Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (121)

Search Parameters:
Keywords = anisotropic assembly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 10505 KB  
Article
Towards Scalable Production of Liquid Crystal Elastomers: A Low-Cost Automated Manufacturing Framework
by Rocco Furferi, Andrea Profili, Monica Carfagni and Lapo Governi
Designs 2026, 10(1), 3; https://doi.org/10.3390/designs10010003 - 30 Dec 2025
Viewed by 246
Abstract
Liquid Crystal Elastomers combine the elasticity of polymer networks with the anisotropic ordering of liquid crystals, thus enabling reversible shape modifications and stimulus responsive actuation. Unfortunately, manual LCE fabrication remains limited by operator-dependent variability, which can lead to inconsistent film thickness and manufacturing [...] Read more.
Liquid Crystal Elastomers combine the elasticity of polymer networks with the anisotropic ordering of liquid crystals, thus enabling reversible shape modifications and stimulus responsive actuation. Unfortunately, manual LCE fabrication remains limited by operator-dependent variability, which can lead to inconsistent film thickness and manufacturing times inadequate for a mass production. This work presents a low-cost, automated manufacturing framework that redesigns the mechanical assembly steps of the traditional one-step LCE fabrication process. The design includes rubbing, slide alignment, spacer placement, and infiltration cell assembly to ensure consistent film quality and scalability. A customized Cartesian robot, built by adapting a modified X–Y core 3D printer, integrates specially designed manipulator systems, redesigned magnetic slide holders, automated rubbing tools, and supporting fixtures to assemble infiltration devices in an automated way. Validation tests demonstrate reproducible infiltration, improved mesogen alignment confirmed via polarized optical microscopy, and high geometric repeatability, although glass-slide thickness variability remains a significant contributor to deviations in final film thickness. By enabling parallelizable low-cost production, the designed hardware demonstrates its effectiveness in devising the scalable manufacturing of LCE films suited for advanced therapeutic and engineering applications. Full article
(This article belongs to the Section Smart Manufacturing System Design)
Show Figures

Figure 1

15 pages, 4796 KB  
Article
Atomistic Simulations of Individual Amphiphilic Carbosilane Dendrimers with –(OCH2CH2)n–OCH3 Terminal Groups in Hydrophilic and Hydrophobic Environments and at Interfaces
by Andrey O. Kurbatov, Kirill A. Litvin, Iurii Iu. Grishin, Nikolay K. Balabaev and Elena Yu. Kramarenko
Polymers 2026, 18(1), 92; https://doi.org/10.3390/polym18010092 - 28 Dec 2025
Viewed by 320
Abstract
Amphiphilic dendrimers represent a promising class of nanoscale building blocks for functional materials, yet their conformational behavior, solvation, and interfacial activity remain incompletely understood. In this work, we employ atomistic molecular dynamics simulations to investigate G2–G4 carbosilane dendrimers functionalized with ethylene glycol terminal [...] Read more.
Amphiphilic dendrimers represent a promising class of nanoscale building blocks for functional materials, yet their conformational behavior, solvation, and interfacial activity remain incompletely understood. In this work, we employ atomistic molecular dynamics simulations to investigate G2–G4 carbosilane dendrimers functionalized with ethylene glycol terminal groups of two lengths—R1 (one ethylene glycol unit) and R3 (three units)—in water, toluene, and at fluid interfaces (water–toluene and water–air). Both types of dendrimers adopt compact, nearly spherical conformations in water but swell significantly (~83% in volume for G4) in toluene, a good solvent for the hydrophobic core. At the water–toluene interface, the dendrimers remain fully solvated in the toluene phase and show no surface activity. In contrast, at the water–air interface, they adsorb and adopt a mildly anisotropic, biconvex conformation, with a modest deformation. The total number of hydrogen bonds is reduced by ~50% compared to bulk water. Notably, the R3 dendrimers form more hydrogen bonds overall due to their higher oxygen content, which may contribute to the enhanced stability of their monolayers observed experimentally. These results demonstrate how dendrimer generation as well as terminal group length and hydrophilicity finely tune dendrimer conformation, hydration, and interfacial behavior, which are key factors for applications in nanocarriers, interfacial engineering, and self-assembled materials. The validated simulation protocol provides a robust foundation for future studies of multi-dendrimer systems and monolayer formation. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

