array antenna is proposed for Ku-band satellite communications in this paper. The stacked octagonal patches loaded with Via-rings are proposed as dual-polarized shared-aperture radiation elements, with the characteristics of wide impedance bandwidth, high gain, and weak coupling. Furthermore, [...] Read more.
A low-profile dual-polarized shared-aperture phased array antenna is proposed for Ku-band satellite communications in this paper. The stacked octagonal patches loaded with Via-rings are proposed as dual-polarized shared-aperture radiation elements, with the characteristics of wide impedance bandwidth, high gain, and weak coupling. Furthermore, innovative minimized three-port ring couplers are utilized for the differential-fed antenna array, further suppressing the cross-polarization component. Substrate integrated coaxial line (SICL) and microstrip line (MS) feed networks are employed for the excitation of transmitting band (Tx) horizontal polarization and receiving band (Rx) vertical polarization, respectively. The non-uniform subarray architecture is optimized to minimize the sidelobe levels with the reduced number of transmitter and receiver (T/R) radio frequency phase-shifting modules. As proof-of-concept examples, 16 × 24 and 32 × 24 array antennas are demonstrated and fabricated. The measured impedance bandwidths of the proposed phased array antennas are around 21.1%, while the in-band isolations are above 36.7 dB. Gains up to 29 dBi and 32.4 dBi are performed by two prototypes separately. In addition, the T/R phase-shifting modules are utilized to validate the beam-scanning characteristic, which is of value for dynamic satellite communications. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

15 pages, 4432 KiB  
Article
Millimeter-Wave Miniaturized Substrate-Integrated Waveguide Multibeam Antenna Based on Multi-Layer E-Plane Butler Matrix
by Qing-Yuan Wu, Ling-Hui Wu, Cheng-Qin Ben and Ji-Wei Lian
Electronics 2025, 14(13), 2553; https://doi.org/10.3390/electronics14132553 - 24 Jun 2025
Viewed by 309
Abstract
A millimeter-wave multi-layer and miniaturized multibeam antenna fed by an E-plane Butler matrix (BM) in substrate integrated waveguide (SIW) technology is proposed. For the beam-forming network (BFN), a folded E-plane 4 × 4 BM is proposed, whose basic components are stacked up along [...] Read more.
A millimeter-wave multi-layer and miniaturized multibeam antenna fed by an E-plane Butler matrix (BM) in substrate integrated waveguide (SIW) technology is proposed. For the beam-forming network (BFN), a folded E-plane 4 × 4 BM is proposed, whose basic components are stacked up along the vertical direction aiming to reduce the horizontal size by more than 75% compared with a single-layer BM. For the radiation portion, an unconventional slot antenna array arranged in a ladder type is adopted. The slot antenna elements are distributed in separate layers, making them more compatible with the presented BM and are arranged in the longitudinal direction to suppress the mutual coupling effect. Furthermore, the BM has been adjusted to accommodate the slot antenna array and obtain further miniaturization. The overall dimension of the designed multibeam antenna, taking the BFN into account, is 12 mm × 45 mm × 2 mm (1.2 λ × 4.5 λ × 0.2 λ), which is preferable for future 6G smartphone applications. The impacts of the air gap in fabrication are also taken into consideration to alleviate the error between simulated model and fabricated prototype. Full article
Show Figures

Figure 1

14 pages, 3505 KiB  
Article
Small Drone Detection Using Hybrid Beamforming 24 GHz Fully Integrated CMOS Radar
by Kangjie Jin, Seung-Soo Han, Donghyun Baek and Han Lim Lee
Drones 2025, 9(7), 453; https://doi.org/10.3390/drones9070453 - 23 Jun 2025
Viewed by 721
Abstract
This paper presents a compact 24 GHz radar with a 4-transmit (4Tx) and 4-receive (4Rx) CMOS radar IC, integrated with a 4 × 4 Tx array and four 1 × 4 receive Rx array antennas, optimized for enhancing small drone detection. By employing [...] Read more.
This paper presents a compact 24 GHz radar with a 4-transmit (4Tx) and 4-receive (4Rx) CMOS radar IC, integrated with a 4 × 4 Tx array and four 1 × 4 receive Rx array antennas, optimized for enhancing small drone detection. By employing the hybrid beamforming technique based on analog beamforming on the transmit side and independent four-channel digital reception, the proposed radar achieves high spatial resolution and robust target tracking. The proposed radar features an elevation scan range of ±45° with an azimuth fan-beam half-power beamwidth (HPBW) of 80° for a comprehensive detection field. Tests with a small drone measuring 20.3 × 15.9 × 7 cm3, positioned at various elevation angles of up to 45° and azimuth angles of up to ±60° at a distance of 4 m from the radar, verified its detection capability and highlighted the radar’s effectiveness in tracking small aerial targets. This architecture emphasizes the advantages of analog beamforming on Tx and multi-channel Rx, addressing the increasing demands for precise drone detection and monitoring in both civilian and defense domains. Full article
Show Figures

Figure 1

17 pages, 8684 KiB  
Article
Spaceborne Sparse SAR Imaging Mode Design: From Theory to Implementation
by Yufan Song, Hui Bi, Fuxuan Cai, Guoxu Li, Jingjing Zhang and Wen Hong
Sensors 2025, 25(13), 3888; https://doi.org/10.3390/s25133888 - 22 Jun 2025
Viewed by 392
Abstract
To satisfy the requirement of the modern spaceborne synthetic aperture radar (SAR) system, SAR imaging mode design makes a trade-off between resolution and swath coverage by controlling radar antenna sweeping. Existing spaceborne SAR systems can perform earth observation missions well in various modes, [...] Read more.
To satisfy the requirement of the modern spaceborne synthetic aperture radar (SAR) system, SAR imaging mode design makes a trade-off between resolution and swath coverage by controlling radar antenna sweeping. Existing spaceborne SAR systems can perform earth observation missions well in various modes, but they still face challenges in data acquisition, storage, and transmission, especially for high-resolution wide-swath imaging. In the past few years, sparse signal processing technology has been introduced into SAR to try to solve these problems. In addition, sparse SAR imaging shows huge potential to improve system performance, such as offering wider swath coverage and higher recovered image quality. In this paper, the design scheme of spaceborne sparse SAR imaging modes is systematically introduced. In the mode design, we first design the beam positions of the sparse mode based on the corresponding traditional mode. Then, the essential parameters are calculated for system performance analysis based on radar equations. Finally, a sparse SAR imaging method based on mixed-norm regularization is introduced to obtain a high-quality image of the considered scene from the data collected by the designed sparse modes. Compared with the traditional mode, the designed sparse mode only requires us to obtain a wider swath coverage by reducing the pulse repetition rate (PRF), without changing the existing on-board system hardware. At the same time, the reduction in PRF can significantly reduce the system data rate. The problem of the azimuth ambiguity signal ratio (AASR) increasing from antenna beam scanning can be effectively solved by using the mixed-norm regularization-based sparse SAR imaging method. Full article
(This article belongs to the Special Issue SAR Imaging Technologies and Applications)
Show Figures

Figure 1

Back to TopTop