Spaceborne Sparse SAR Imaging Mode Design: From Theory to Implementation
Abstract
:1. Introduction
2. Traditional SAR Imaging Mode
2.1. Observation Geometry
2.2. Signal Characteristics
3. Design and Performance Analysis of Sparse SAR Imaging Mode
3.1. Beam Position Design
3.2. System Performance Analysis of Sliding Spotlight Mode
3.3. System Performance Analysis of Scan Mode
3.4. Mixed-Norm Regularization-Based Sparse SAR Imaging
4. Experiments and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Curlander, J.C.; Mcdonough, R.N. Synthetic Aperture Radar: Systems and Signal Processing; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Henderson, F.M.; Lewis, A.J. Principle and Application of Imaging Radar; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Cumming, I.G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Norwood, MA, USA, 2004. [Google Scholar]
- Freeman, A.; Johnson, W.T.K.; Huneycutt, B.; Jordan, R.; Hensley, S.; Siqueira, P. The “Myth” of the minimum SAR antenna area constraint. IEEE Trans. Geosci. Remote Sens. 2000, 38, 320–324. [Google Scholar] [CrossRef]
- Gebert, N.; Almeida, F.; Krieger, G. Airborne demonstration of multichannel SAR imaging. IEEE Geosci. Remote Sens. Lett. 2011, 8, 963–967. [Google Scholar] [CrossRef]
- Krieger, G.; Gebert, N.; Moreira, A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing. IEEE Trans. Geosci. Remote Sens. 2008, 46, 31–46. [Google Scholar] [CrossRef]
- Krieger, G.; Gebert, N.; Moreira, A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling. IEEE Geosci. Remote Sens. Lett. 2004, 1, 260–264. [Google Scholar] [CrossRef]
- Mittermayer, J.; Kraus, T.; Dekker, P.L.; Prats-Iraola, P.; Krieger, G.; Moreira, A. Wrapped staring spotlight SAR. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5745–5764. [Google Scholar] [CrossRef]
- Carrara, W.G.; Goodman, R.S.; Majewski, R.M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms; Artech House: Norwood, MA, USA, 1995. [Google Scholar]
- Guarnieri, A.M.; Prati, C. ScanSAR focussing and interferometry. IEEE Trans. Aerosp. Electron. Syst. 1996, 34, 1029–1038. [Google Scholar]
- Guarnieri, A.M. ScanSAR interferometric monitoring using the PS technique. In Proceedings of the ERS/ENVISAT Symp, Gothenburg, Sweden, 16–20 October 2000; pp. 12–22. [Google Scholar]
- Zan, F.D.; Guarnieri, A.M. TOPS: Terrain observation by progressive scan. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2352–2360. [Google Scholar] [CrossRef]
- Meta, A.; Mittermayer, J.; Prats, P.; Scheiber, R.; Steinbrecher, U. TOPS imaging with TerraSAR-X: Mode design and performance analysis. IEEE Trans. Geosci. Remote Sens. 2010, 48, 759–769. [Google Scholar] [CrossRef]
- Meta, A.; Prats, P.; Steinbrecher, U.; Mittermayer, J.; Scheiber, R. TerraSAR-X TOPS and ScanSAR comparison. In Proceedings of the 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2–5 June 2008; pp. 1–4. [Google Scholar]
- Naftaly, U.; Nathansohn, R.L. Overview of the TECSAR satellite hardware and mosaic mode. IEEE Geosci. Remote Sens. Lett. 2008, 5, 423–426. [Google Scholar] [CrossRef]
- Sharay, Y.; Naftal, U. TECSAR: Design consideration and programme status. Proc. IEEE-Radar Sonar. Navigat. 2006, 153, 117–121. [Google Scholar] [CrossRef]
- Levy-Nathansohn, R.; Naftaly, U. Overview of the TECSAR satellite modes of operation. In Proceedings of the 2004 European Conference on Synthetic Aperture Radar, Ulm, Germany, 25–27 May 2004; pp. 27–30. [Google Scholar]
