Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (306)

Search Parameters:
Keywords = anodic current treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3117 KB  
Article
Production of Organic Acids from Cashew Nut Shell Liquid (CNSL) via Electrochemical Synthesis
by Jorge A. Ducuara, Alvaro A. Arrieta and Oriana Palma Calabokis
Int. J. Mol. Sci. 2025, 26(22), 10821; https://doi.org/10.3390/ijms262210821 - 7 Nov 2025
Viewed by 217
Abstract
Environmental problems arising from conventional production models have posed a significant challenge in the search for renewable sources as raw materials for the production of everyday chemical compounds through more sustainable alternatives. The objective of the present work was the electrochemical synthesis of [...] Read more.
Environmental problems arising from conventional production models have posed a significant challenge in the search for renewable sources as raw materials for the production of everyday chemical compounds through more sustainable alternatives. The objective of the present work was the electrochemical synthesis of organic acids from the liquid of the natural and technical cashew nut shell (CNSLn and CNSLt), employing chronopotentiometry using a potentiostat and a graphite working electrode. Two concentrations (0.01–0.1% v/v) of CNSLn and CNSLt, two concentrations of NaOH as supporting electrolyte (0.125–2 M), and two current densities (40–60 mA/cm2) were tested in the experiments. Organic acids were detected and quantified by HPLC. To characterize the redox processes occurring in the constituents of CNSL, spectroelectrochemical analysis (FTIR–cyclic voltammetry), FTIR, and chronoamperometry were performed. The maximum concentrations obtained in the treatments were: acetic acid (828.86 mg/L), lactic acid (531.78 mg/L), and formic acid (305.4 mg/L), while other acids present in lower concentrations included oxalic, propionic, citric, and malonic acids. Voltammetry characterizations showed three irreversible oxidation processes in the anodic wave during the first cycle, indicating that the first process involved the formation of the phenoxy radical, the second process the formation of hydroquinones and benzoquinones, and the third process the cleavage of the aromatic ring and the aliphatic chain to form the organic acids. Furthermore, another oxidation pathway was observed, consisting of a fourth process in the second voltammetry cycle, corresponding to the nucleation of the phenoxy radical, evidenced as the formation of the C–O–C bond visible at 1050 cm−1 in the infrared spectrum. From this route, a polymer was formed on the electrode surface, which limited the yield of organic acid synthesis. Finally, this research provides new insights in the field of electrochemistry, specifically in the synthesis of organic acids from CNSL as a renewable feedstock, with the novelty being the production of oxalic, propionic, citric, and malonic acids. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

19 pages, 1530 KB  
Article
Bioremediation of High-Concentration Heavy Metal-Contaminated Soil by Combined Use of Acidithiobacillus ferrooxidans and Fe3O4–GO Anodes
by Alifeila Yilahamu, Xuewen Wu, Xiaonuan Wang, Shengjuan Peng and Weihua Gu
Toxics 2025, 13(11), 959; https://doi.org/10.3390/toxics13110959 - 6 Nov 2025
Viewed by 439
Abstract
Soils heavily contaminated with potentially toxic elements (PTEs) pose substantial risks to the environment and human health. However, conventional remediation methods are often plagued by high energy consumption and the potential for secondary pollution. To address this challenge, this study developed a synergistic [...] Read more.
Soils heavily contaminated with potentially toxic elements (PTEs) pose substantial risks to the environment and human health. However, conventional remediation methods are often plagued by high energy consumption and the potential for secondary pollution. To address this challenge, this study developed a synergistic system combining acidophilic bacteria with a Fe-modified anode, aiming to enhance the remediation of PTEs in such contaminated soils. This system integrates the following three core components: the catalytic function of Fe3O4–graphene-oxide (Fe3O4–GO) nanocomposites, the acclimation of microbial communities, and the optimization of process parameters—specifically, applied electric current, pH, and oxidation–reduction potential (ORP). Experimental treatments were designed to assess the individual and combined effects of three key factors: bacterial inoculation, the Fe-modified anode, and the addition of Fe3O4–GO. The results revealed that the integrated synergistic system effectively reduced the soil pH from 2.9 to 2.0 and maintained the ORP at approximately 600 mV. For PTE removal, the system achieved efficiencies of 89% for Zn, 85.89% for Cu, 66.3% for Pb, 77.89% for Cd, and 40.63% for Cr, respectively. In contrast, control groups lacking bacteria, applied current, or Fe3O4–GO exhibited significantly lower metal removal efficiencies. Notably, the bacteria-free treatment led to a more than 50% reduction in Cr removal. Additionally, the group with an unmodified anode only achieved 1/3 to 1/2 of the removal efficiencies observed in the full synergistic system; this discrepancy is likely attributed to reduced electron transfer efficiency and compromised microbial adhesion on the anode surface. These findings demonstrate that the coupling of electrochemical enhancement, acidophilic microbial activity, and Fe3O4–GO catalysis constitutes an effective and energy-efficient approach for remediating soils contaminated with high concentrations of PTEs while simultaneously minimizing the risk of secondary pollution. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