22 pages, 2308 KB  
Article
Supramolecular Assembly of Cell Wall Anisotropic Scatterers in Triticale Root Apex Reflects Aluminum Stress Response in Contrasting Genotypes
by Małgorzata R. Cyran, Krystyna Rybka, Agnieszka Niedziela, Marek J. Potrzebowski and Sławomir Kaźmierski
Int. J. Mol. Sci. 2025, 26(23), 11519; https://doi.org/10.3390/ijms262311519 - 27 Nov 2025
Viewed by 274
Abstract
Acid soil aluminum (Al) considerably reduces crop productivity. This study examined whether transformation of supramolecular assembly of root cell wall polysaccharides (CWPs) contributes to genotype-specific responses to Al stress in triticale. CWPs were extracted from apical and hairy root segments of two triticale [...] Read more.
Acid soil aluminum (Al) considerably reduces crop productivity. This study examined whether transformation of supramolecular assembly of root cell wall polysaccharides (CWPs) contributes to genotype-specific responses to Al stress in triticale. CWPs were extracted from apical and hairy root segments of two triticale genotypes, differing in Al tolerance. Water-extractable polysaccharides (WEPs) and those extracted with trans-1,2-cyclohexanediaminetetraacetic acid (CDTA) and sodium carbonate (Na2CO3) were analyzed using the multi-detection high-performance size-exclusion chromatography (HPSEC-RI-LALS/RALS-DV-UV-Vis). WEPs most clearly reflected differences between genotypes in macromolecular organization and Al-induced modification. Both root segments contained high molar mass (HM) subunits of WEPs with distinct anisotropic light scatterer (AS) domains. AS domains of a tolerant genotype were symmetrically elongated and branched, whereas those of a sensitive one were asymmetrically elongated with a spherical shape. In both genotypes, Al stress induced an association of apical HM subunits to higher molar mass forms, but in a different manner. The tolerant genotype maintained branched AS domain architecture by forming separate HM subunits that prevented Al infiltration. In contrast, the sensitive genotype showed complete merging of all HM subunits into a micro gel structure, leading to AS surface degradation. These findings provide novel insight into the role of root AS domains and supramolecular cell wall organization in plant adaptation to abiotic stress. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Graphical abstract

25 pages, 14205 KB  
Review
Evaporation-Driven Self-Assembly and Deposition Patterns of Protein Droplets: Mechanisms, Modulation, and Applications
by Xuanyi Zhang, Zehua Wang, Chenyang Wu and Dongdong Lin
Biophysica 2025, 5(4), 57; https://doi.org/10.3390/biophysica5040057 - 21 Nov 2025
Viewed by 743
Abstract
Protein droplets exhibit complex self-assembly and deposition behaviors driven by evaporation, which has attracted increasing attention in recent years. Under evaporation, limited volume and locally concentrated protein solutions can undergo liquid–liquid phase separation (LLPS) and liquid–liquid crystalline phase separation (LLCPS), inducing the formation [...] Read more.
Protein droplets exhibit complex self-assembly and deposition behaviors driven by evaporation, which has attracted increasing attention in recent years. Under evaporation, limited volume and locally concentrated protein solutions can undergo liquid–liquid phase separation (LLPS) and liquid–liquid crystalline phase separation (LLCPS), inducing the formation of concentrated droplets and anisotropic structures. The combined effects of interfacial tension and internal flow field induce a variety of deposition patterns on the substrate, providing great significance for the development of functional biomaterials. This paper reviews the physical processes experienced by protein/fibril droplets during evaporation, focusing on the formation mechanism of evaporation and their phase separation behaviors. At the same time, the review systematically summarized the key factors affecting the deposition patterns, and a variety of methods were introduced to pattern deposition, such as external electric field and micro-structured substrates. Furthermore, the potential applications of proteins/fibrils droplet deposition were discussed in multiple fields. This review aims to provide systematic theoretical support and experimental reference for understanding and controlling the deposition behavior of proteins/fibrils droplets, and to promote their further application in functional materials and biomedical engineering. Full article
Show Figures