- Belcher, D.P.; Baker, C.J. High resolution processing of hybrid strip-map/spotlight mode SAR Radar, Sonar and Navigation. IEEE Proc. 1996, 143, 366–374. [Google Scholar]
- Mittermayer, J.; Lord, R.; Borner, E. Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing, Toulouse, France, 21–25 July 2003; pp. 1462–1464. [Google Scholar]
- Xu, W.; Deng, Y.; Huang, P.; Wang, R. Full-aperture SAR data focusing in the spaceborne squinted sliding-spotlight mode. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4596–4607. [Google Scholar] [CrossRef]
- Pitz, W.; Miller, D. The TerraSAR-X satellite. IEEE Trans. Geosci. Remote Sens. 2010, 48, 727–740. [Google Scholar] [CrossRef]
- Geudtner, D.; Torres, R.; Snoeij, P.; Davidson, M.; Rommen, B. Sentinel-1 system capabilities and applications. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing, Quebec City, QC, Canada, 13–18 July 2014; pp. 1457–1460. [Google Scholar]
- Sun, J.; Yu, W.; Deng, Y. The SAR payload design and performance for the GF-3 mission. Sensors 2017, 17, 2419. [Google Scholar] [CrossRef] [PubMed]
- Loffeld, O.; Hein, A.; Schneider, F. SAR focusing: Scaled inverse Fourier transformation and chirp scaling. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Seattle, WA, USA, 6–10 July 1998; pp. 630–632. [Google Scholar]
- Xu, W.; Deng, Y. An imaging approach for TOPS SAR data based on azimuth pre-processing and post-processing. J. Inf. Technol. 2011, 33, 798–804. [Google Scholar]
- Engen, G.; Larsen, Y. Efficient full aperture processing of TOPS mode data using the moving band chirp Z-transform. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3688–3693. [Google Scholar] [CrossRef]
- Moreira, A.; Mittermayer, J.; Scheiber, R. Extended chirp scaling algorithm for air and spaceborne SAR data processing in stripmap and ScanSAR imaging modes. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1123–1136. [Google Scholar] [CrossRef]
- Prats, P.; Scheiber, R.; Mittermayer, J.; Meta, A.; Moreira, A. Processing of sliding spotlight and TOPS SAR data using baseband azimuth scaling. IEEE Trans. Geosci. Remote Sens. 2010, 48, 770–780. [Google Scholar] [CrossRef]
- Nyquist, H. Certain topics in telegraph transmission theory. Trans. Amer. Inst. Elect. Eng. 1928, 47, 617–644. [Google Scholar] [CrossRef]
- Shannon, C.E. Communication in the presence of noise. Proc. Inst. Radio Eng. 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Çetin, M.; Karl, W.C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization. IEEE Trans. Image Process. 2001, 10, 623–631. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candes, E.J.; Romberg, J.K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math 2006, 59, 1207–1223. [Google Scholar] [CrossRef]
- Zhang, B.; Hong, W.; Wu, Y. Sparse microwave imaging: Principles and applications. Sci. China Inf. Sci. 2012, 55, 1722–1754. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Z.; Jiang, C.; Zhao, Y.; Hong, W.; Wu, Y. System design and first airborne experiment of sparse microwave imaging radar: Initial results. Sci. China Inf. Sci. 2015, 58, 062306. [Google Scholar] [CrossRef]
- Fang, J.; Xu, Z.; Zhang, B.; Hong, W.; Wu, Y. Fast compressed sensing SAR imaging based on approximated observation. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2014, 7, 352–363. [Google Scholar] [CrossRef]
- Bi, H.; Zhang, B.; Zhu, X.; Hong, W. Azimuth-range decouple-based L1 regularization method for wide ScanSAR imaging via extended chirp scaling. J. Appl. Remote Sens. 2017, 11, 015007. [Google Scholar] [CrossRef]
