Enhanced Amitriptyline Degradation by Electrochemical Activation of Peroxydisulfate: Mechanisms of Interfacial Catalysis and Mass Transfer
Abstract
1. Introduction
2. Results and Discussion
2.1. Structural Characteristics of C@ZnO Materials
2.2. Surface Structure of C@ZnO Materials
2.3. Degradation Performance and Optimization
2.4. Influence of Reaction Conditions
2.5. Degradation Pathway and Reaction Mechanism
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Synthesis of C@ZnO Catalysts
3.3. Electrode Preparation and Screening
3.4. Screening Experiments for Modified Electrodes
3.5. Analytical Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, R.; Yang, S.; An, Y.; An, Y.W.; Wang, Y.Q.; Lei, Y.; Song, L.Y. Antibiotics and antibiotic resistance genes in landfills: A review. Sci. Total Environ. 2022, 806, 150647. [Google Scholar] [CrossRef] [PubMed]
- Miao, S.; Zhang, Y.Y.; Li, B.C.; Yuan, X.; Men, C.; Zuo, J.E. Antibiotic intermediates and antibiotics synergistically promote the development of multiple antibiotic resistance in antibiotic production wastewater. J. Hazard. Mater. 2024, 479, 135601. [Google Scholar] [CrossRef]
- Yuan, X.; Lv, Z.Q.; Zhang, Z.Y.; Han, Y.; Liu, Z.Q.; Zhang, H.J. A review of antibiotics, antibiotic resistant bacteria, and resistance genes in aquaculture: Occurrence, contamination, and transmission. Toxics 2023, 11, 420. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Jiang, G.Y.; Wang, C.; Ma, J.B.; Chen, H. Effects of antibiotics consumption on the behavior of airborne antibiotic resistance genes in chicken farms. J. Hazard. Mater. 2022, 437, 129288. [Google Scholar] [CrossRef]
- Čižman, M.; Kastrin, T.; Beović, B.; Mahnic, A.; Bajec, T. The impact of national activities on antibiotic consumption in hospitals and different departments over a 14-Year period. Antibiotics 2024, 13, 498. [Google Scholar] [CrossRef]
- Sun, S.J.; Wang, Q.; Wang, N.; Yang, S.J.; Qi, H. High-risk antibiotics positively correlated with antibiotic resistance genes in five typical urban wastewater. J. Environ. Chem. Eng. 2023, 342, 118296. [Google Scholar] [CrossRef]
- Pantke, S.; Steinberg, J.H.; Weber, L.K.H.; Fricke, T.C.; Carvalheira Arnaut Pombeiro Stein, I.; Oprita, G.; Herzog, C.; Leffler, A. A high concentrations of the antidepressant amitriptyline activate and desensitize the capsaicin receptor TRPV1. Pharmaceuticals 2025, 18, 560. [Google Scholar] [CrossRef]
- Lampl, C.; Versijpt, J.; Amin, F.M.; Deligianni, C.I.; Gil-Gouveia, R.; Jassal, T.; MaassenVanDenBrink, A.; Ornello, R.; Paungarttner, J.; Sanchez-del-Rio, M.; et al. European Headache Federation (EHF) critical re-appraisal and meta-analysis of oral drugs in migraine prevention—Part 1: Amitriptyline. J. Headache Pain 2023, 24, 39. [Google Scholar] [CrossRef]
- Osawa, R.A.; Barrocas, B.T.; Monteiro, O.C.; Oliveira, M.C.; Florêncio, M.H. Visible light photocatalytic degradation of amitriptyline using cobalt doped titanate nanowires: Kinetics and characterization of transformation products. J. Environ. Chem. Eng. 2020, 8, 103585. [Google Scholar] [CrossRef]
- Madej, M.; Fendrych, K.; Porada, R.; Flacha, M.; Kochana, J.; Baś, B. Application of Fe(III)-exchanged clinoptilolite/graphite nanocomposite for electrochemical sensing of amitriptyline. Microchem. J. 2021, 160, 105648. [Google Scholar] [CrossRef]