Figure 1

34 pages, 7429 KB  
Review
Recent Advances in the Preparation of Block Copolymer Colloids and Porous Hydrogels Mediated by Emulsion Droplets
by Tengying Ma, Yining Liu, Yingying Wang and Nan Yan
Gels 2025, 11(11), 861; https://doi.org/10.3390/gels11110861 - 28 Oct 2025
Viewed by 903
Abstract
The versatility of emulsions as templates for fabricating functional materials has garnered significant attention in recent decades. Emulsions with tailored geometries provide a powerful platform for designing and synthesizing polymeric materials with diverse functionalities. This review summarizes recent advances in emulsion-mediated fabrication of [...] Read more.
The versatility of emulsions as templates for fabricating functional materials has garnered significant attention in recent decades. Emulsions with tailored geometries provide a powerful platform for designing and synthesizing polymeric materials with diverse functionalities. This review summarizes recent advances in emulsion-mediated fabrication of block copolymer (BCP) functional colloids and emulsion-templated construction of gel emulsion and porous hydrogels. Key topics include the generation of high-quality, uniform emulsion droplets, control over the shape and internal nanostructure of BCP colloids, and strategies for constructing polymeric gels and other porous functional materials using gel emulsion as templates. Furthermore, the intrinsic properties of polymers can be pre-engineered with specific stimulus-responsive functionalities prior to the fabrication of polymeric microparticles or porous hydrogels, thus imparting novel and targeted functionalities to the resulting assemblies and porous networks. This study can help in developing crucial strategies and in identifying pathways for the rational design of novel multifunctional materials with applications in drug delivery, sensing, and catalysis. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

16 pages, 13109 KB  
Article
Photonic Glasses in Ferrofluid Thin Films
by Alberto Tufaile and Adriana Pedrosa Biscaia Tufaile
Condens. Matter 2025, 10(4), 55; https://doi.org/10.3390/condmat10040055 - 27 Oct 2025
Viewed by 877
Abstract
This study investigates the dynamic magneto-optical properties of ferrofluid thin films, focusing on how magnetic fields induce light–matter interactions using a device known as Ferrocell. Our findings reveal that incident light interacts with self-assembled, anisotropic nanoparticle structures, transforming the ferrofluid into a highly [...] Read more.
This study investigates the dynamic magneto-optical properties of ferrofluid thin films, focusing on how magnetic fields induce light–matter interactions using a device known as Ferrocell. Our findings reveal that incident light interacts with self-assembled, anisotropic nanoparticle structures, transforming the ferrofluid into a highly responsive optical medium. Monochromatic laser experiments confirmed the direct correlation between laser color and diffracted light color offering direct insights into particle orientation and aggregate morphology. We observed significant chromatic shifts, especially in regions under strong perpendicular magnetic fields, which provide compelling evidence of structural colors. This phenomenon stems from wavelength-selective interference and diffraction, reminiscent of photonic crystal behavior, yet characterized by short-range order, classifying the material as a photonic glass. Full article
Show Figures

Figure 1

29 pages, 13571 KB  
Article
Mechanical Response of Composite Wood–Concrete Bonded Facade Under Thermal Loading
by Roufaida Assal, Laurent Michel and Emmanuel Ferrier
Buildings 2025, 15(20), 3664; https://doi.org/10.3390/buildings15203664 - 11 Oct 2025
Viewed by 537
Abstract
The integration of wood and concrete in building structures is a well-established practice typically realized through mechanical connectors. However, the thermomechanical behavior of wood–concrete composite façades assembled via adhesive bonding remains underexplored. This study introduces a novel concept—the adhesive-bonded wood–concrete façade, termed “Hybrimur”—and [...] Read more.
The integration of wood and concrete in building structures is a well-established practice typically realized through mechanical connectors. However, the thermomechanical behavior of wood–concrete composite façades assembled via adhesive bonding remains underexplored. This study introduces a novel concept—the adhesive-bonded wood–concrete façade, termed “Hybrimur”—and evaluates the response of these façade panels under thermal gradients, with a focus on thermal bowing phenomena. Four full-scale façade prototypes (3 m high × 6 m wide), consisting of 7 cm thick concrete and 16 cm thick laminated timber (GL24h), were fabricated and tested both with and without insulation. Two reinforcement types were considered: fiberglass-reinforced concrete and welded mesh reinforcement. The study combines thermal analysis of temperature gradients at the adhesive interface with analytical and numerical methods to investigate thermal expansion effects. The experimental and numerical results revealed thermal strains concentrated at the wood–concrete interface without inducing panel failure. Thermal bowing (out-of-plane deflection) exhibited a nonlinear behavior influenced by the adhesive bond and the anisotropic nature of the wood. These findings highlight the importance of accounting for both interface behavior and wood anisotropy in the design of hybrid façades subjected to thermal loading. A tentative finite element model is proposed that utilizes isotropic wood with properties that limit the accuracy of the results obtained by the model. Full article
(This article belongs to the Special Issue The Latest Research on Building Materials and Structures)
Show Figures