14 pages, 4084 KB  
Article
Effect of Cold-Sprayed Zinc Coating and Heat Treatment on the Microstructure and Corrosion Behavior of 30MnB5 Hot-Stamped Steel
by Hyunbin Nam, Minseok Seo and Cheolho Park
Materials 2025, 18(21), 5032; https://doi.org/10.3390/ma18215032 - 5 Nov 2025
Viewed by 259
Abstract
This study investigated the microstructure and corrosion behavior of 30MnB5 hot-stamped steel after applying a zinc coating using the cold-spraying method followed by heat treatment (HT). Al-10 wt%Si coating is essential for improving the high-temperature corrosion resistance of 30MnB5 steel during the hot-stamping [...] Read more.
This study investigated the microstructure and corrosion behavior of 30MnB5 hot-stamped steel after applying a zinc coating using the cold-spraying method followed by heat treatment (HT). Al-10 wt%Si coating is essential for improving the high-temperature corrosion resistance of 30MnB5 steel during the hot-stamping process. Before HT, the coating layer primarily consisted of Al, whereas after HT, Fe–Al-based intermetallic compounds were formed throughout the layer. The Zn in the coating layer applied using the cold-spraying method was not uniformly distributed before HT. However, during HT, the low-melting-point Zn melted and re-solidified, allowing it to combine with Fe diffusing from the substrate. Consequently, Zn–Al–Fe-based intermetallic compounds were formed on the surface of the coating layer. In the Zn-coated specimens, the current density near the corrosion potential tends to be lower than that of the Al–Si-coated specimens because Zn corrodes preferentially owing to its sacrificial anode effect, thereby protecting the underlying Al–Si-coated layer and steel. Full article
Show Figures

Figure 1

15 pages, 2807 KB  
Article
One-Step Electrospun LTO Anode for Flexible Li-Ion Batteries
by Edi Edna Mados, Roni Amit, Noy Kluska, Diana Golodnitsky and Amit Sitt
Batteries 2025, 11(11), 405; https://doi.org/10.3390/batteries11110405 - 4 Nov 2025
Viewed by 345
Abstract
Fiber-based and fabric batteries signify a groundbreaking development in energy storage, allowing for the straightforward incorporation of power sources into wearable fabrics, intelligent apparel, and adaptable electronics. In this study, we introduce a novel strategy for one-step fabrication of a flexible lithium titanate [...] Read more.
Fiber-based and fabric batteries signify a groundbreaking development in energy storage, allowing for the straightforward incorporation of power sources into wearable fabrics, intelligent apparel, and adaptable electronics. In this study, we introduce a novel strategy for one-step fabrication of a flexible lithium titanate oxide (Li4Ti5O12, LTO) anode directly on a copper current collector via electrospinning, eliminating the need for high-temperature post-processing. Based on our previous work with electrospun nanofiber cathodes and carbon-based current collector, we prepared the LTO electrode using polyethylene oxide (PEO) as a binder and carbon additives to enhance mechanical integrity and conductivity. LTO fiber mats detached from the current collector were found to endure multiple instances of bending, twisting, and folding without any structural damage. LTO/Li cells incorporating electrospun fiber LTO electrodes with 72 wt% active material loading deliver a high capacity of 170 mAh g−1 at 0.05 C. In addition, they demonstrate excellent cycling stability with a capacity loss of only 0.01% per cycle over 200 cycles and maintain a capacity of 160 mAh g−1 at 0.1 C. The scalability of the heat-treatment-free method for fabricating flexible LTO anodes, together with the improved mechanical durability and electrochemical performance, offers a promising route toward the development of next-generation flexible and wearable energy storage devices. Full article
Show Figures