- Tee, W.T.; Loh, N.Y.L.; Hiew, B.Y.Z.; Show, P.L.; Hanson, S.; Gan, S.Y.; Lee, L.Y. Evaluation of adsorption performance and mechanisms of a highly effective 3D boron-doped graphene composite for amitriptyline pharmaceutical removal. J. Environ. Manage. 2023, 344, 118363. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Liu, Y.P.; Zhang, L.; Xie, P.C.; Wang, Z.P.; Zhou, A.J.; Fang, Z.; Ma, J. Efficient degradation of imipramine by iron oxychloride-activated peroxymonosulfate process. J. Hazard. Mater. 2018, 353, 18–25. [Google Scholar] [CrossRef]
- Wang, Z.Y.; He, J.G.; Yu, D.H.; Tang, B.; Zheng, Y.S.; Qiu, W. N-doped coralline Co9S8−xNx for inducing Amitriptyline decontamination in electro-fenton Process: Degradation scheme elucidation, nitrogen activating catalyst delocalized electron and enhancing 2-electron oxygen reduction reaction mechanism investigation. Chem. Eng. J. 2023, 457, 141171. [Google Scholar] [CrossRef]
- Chen, F.; Wu, X.L.; Yang, L.; Chen, C.F.; Lin, H.J.; Chen, J.R. Efficient degradation and mineralization of antibiotics via heterogeneous activation of peroxymonosulfate by using graphene supported single-atom Cu catalyst. Chem. Eng. J. 2020, 394, 124904. [Google Scholar] [CrossRef]
- Zhang, H.J.; He, Y.Y.; He, M.F.; Yang, Q.Y.; Ding, G.Y.; Mo, Y.S.; Liu, Z.Q.; Gao, P.P. Construction of cubic CaTiO3 perovskite modified by highly-dispersed cobalt for efficient catalytic degradation of psychoactive pharmaceuticals. J. Hazard. Mater. 2023, 459, 132191. [Google Scholar] [CrossRef] [PubMed]
- Finčur, N.L.; Grujić-Brojčin, M.; Šćepanović, M.J.; Četojević-Simin, D.D.; Maletić, S.P.; Stojadinović, S.; Abramović, B.F. UV-driven removal of tricyclic antidepressive drug amitriptyline using TiO2 and TiO2/WO3 coatings. React. Kinet. Mech. Cat. 2021, 132, 1193–1209. [Google Scholar] [CrossRef]
- Cai, W.W.; Yang, H.; Guo, X.Z. Preparation, characterization and infrared emissivity of ZnO nanorod/mica composites. Chin. J. Inorg. Chem. 2014, 30, 229–234. [Google Scholar]
- Zhang, P.; Xu, X.Y.; Chen, Y.P.; Xiao, M.Q.; Feng, B.; Tian, K.X.; Chen, Y.H.; Dai, Y.Z. Protein corona between nanoparticles and bacterial proteins in activated sludge: Characterization and effect on nanoparticle aggregation. Bioresour. Technol. 2018, 250, 10–16. [Google Scholar] [CrossRef]
- Zhang, H.J.; Li, X.Z.; Wu, D.X.; Yu, B.Z.; Lu, S.H.; Wang, J.J.; Ding, J.F. A novel strategy for efficient capture of intact harmful algal cells using Zinc oxide modified carbon nitride composites. Algal Res. 2023, 69, 102932. [Google Scholar] [CrossRef]
- Roy, N.; Kannabiran, K.; Mukherjee, A. Integrated adsorption and photocatalytic degradation based removal of ciprofloxacin and sulfamethoxazole antibiotics using Fe@rGO-ZnO nanocomposite in aqueous systems. Chemosphere 2023, 333, 138912. [Google Scholar] [CrossRef]
- Zhang, H.J.; Li, X.Z.; Yu, B.Z.; Wang, J.J.; Lu, S.H.; Zhong, Y.C.; Ding, J.F. Fabrication of amorphous carbon-based zinc oxide for efficient capture of intact Microcystis aeruginosa: Lysis in sedimentation process. J. Environ. Chem. Eng. 2022, 10, 108793. [Google Scholar] [CrossRef]
- Xie, X.; Li, S.; Zhang, H.; Wang, Z.; Huang, H. Promoting charge separation of biochar-based Zn-TiO2/pBC in the presence of ZnO for efficient sulfamethoxazole photodegradation under visible light irradiation. Sci. Total Environ. 2019, 659, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.; Hu, L.M.; Li, L.T.; Zheng, Q.Z.; Xin, Y.J.; Zhang, G.S. Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment. Chin. Chem. Lett. 2022, 33, 4461–4477. [Google Scholar] [CrossRef]
- Preethi; Shanmugavel, S.P.; Kumar, G.; Yogalakshmi, K.N.; Gunasekaran, M.; Banu, J.R. Recent progress in mineralization of emerging contaminants by advanced oxidation process: A review. Environ. Pollut. 2024, 341, 122842. [Google Scholar] [CrossRef]