Figure 1

10 pages, 869 KB  
Communication
Linear Electro-Optic Modulation in Electrophoretically Deposited Perovskite Nanocrystal Films
by Pengyu Ou, Jingjing Cao, Chengxi Lyu and Yuan Gao
Electronics 2025, 14(18), 3678; https://doi.org/10.3390/electronics14183678 - 17 Sep 2025
Viewed by 637
Abstract
We report the observation of a linear electro-optic (EO) response in CsPbX3 (X = Cl, Br, I) perovskite nanocrystal (NC) films fabricated via electrophoretic deposition (EPD). Under an alternating electric field, the EPD films exhibit clear linear EO modulation of transmitted light [...] Read more.
We report the observation of a linear electro-optic (EO) response in CsPbX3 (X = Cl, Br, I) perovskite nanocrystal (NC) films fabricated via electrophoretic deposition (EPD). Under an alternating electric field, the EPD films exhibit clear linear EO modulation of transmitted light intensity, indicating the formation of an anisotropic medium through field-induced NC alignment. In contrast, spin-coated NC films show no measurable linear EO response, underscoring the critical role of structural anisotropy introduced by EPD. All EPD samples exhibit a decreasing EO response with increasing modulation frequency, consistent with the involvement of slow ion migration dynamics. The halide composition influences EO behavior, with Br/Cl mixed-composition films maintaining the highest EO response at elevated frequencies, and Br-based NCs showing stronger EO signals than their Cl counterparts, while Bi-doped CsPbBr3 films exhibit quenched photoluminescence yet retain a measurable but weaker EO response, underscoring the trade-off between defect-induced nonradiative recombination and EO activity. These results highlight the potential of EPD-assembled perovskite NCs for reconfigurable EO applications by tailoring composition and microstructure. Full article
(This article belongs to the Special Issue Optoelectronics, Energy and Integration)
Show Figures

Figure 1

17 pages, 3936 KB  
Article
Markerless Force Estimation via SuperPoint-SIFT Fusion and Finite Element Analysis: A Sensorless Solution for Deformable Object Manipulation
by Qingqing Xu, Ruoyang Lai and Junqing Yin
Biomimetics 2025, 10(9), 600; https://doi.org/10.3390/biomimetics10090600 - 8 Sep 2025
Viewed by 799
Abstract
Contact-force perception is a critical component of safe robotic grasping. With the rapid advances in embodied intelligence technology, humanoid robots have enhanced their multimodal perception capabilities. Conventional force sensors face limitations, such as complex spatial arrangements, installation challenges at multiple nodes, and potential [...] Read more.
Contact-force perception is a critical component of safe robotic grasping. With the rapid advances in embodied intelligence technology, humanoid robots have enhanced their multimodal perception capabilities. Conventional force sensors face limitations, such as complex spatial arrangements, installation challenges at multiple nodes, and potential interference with robotic flexibility. Consequently, these conventional sensors are unsuitable for biomimetic robot requirements in object perception, natural interaction, and agile movement. Therefore, this study proposes a sensorless external force detection method that integrates SuperPoint-Scale Invariant Feature Transform (SIFT) feature extraction with finite element analysis to address force perception challenges. A visual analysis method based on the SuperPoint-SIFT feature fusion algorithm was implemented to reconstruct a three-dimensional displacement field of the target object. Subsequently, the displacement field was mapped to the contact force distribution using finite element modeling. Experimental results demonstrate a mean force estimation error of 7.60% (isotropic) and 8.15% (anisotropic), with RMSE < 8%, validated by flexible pressure sensors. To enhance the model’s reliability, a dual-channel video comparison framework was developed. By analyzing the consistency of the deformation patterns and mechanical responses between the actual compression and finite element simulation video keyframes, the proposed approach provides a novel solution for real-time force perception in robotic interactions. The proposed solution is suitable for applications such as precision assembly and medical robotics, where sensorless force feedback is crucial. Full article
(This article belongs to the Special Issue Bio-Inspired Intelligent Robot)
Show Figures