Figure 1

18 pages, 1840 KB  
Article
Kinetic Insights and Process Selection for Electrochemical Remediation of Industrial Dye Effluents Using Mixed Electrode Systems
by Carmen Barcenas-Grangeno, Martín O. A. Pacheco-Álvarez, Enric Brillas, Miguel A. Sandoval and Juan M. Peralta-Hernández
Processes 2025, 13(11), 3439; https://doi.org/10.3390/pr13113439 - 27 Oct 2025
Viewed by 260
Abstract
The discharge of dye-laden effluents remains an environmental challenge since conventional treatments remove color but not the organic load. This study systematically compared anodic oxidation (AO), electro-Fenton (EF), and photoelectro-Fenton (PEF) processes for three representative industrial dyes, such as Coriasol Red CB, Brown [...] Read more.
The discharge of dye-laden effluents remains an environmental challenge since conventional treatments remove color but not the organic load. This study systematically compared anodic oxidation (AO), electro-Fenton (EF), and photoelectro-Fenton (PEF) processes for three representative industrial dyes, such as Coriasol Red CB, Brown RBH, and Blue VT, and their ternary mixture, using boron-doped diamond (BDD) and Ti/IrO2–SnO2–Sb2O5 (MMO) anodes. Experiments were conducted in a batch reactor with 50 mM Na2SO4 at pH = 3.0 and current densities of 20–60 mA cm−2. Kinetic analysis showed that AO-BDD was most effective at low pollutant loads, EF-BDD became superior at medium loads due to efficient H2O2 electrogeneration, and PEF-MMO dominated at higher loads by fast UVA photolysis of surface Fe(OH)2+ complexes. In a ternary mixture of 120 mg L−1 of dyes, EF-BDD and PEF-MMO achieved >98% decolorization in 22–23 min with pseudo-first-order rate constants of 0.111–0.136 min−1, whereas AO processes remained slower. COD assays revealed partial mineralization of 60–80%, with EF-BDD providing the most consistent reduction and PEF-MMO minimizing treatment time. These findings confirm that decolorization overestimates efficiency, and electrode selection must be tailored to dye structure and effluent composition. Process selection rules allow us to conclude that EF-BDD is the best robust dark option, and PEF-MMO, when UVA is available, offers practical guidelines for cost-effective electrochemical treatment of textile wastewater. Full article
(This article belongs to the Special Issue Modeling and Optimization for Multi-scale Integration)
Show Figures

Figure 1

17 pages, 994 KB  
Article
Electro-Oxidation of Biofloc Aquaculture Effluent Through a DoE-Driven Optimization in a Batch Reactor
by Ever Peralta-Reyes, Gina Gómez-Gómez, Alfredo Gallardo-Collí, Juan F. Meraz, Carlos Iván Pérez-Rostro, Patricio J. Espinoza-Montero and Alejandro Regalado-Méndez
Processes 2025, 13(11), 3377; https://doi.org/10.3390/pr13113377 - 22 Oct 2025
Viewed by 570
Abstract
In this study, wastewater generated from tilapia biofloc aquaculture was treated using the electro-oxidation (EO) process in a batch reactor. Optimal reaction conditions were determined through a robust screening design based on a Taguchi L9 (34) orthogonal array. The evaluated [...] Read more.
In this study, wastewater generated from tilapia biofloc aquaculture was treated using the electro-oxidation (EO) process in a batch reactor. Optimal reaction conditions were determined through a robust screening design based on a Taguchi L9 (34) orthogonal array. The evaluated parameters included three anode–cathode configurations—boron-doped diamond with titanium (BDD–Ti), BDD with copper (BDD–Cu), and BDD with BDD—as well as current intensity (1–2 A), initial pH (5.5–11.5), and treatment time (2.5–3.5 h). The EO process exhibited high removal efficiencies for key water quality indicators. Under optimal conditions (BDD–Ti, i = 2 A, t = 3.5 h, pH0 = 11.5), removal efficiencies of 96.57% for chemical oxygen demand (COD), 99.06% for total ammoniacal nitrogen (TAN), 67.68% for turbidity, and 81.09% for total organic carbon (TOC) were obtained. Phytotoxicity and bioassay tests further confirmed the detoxification potential of the treated effluent. Overall, the proposed green treatment approach demonstrates that EO is a viable and sustainable strategy for improving effluent quality and advancing water management in intensive aquaculture systems. Full article
Show Figures