- Milh, H.; Yu, X.; Cabooter, D.; Dewil, R. Degradation of ciprofloxacin using UV-based advanced removal processes: Comparison of persulfate-based advanced oxidation and sulfite-based advanced reduction processes. Sci. Total Environ. 2021, 764, 144510. [Google Scholar] [CrossRef]
- Ansari, A.T.A.; Mukherji, S.; Mukherji, S. Enhanced visible-light photocatalysis of a senary mixture of antibiotics using a low-dose of TiO2–ZnO nanocomposite. Environ. Res. 2025, 282, 122083. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.C.; Zhang, L.; Chen, J.H.; Ding, J.Q.; Wan, Y.; Wang, S.L.; Wang, Z.P.; Zhou, A.J.; Ma, J. Enhanced degradation of organic contaminants by zero-valent iron/sulfite process under simulated sunlight irradiation. Water Res. 2019, 149, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Seo, H.; Kim, K.; Lee, J.; Kim, J.-H. Facile synthesis and electrochemical properties of carbon-coated ZnO nanotubes for high-rate lithium storage. Ceram. Int. 2018, 44, 18222–18226. [Google Scholar] [CrossRef]
- Li, X.; Jiang, H.; Ma, C.; Zhu, Z.; Song, X.H.; Wang, H.Q.; Huo, P.W.; Li, X.Y. Local surface plasma resonance effect enhanced Z-scheme ZnO/Au/g-C3N4 film photocatalyst for reduction of CO2 to CO. Appl. Catal. B—Environ. 2021, 283, 119638. [Google Scholar] [CrossRef]
- Lang, J.H.; Wang, J.Y.; Zhang, Q.; Li, X.Y.; Han, Q.; Wei, M.B.; Sui, Y.R.; Wang, D.D.; Yang, J.H. Chemical precipitation synthesis and significant enhancement in photocatalytic activity of Ce-doped ZnO nanoparticles. Ceram. Int. 2016, 42, 14175–14181. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, X.; Zhu, B.Y.; Wang, J.S.; Lan, H.X.; Chen, X.B. Synthesis of porous ZnS, ZnO and ZnS/ZnO nanosheets and their photocatalytic properties. RSC Adv. 2017, 7, 30956–30962. [Google Scholar] [CrossRef]
- Decremps, F.; Pellicer-Porres, J.; Saitta, A.M.; Chervin, J.C.; Polian, A. High-pressure raman spectroscopy study of wurtzite ZnO. Phy. Rev. B 2002, 65, 092101. [Google Scholar] [CrossRef]
- Shanmugasundaram, A.; Kim, D.S.; Chinh, N.D.; Park, J.S.; Jeong, Y.J.; Piao, J.J.; Kim, D.; Lee, D.W. N-/S- dual doped C@ZnO: An excellent material for highly selective and responsive NO2 sensing at ambient temperatures. Chem. Eng. J. 2021, 421, 127740. [Google Scholar] [CrossRef]
- Wang, L.; Yu, X.F.; Li, X.; Zhang, J.; Wang, M.; Che, R.C. MOF-derived yolk-shell Ni@C@ZnO schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 2020, 383, 123099. [Google Scholar] [CrossRef]
- Goncearenco, E.; Morjan, I.P.; Fleaca, C.; Dutu, E.; Criveanu, A.; Viespe, C.; Galca, A.C.; Maraloiu, A.V.; Stan, M.S.; Fort, C.I.; et al. The influence of SnO2 and noble metals on the properties of TiO2 for environmental sustainability. Sustainability 2024, 16, 2904. [Google Scholar] [CrossRef]
- Chen, X.Y.; Chen, J.W.; Qiao, X.L.; Wang, D.G.; Cai, X.Y. Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using Acid Orange 7 as a model compound. Appl. Catal. B—Environ. 2008, 80, 116–121. [Google Scholar] [CrossRef]