- Xu, Z.; Wei, Z.; Wu, C.; Zhang, B. Multichannel sliding spotlight SAR imaging based on sparse signal processing. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 3703–3706. [Google Scholar]
- Bi, H.; Zhang, B.; Zhu, X.; Jiang, C.; Hong, W. Extended chirp scaling-baseband azimuth scaling-based azimuth-range decouple L1 regularization for TOPS SAR imaging via CAMP. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3748–3763. [Google Scholar] [CrossRef]
- Bi, H.; Li, G.; Song, Y.; Zhang, J.; Zhu, D.; Hong, W. Design and performance analysis of sparse TOPS SAR mode. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2017, 15, 8898–8909. [Google Scholar] [CrossRef]
- Bi, H.; Lu, X.; Yin, Y.; Yang, W.; Zhu, D. Sparse SAR imaging based on periodic block sampling data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5213812. [Google Scholar] [CrossRef]
- Sprechmann, P.; Ramirez, I.; Sapiro, G.; Eldar, Y.C. C-HiLasso: A collaborative hierarchical sparse modeling framework. IEEE Trans. Signal Process. 2011, 59, 4183–4198. [Google Scholar] [CrossRef]
Sparse | Traditional | |
---|---|---|
PRF [Hz] | 1150 | 2300 |
Pulse duration [ms] | 0.02 | 0.02 |
Incident angle (near) [deg] | 32.32 | 36.87 |
Incident angle (far) [deg] | 38.15 | 39.94 |
Middle look angle [deg] | 35.24 | 38.41 |
Azimuth resolution [m] | 0.5 | 0.5 |
Azimuth beamwidth [deg] | 0.22 | 0.22 |
Platform velocity [m/s] | 7600 | 7600 |
Maximum steering angle [deg] | ±3.5 | ±3.5 |
Azimuth swath width [km] | 45 | 45 |
Range swath width [km] | 90.16 | 45.03 |
SS1 | SS2 | SS3 | |
---|---|---|---|
Sparse Scan imaging mode | |||
PRF [Hz] | 1031 | 1170 | 950 |
Incident angle (near) [deg] | 28.63 | 33.58 | 38.10 |
Incident angle (far) [deg] | 33.65 | 38.19 | 42.31 |
Middle look angle [deg] | 27.33 | 31.34 | 34.93 |
Platform velocity [m/s] | 7465 | 7465 | 7465 |
Range resolution [m] | 8 | 8 | 8 |
Azimuth resolution [m] | 15 | 15 | 15 |
Subswath width [km] | 80.05 | 80.15 | 80.14 |
Total swath width [km] | ∼240 | ||
Traditional Scan imaging mode | |||
PRF [Hz] | 1375 | 1460 | 1257 |
Incident angle (near) [deg] | 31.63 | 35.14 | 38.44 |
Incident angle (far) [deg] | 35.26 | 38.53 | 40.21 |
Platform velocity [m/s] | 7465 | 7465 | 7465 |
Range resolution [m] | 8 | 8 | 8 |
Azimuth resolution [m] | 15 | 15 | 15 |
Subswath width [km] | 60.02 | 60.04 | 60.08 |
Total swath width [km] | ∼180 |
Sliding Spotlight | TAR | TBR of T2 | ||
---|---|---|---|---|
T1 | T3 | Traditional | Sparse | |
MF | 5.53 | 2.35 | 10.22 | 10.22 |
-norm | 17.97 | 9.77 | 22.69 | 26.85 |
-norm | 23.67 | 12.69 | 41.88 | 46.42 |
Scan | TAR | TBR of T5 | ||
T4 | T6 | Traditional | Sparse | |
MF | 4.94 | 5.35 | 7.45 | 6.94 |
-norm | 10.88 | 16.90 | 20.57 | 23.07 |
-norm | 20.88 | 24.83 | 30.51 | 34.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Bi, H.; Cai, F.; Li, G.; Zhang, J.; Hong, W. Spaceborne Sparse SAR Imaging Mode Design: From Theory to Implementation. Sensors 2025, 25, 3888. https://doi.org/10.3390/s25133888
Song Y, Bi H, Cai F, Li G, Zhang J, Hong W. Spaceborne Sparse SAR Imaging Mode Design: From Theory to Implementation. Sensors. 2025; 25(13):3888. https://doi.org/10.3390/s25133888
Chicago/Turabian StyleSong, Yufan, Hui Bi, Fuxuan Cai, Guoxu Li, Jingjing Zhang, and Wen Hong. 2025. "Spaceborne Sparse SAR Imaging Mode Design: From Theory to Implementation" Sensors 25, no. 13: 3888. https://doi.org/10.3390/s25133888
APA StyleSong, Y., Bi, H., Cai, F., Li, G., Zhang, J., & Hong, W. (2025). Spaceborne Sparse SAR Imaging Mode Design: From Theory to Implementation. Sensors, 25(13), 3888. https://doi.org/10.3390/s25133888