Graphical abstract

15 pages, 12388 KB  
Article
Evaluating a New Prototype of Plant Microbial Fuel Cell: Is the Electrical Performance Affected by Carbon Pellet Layering and Urea Treatment?
by Ilaria Brugellis, Marco Grassi, Piero Malcovati and Silvia Assini
Energies 2025, 18(19), 5320; https://doi.org/10.3390/en18195320 - 9 Oct 2025
Viewed by 867
Abstract
Plant Microbial Fuel Cells (PMFCs) represent a promising technology that uses electroactive bacteria to convert the chemical energy in organic matter into electrical energy. The addition of carbon pellet on electrodes may increase the specific surface area for colonization via bacteria. Use of [...] Read more.
Plant Microbial Fuel Cells (PMFCs) represent a promising technology that uses electroactive bacteria to convert the chemical energy in organic matter into electrical energy. The addition of carbon pellet on electrodes may increase the specific surface area for colonization via bacteria. Use of nutrients such as urea could enhance plant growth. Our study aims to address the following questions: (1) Does carbon pellet layering affect the electrical performance of PMFCs? (2) Does urea treatment of the plants used to feed the PMFCs affect the electrical performance? A new prototype of PMFC has been tested: the plant pot is on the top, drainage water percolates to the tub below, containing the Microbial Fuel Cells (MFCs). To evaluate the best layering setup, two groups of MFCs were constructed: a “Double layer” group (with carbon pellet both on the cathode and on the anode), and a “Single layer” group (with graphite only on the cathode). All MFCs were plant-fed by Spathiphyllum lanceifolium L leachate. After one year, each of the previous two sets has been divided into two subsets: one wetted with percolate from plants fertilized with urea, and the other with percolate from unfertilized plants. Open circuit voltage (mV), short circuit peak current, and short circuit current after 5 s (mA) produced values that were measured on a weekly basis. PMFCs characterized by a “Single layer” group performed better than the “Double layer” group most times, in terms of higher and steadier values for voltage and calculated power. Undesirable results regarding urea treatment suggest the use of less concentrated urea solution. The treatment may provide consistency but appears to limit voltage and peak values, particularly in the “Double layer” configuration. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

11 pages, 3893 KB  
Article
Investigation of Aqueous Delamination Processes for Lithium-Ion Battery Anodes
by Eric Trebeck, Anting Grams, Jan Talkenberger, Sricharana Prakash, Julius Eik Grimmenstein, Thomas Krampitz, Holger Lieberwirth and Adrian Valenas
Recycling 2025, 10(5), 189; https://doi.org/10.3390/recycling10050189 - 7 Oct 2025
Viewed by 651
Abstract
Recycling of lithium-ion batteries (LIBs) requires efficient separation of active material from current collectors to enable high-quality recovery of both the coating and the metal foil. In this study, a water-based delamination process for anode foils was systematically investigated under variations in temperature, [...] Read more.
Recycling of lithium-ion batteries (LIBs) requires efficient separation of active material from current collectors to enable high-quality recovery of both the coating and the metal foil. In this study, a water-based delamination process for anode foils was systematically investigated under variations in temperature, particle size, ultrasonic power, and prior mechanical stressing of the particles. Mechanically cut and pre-folded foil pieces were treated in a batch setup at different temperatures (room temperature to 100 °C) and ultrasonic power levels (50 and 100%). Results show that higher temperatures strongly promote delamination, with 100% removal of the active layer achieved on the smooth foil side at 80 °C without ultrasonic treatment. Ultrasonic treatment at moderate power (50%) yielded greater delamination than at full power (100%), likely due to more effective cavitation dynamics at moderate intensity. Mechanical pre-stressing by folding significantly reduced delamination, with three folds effectively preventing separation. In comparison, mechanically comminuted particles from a granulator achieved similar delamination to three-folded particles after 5 min treatment, and higher delamination after 30 min. These findings highlight the importance of process parameters in achieving efficient aqueous delamination, providing insights for scaling low-energy recycling processes for LIB production scrap. Full article
(This article belongs to the Special Issue Lithium-Ion and Next-Generation Batteries Recycling)
Show Figures