- Guan, Y.H.; Ma, J.; Li, X.C.; Fang, J.Y.; Chen, L.W. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system. Environ. Sci. Technol. 2011, 45, 9308–9314. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.Z.; Li, X.Z.; He, M.F.; Li, Y.; Ding, J.F.; Zhong, Y.C.; Zhang, H.J. Selective production of singlet oxygen for harmful cyanobacteria inactivation and cyanotoxins degradation: Efficiency and mechanisms. J. Hazard. Mater. 2023, 441, 129940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Yu, B.Z.; Li, X.Z.; Li, Y.; Zhong, Y.C.; Ding, J.F. Inactivation of Microcystis aeruginosa by peroxydisulfate activated with single-atomic iron catalysis: Efficiency and mechanisms. J. Environ. Chem. Eng. 2022, 10, 108310. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. A comparative study of electrocoagulation, electrochemical fenton, electro-fenton and peroxi-coagulation for decolorization of real textile wastewater: Electrical energy consumption and biodegradability improvement. J. Environ. Chem. Eng. 2015, 3, 499–506. [Google Scholar] [CrossRef]
- Guan, J.H.; Ma, J.; Ren, Y.M.; Liu, Y.L.; Xiao, J.Y.; Lin, L.Q.; Zhang, C. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals. Water Res. 2013, 47, 5431–5438. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.C.; Chen, L.; Yan, L.L.; Cheng, T.; Wang, X.L.; Zhang, Y. Singlet oxygendominated transformation of oxytetracycline by peroxymonosulfate with CoAlLDH modified hierarchical porous ceramics: Toxicity assessment. Chem. Eng. J. 2022, 436, 135199. [Google Scholar] [CrossRef]
- Chen, Y.; Liang, J.F.; Liu, L.; Lu, X.Y.; Deng, J.W.; Pozdnyakov, I.P.; Zuo, Y.G. Photosensitized degradation of amitriptyline and its active metabolite nortriptyline in aqueous fulvic acid solution. J. Environ. Qual. 2017, 46, 1081–1087. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Niu, J.F.; Yin, L.F.; Huang, J.X.; Hou, L.A. Electrochemical degradation of fluoxetine on nanotube array intercalated anode with enhanced electronic transport and hydroxyl radical production. Chem. Eng. J. 2018, 346, 662–671. [Google Scholar] [CrossRef]
- Zhan, M.M.; Hong, Y.; Fang, Z.; Qiu, D.P. Visible light-driven photocatalytic degradation of Microcystin-LR by Bi2WO6/Reduced graphene oxide heterojunctions: Mechanistic insight, DFT calculation and degradation pathways. Chemosphere 2023, 321, 138105. [Google Scholar] [CrossRef]
- Fort, C.I.; Ortiz, R.; Contet, L.C.; Danciu, V.; Popescu, I.C.; Gorton, L. Carbon aerogel as electrode material for improved direct electron transfer in biosensors incorporating cellobiose dehydrogenase. Electroanalysis 2016, 10, 219. [Google Scholar] [CrossRef]
Sample | BET Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|
Pristine ZnO | 4.04 | 0.012 | 12.054 |
50 C@ZnO | 443.44 | 0.197 | 1.777 |
100 C@ZnO | 319.45 | 0.150 | 1.879 |
200 C@ZnO | 224.30 | 0.109 | 1.950 |
400 C@ZnO | 169.20 | 0.085 | 2.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, T.; Hu, F.; Yue, Y.; Li, C.; He, Y.; Ding, J. Enhanced Amitriptyline Degradation by Electrochemical Activation of Peroxydisulfate: Mechanisms of Interfacial Catalysis and Mass Transfer. Molecules 2025, 30, 3835. https://doi.org/10.3390/molecules30183835
Wen T, Hu F, Yue Y, Li C, He Y, Ding J. Enhanced Amitriptyline Degradation by Electrochemical Activation of Peroxydisulfate: Mechanisms of Interfacial Catalysis and Mass Transfer. Molecules. 2025; 30(18):3835. https://doi.org/10.3390/molecules30183835
Chicago/Turabian StyleWen, Teer, Fangying Hu, Yao Yue, Chuqiao Li, Yunfei He, and Jiafeng Ding. 2025. "Enhanced Amitriptyline Degradation by Electrochemical Activation of Peroxydisulfate: Mechanisms of Interfacial Catalysis and Mass Transfer" Molecules 30, no. 18: 3835. https://doi.org/10.3390/molecules30183835
APA StyleWen, T., Hu, F., Yue, Y., Li, C., He, Y., & Ding, J. (2025). Enhanced Amitriptyline Degradation by Electrochemical Activation of Peroxydisulfate: Mechanisms of Interfacial Catalysis and Mass Transfer. Molecules, 30(18), 3835. https://doi.org/10.3390/molecules30183835