Figure 1

16 pages, 488 KB  
Study Protocol
Antidepressant and Related Neurobiological and Neurophysiological Effects of Add-On Transcranial Direct Current Stimulation in Major Depressive Disorder with Residual Symptoms: A Randomized, Double-Blind Clinical Trial Protocol
by Carmen Concerto, Fabrizio Bella, Cecilia Chiarenza, Alessandro Rodolico, Antonio Di Francesco, Alessia Ciancio, Stefania Lanzafame, Riccardo Spigarelli, Ludovico Mineo, Antonino Petralia, Raffaele Ferri, Massimo Libra, Rita Bella, Manuela Pennisi, Giuseppe Lanza and Maria Salvina Signorelli
Methods Protoc. 2025, 8(5), 117; https://doi.org/10.3390/mps8050117 - 2 Oct 2025
Viewed by 953
Abstract
Major depressive disorder (MDD) is a prevalent and disabling condition. Transcranial direct current stimulation (tDCS) may improve symptoms by modulating neuroplastic and inflammatory mechanisms. This randomized, double-blind, placebo-controlled trial will recruit adult outpatients with MDD showing residual symptoms despite at least four weeks [...] Read more.
Major depressive disorder (MDD) is a prevalent and disabling condition. Transcranial direct current stimulation (tDCS) may improve symptoms by modulating neuroplastic and inflammatory mechanisms. This randomized, double-blind, placebo-controlled trial will recruit adult outpatients with MDD showing residual symptoms despite at least four weeks of stable SSRI treatment. Participants will be randomized to active or sham add-on tDCS while continuing their antidepressant regimen. The intervention will consist of 15 sessions over 3 weeks, targeting the left dorsolateral prefrontal cortex (anode F3, cathode F4) at 2 mA for 30 min per session. The primary outcome is the reduction of depressive symptoms measured by the Hamilton Depression Rating Scale-17 (HDRS), with remission defined as HDRS-17 ≤ 7. Secondary outcomes include cognitive performance (attention, executive functioning, memory), serum biomarkers (BDNF, VEGF, NGF, NRG1, angiogenin, IGF1, IL-6, TNF-α), cortical excitability assessed by transcranial magnetic stimulation (motor threshold, silent period, intracortical inhibition/facilitation), and cerebral hemodynamics by transcranial Doppler sonography (blood flow velocity, pulsatility, resistivity). Assessments will occur at baseline, post-treatment, and 3- and 6-month follow-ups. This trial aims to evaluate the efficacy of adjunctive tDCS in MDD with residual symptoms and its biological correlates, bridging clinical improvement with electrophysiological and neurovascular mechanisms. Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

16 pages, 4544 KB  
Article
Simplified Chemical Treatments for Improved Adhesive Bonding Durability and Corrosion Protection of High-Pressure Die-Cast Aluminum Alloy AlSi10MnMg
by Changfeng Fan, Bo Yang, Xue Wang, Xianghua Zhan, Xiaoli Yin, Jianmin Shi, Wei Wang, Yancong Liu and Klaus Dilger
Coatings 2025, 15(10), 1122; https://doi.org/10.3390/coatings15101122 - 27 Sep 2025
Viewed by 529
Abstract
The adhesive bonding of high-pressure die-cast (HPDC) aluminum alloy AlSi10MnMg is extensively applied in the aerospace and automotive sectors. Surface pretreatment of HPDC aluminum prior to bonding is crucial for enhancing bonding strength and durability, as it regulates surface roughness, and chemical properties. [...] Read more.
The adhesive bonding of high-pressure die-cast (HPDC) aluminum alloy AlSi10MnMg is extensively applied in the aerospace and automotive sectors. Surface pretreatment of HPDC aluminum prior to bonding is crucial for enhancing bonding strength and durability, as it regulates surface roughness, and chemical properties. Traditional multi-step surface treatments including chromic acid anodizing for HPDC AlSi10MnMg are hazardous, complex, and often fail to balance adhesive bonding durability and corrosion protection, limiting their industrial applicability. This study examined the impact of various chemical treatments on the adhesive bonding performance of an AlSi10MnMg aluminum alloy. The treated surfaces were bonded using a structural adhesive, and bonding performance was evaluated via wedge tests under pristine conditions and after accelerated aging. A scanning electron microscope (SEM) was used to study the surface morphology, chemical composition, and corrosion characteristics of the treated surfaces. Energy dispersive spectroscopy (EDS), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization measurements were employed. Excellent adhesion characteristics, dominated by the cohesive failure of the adhesive, were observed in H2O2-treated samples. The H2O2-treated samples exhibited the shortest initial crack length, indicating a superior baseline bonding quality, and showed minimal crack propagation (only slight extension) after aging under extreme environmental conditions (70 °C and 100% relative humidity for 4 weeks). Electrochemical measurements revealed that the SG200-treated sample achieved the lowest corrosion current density (0.25 ± 0.03 μA/cm2) with an excellent corrosion resistance, while sol–gel-treated samples generally suffered from a poor adhesion, with interfacial failure. This study proposes a simplified, single-step chemical treatment using an H2O2 solution that effectively achieves both a strong adhesive bonding and an excellent corrosion resistance, without the drawbacks of conventional methods. It offers a viable alternative to conventional multi-step hazardous surface treatments. Full article
Show Figures

Figure 1

13 pages, 5067 KB  
Article
Investigation of Corrosion Resistance in Powder-Coated 6060 Aluminum Alloy: Effects of Powder Coating and Pre-Anodizing Followed by Powder Coating
by Aikaterini Baxevani, Eleni Lamprou, Azarias Mavropoulos, Fani Stergioudi, Nikolaos Michailidis and Ioannis Tsoulfaidis
Metals 2025, 15(10), 1062; https://doi.org/10.3390/met15101062 - 23 Sep 2025
Viewed by 654
Abstract
This study investigates the corrosion resistance of EN AW 6060 aluminum alloy powder-coated samples, with and without pre-anodizing treatment. The samples were exposed to a 3.5% NaCl solution, which is known for its strong corrosive effects, and their corrosion behavior was evaluated using [...] Read more.
This study investigates the corrosion resistance of EN AW 6060 aluminum alloy powder-coated samples, with and without pre-anodizing treatment. The samples were exposed to a 3.5% NaCl solution, which is known for its strong corrosive effects, and their corrosion behavior was evaluated using two electrochemical techniques: Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS). The aim was to assess the effectiveness of powder coatings in enhancing corrosion resistance and to examine the role of surface preparation and prior treatments. Polarization tests provided corrosion current densities and corrosion rates, while EIS data were analyzed using equivalent electrical circuits to evaluate the integrity of the protective layers. The results show that powder coatings significantly improves corrosion resistance compared to uncoated aluminum and the combination of pre-anodizing followed by painting offers the highest protection. These findings confirm the improved performance achieved through multilayer surface treatments and support the application of powder coatings acting as a durable barrier against environmental factors. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

15 pages, 2516 KB  
Article
Enhanced Amitriptyline Degradation by Electrochemical Activation of Peroxydisulfate: Mechanisms of Interfacial Catalysis and Mass Transfer
by Teer Wen, Fangying Hu, Yao Yue, Chuqiao Li, Yunfei He and Jiafeng Ding
Molecules 2025, 30(18), 3835; https://doi.org/10.3390/molecules30183835 - 22 Sep 2025
Viewed by 457
Abstract
Amitriptyline (AMT), a widely prescribed antidepressant, and its metabolites have emerged as significant environmental contaminants, posing substantial risks to aquatic organisms and human health. Systematic and in-depth investigations into advanced anode materials, coupled with a profound elucidation of their electrochemical mechanisms, are imperative [...] Read more.
Amitriptyline (AMT), a widely prescribed antidepressant, and its metabolites have emerged as significant environmental contaminants, posing substantial risks to aquatic organisms and human health. Systematic and in-depth investigations into advanced anode materials, coupled with a profound elucidation of their electrochemical mechanisms, are imperative for the development of efficacious technologies for AMT removal. In this study, a series of amorphous carbon-encapsulated zinc oxide (C@ZnO) modified anodes were systematically synthesized and incorporated into a persulfate-based electrochemical system (CZ-PS) to comprehensively elucidate the catalytic mechanisms and mass transfer efficiencies governing the degradation of AMT via electroperoxidation. Notably, the CZ-PS system achieved a 97.5% degradation for 5.0 mg/L AMT within 120 min under optimized conditions (200 C@ZnO electrode, pH 7.0, current density 20 mA/cm2, PS concentration 0.5 mM), significantly outperforming the single PS system (37.8%) or the pure electrocatalytic system. Quenching experiments and EPR analysis confirmed hydroxyl radicals (•OH) and sulfate radicals (SO4) as the dominant reactive species. Both acidic and neutral pH conditions were demonstrated to favorably enhance the electrocatalytic degradation efficiency by improving adsorption performance and inhibiting •OH decomposition. The system retained >90% degradation efficiency after 5 electrode cycles. Three degradation pathways and 13 intermediates were identified via UPLC–MS/MS analysis, including side-chain demethylation and oxidative ring-opening of the seven-membered ring to form aldehyde/carboxylic acid compounds, ultimately mineralizing into CO2 and H2O. It demonstrates strong engineering potential and provides a green, high-efficiency strategy for antibiotic wastewater treatment. Full article
(This article belongs to the Special Issue Advanced Removal of Emerging Pollutants and Its Mechanism)
Show Figures

Figure 1

18 pages, 2624 KB  
Article
Comparative Assessment of Different Electrode Combinations for Phosphate Removal from Onsite Wastewater via Electrocoagulation
by Arif Reza, Xiumei Jian, Fanjian Zeng and Xinwei Mao
Water 2025, 17(18), 2764; https://doi.org/10.3390/w17182764 - 18 Sep 2025
Viewed by 673
Abstract
Phosphorus (P) discharge from onsite wastewater treatment systems (OWTSs) poses a significant threat to water quality, contributing to eutrophication in nutrient-sensitive aquatic environments. In treated effluents, P predominantly exists as orthophosphate (PO43−), a highly bioavailable and reactive form that requires [...] Read more.
Phosphorus (P) discharge from onsite wastewater treatment systems (OWTSs) poses a significant threat to water quality, contributing to eutrophication in nutrient-sensitive aquatic environments. In treated effluents, P predominantly exists as orthophosphate (PO43−), a highly bioavailable and reactive form that requires targeted removal. This study evaluates the performance of electrocoagulation (EC) as a polishing step for PO43− removal from OWTS effluents using 12 anode/cathode combinations comprising aluminum (Al), iron (Fe), magnesium (Mg), and stainless steel (SS). Key operational parameters, including treatment time, mixing speed, current density, pH, and initial PO43− concentration, were systematically investigated when synthetic denitrified effluent (20 mg P/L) was treated. Based on the performance, the four most effective electrode combinations (Al/Al, Al/Mg, Fe/Al, and Mg/Mg), along with a commercial benchmark (Fe/Fe), were further tested under extended hydraulic retention times (up to 48 h) in both synthetic and real (denitrified) wastewater. To date, none of the studies have systematically evaluated all possible anode/cathode combinations involving multiple electrode materials under uniform operational conditions. The Al/Al and Mg/Mg EC systems achieved rapid and high PO43− removal efficiencies (>95%), while Mg-based systems demonstrated sustained performance over prolonged treatment durations, especially in real wastewater. Bimetallic pairs such as Al/Mg and Fe/Al exhibited synergistic effects through enhanced coagulant generation and pH stabilization. The results indicated that PO43− removal efficiency was strongly influenced by electrode material selection, hydrodynamic conditions, and wastewater compositions, underscoring the need to design EC systems based on site-specific water quality conditions in OWTSs. Full article
(This article belongs to the Special Issue Application of Electrochemical Technologies in Wastewater Treatment)
Show Figures

Figure 1

15 pages, 4479 KB  
Article
Modeling and Analysis of Corrosion of Aluminium Alloy 6060 Using Electrochemical Impedance Spectroscopy (EIS)
by Aikaterini Baxevani, Eleni Lamprou, Azarias Mavropoulos, Fani Stergioudi, Nikolaos Michailidis and Ioannis Tsoulfaidis
Alloys 2025, 4(3), 17; https://doi.org/10.3390/alloys4030017 - 29 Aug 2025
Viewed by 1204
Abstract
Aluminum is widely used in many industries like automotive, aerospace and construction because of its low weight, good mechanical strength and resistance to corrosion. This resistance comes mainly from a passive oxide layer that forms on its surface. However, when aluminum is exposed [...] Read more.
Aluminum is widely used in many industries like automotive, aerospace and construction because of its low weight, good mechanical strength and resistance to corrosion. This resistance comes mainly from a passive oxide layer that forms on its surface. However, when aluminum is exposed to harsh environments, especially those containing chloride ions in marine environments, this layer can break down and lead to localized corrosion, such as pitting. This study examined aluminum profiles at different processing stages, including homogenization and aging, anodizing and pre-anodizing followed by painting. Corrosion behavior of samples was studied using two electrochemical methods. Potentiodynamic polarization was used to measure corrosion rate and current density, while Electrochemical Impedance Spectroscopy (EIS) helped to understand the behavior of protective layers and corrosion progression. Tests were carried out in a 3.5% NaCl solution at room temperature. EIS results were analyzed using equivalent circuit models to better understand electrochemical processes. Overall, this study shows how surface treatment affects corrosion resistance and highlights advantages of EIS in studying corrosion behavior in a more reliable and repeatable way. Full article
Show Figures

Figure 1

26 pages, 5432 KB  
Article
Boron-Modified Anodization of Preferentially Oriented TiO2 Nanotubes for Photoelectrochemical Applications
by Fedor Zykov, Or Rahumi, Igor Selyanin, Andrey Vasin, Ivan Popov, Vadim Kartashov, Konstantin Borodianskiy and Yuliy Yuferov
Appl. Sci. 2025, 15(17), 9405; https://doi.org/10.3390/app15179405 - 27 Aug 2025
Viewed by 786
Abstract
This study investigates the synthesis and characterization of boron-modified nanotubular titania (NTO) arrays fabricated via a single-step anodizing process with varying concentrations of boric acid (BA). Following anodization, a reductive heat treatment was applied to facilitate the crystallization of the anatase phase in [...] Read more.
This study investigates the synthesis and characterization of boron-modified nanotubular titania (NTO) arrays fabricated via a single-step anodizing process with varying concentrations of boric acid (BA). Following anodization, a reductive heat treatment was applied to facilitate the crystallization of the anatase phase in the boron-modified NTO. The effect of the BA concentration on the structural, morphological, and photoelectrochemical (PEC) properties of the NTOs was systematically explored through scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), luminescence, and UV-Vis spectrometry. The introduction of boron during anodization facilitated the formation of sub-bandgap states, thereby enhancing the light absorption and electron mobility. This study revealed the optimal BA concentration that yielded a 3.3-fold enhancement of the PEC performance, attributed to a reduction in the bandgap energy. Notably, the highest incident photon-to-current conversion efficiency (IPCE) was observed for NTO samples anodized at a 0.10 M BA concentration. These findings underscore the promise of boron-modified NTOs for advanced photocatalytic applications, particularly in solar-driven water-splitting processes. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

Back to TopTop