Figure 1

44 pages, 14233 KB  
Review
Janus Hydrogels: Design, Properties, and Applications
by Wei Guo, Mahta Mirzaei and Lei Nie
Gels 2025, 11(9), 717; https://doi.org/10.3390/gels11090717 - 8 Sep 2025
Viewed by 2374
Abstract
Janus hydrogels have attracted significant attention in materials science and biomedicine owing to their anisotropic dual-faced architecture. Unlike conventional homogeneous hydrogels, these heterogeneous systems exhibit structural and functional asymmetry, endowing them with remarkable adaptability to dynamic environmental stimuli. Their inherent biocompatibility, biodegradability, and [...] Read more.
Janus hydrogels have attracted significant attention in materials science and biomedicine owing to their anisotropic dual-faced architecture. Unlike conventional homogeneous hydrogels, these heterogeneous systems exhibit structural and functional asymmetry, endowing them with remarkable adaptability to dynamic environmental stimuli. Their inherent biocompatibility, biodegradability, and unique “adhesion–antiadhesion” duality have demonstrated exceptional potential in biomedical applications ranging from advanced wound healing and internal tissue adhesion prevention to cardiac tissue regeneration. Furthermore, “hydrophilic–hydrophobic” Janus configurations, synergistically integrated with tunable conductivity and stimuli-responsiveness, showcase the great potential in emerging domains, including wearable biosensing, high-efficiency desalination, and humidity regulation systems. This review systematically examines contemporary synthesis strategies for Janus hydrogels using various technologies, including layer-by-layer, self-assembly, and one-pot methods. We elucidate the properties and applications of Janus hydrogels in biomedicine, environmental engineering, and soft robotics, and we emphasize recent developments in this field while projecting future trajectories and challenges. Full article
(This article belongs to the Special Issue Structure and Properties of Functional Hydrogels (2nd Edition))
Show Figures

Figure 1

25 pages, 8316 KB  
Article
Acid-Responsive Self-Healing Waterborne Epoxy Coating: Preparation, Release Behavior, and Anticorrosion Performance Based on Bowl-Shaped Mesoporous Polydopamine Nanocontainer Loaded with 2-MBI Inhibitors
by Xiaohong Ji, Minghui Yang, Huiwen Tian, Jin Hou, Jingqiang Su, Zhen Wang, Zixue Zhang, Yuefeng Tian, Liangliang Zhou, Guanghua Hu, Yunfei Yang, Jizhou Duan and Baorong Hou
Polymers 2025, 17(16), 2265; https://doi.org/10.3390/polym17162265 - 21 Aug 2025
Cited by 1 | Viewed by 1556
Abstract
We present a straightforward emulsion-induced interfacial anisotropic assembly method for in- situ synthesis of bowl-shaped, self-encapsulated mesoporous polydopamine (BMPDA) nanocontainers (M-M@P) loaded with 2-mercaptobenzimidazole (2-MBI). Results showed that the loading capacity of the bowl-shaped mesoporous polydopamine reaches 24 wt.%. The M-M@P exhibits a [...] Read more.
We present a straightforward emulsion-induced interfacial anisotropic assembly method for in- situ synthesis of bowl-shaped, self-encapsulated mesoporous polydopamine (BMPDA) nanocontainers (M-M@P) loaded with 2-mercaptobenzimidazole (2-MBI). Results showed that the loading capacity of the bowl-shaped mesoporous polydopamine reaches 24 wt.%. The M-M@P exhibits a cumulative MBI release of 91.61% after immersion in a 3.5 wt.% NaCl solution at pH = 2 for 24 h, accompanied by a corrosion inhibition efficiency of 95.54%. Additionally, the acid-responsive M-M@P not only enables controlled release of MBI but also synergistically promotes the formation of a protective film on the carbon steel substrate via the chelation of PDA-Fe3+, thereby enhancing the self-healing performance of waterborne epoxy coatings. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

20 pages, 7998 KB  
Article
Suppression of Cohesive Cracking Mode Based on Anisotropic Porosity in Sintered Silver Die Attach Encapsulated by Epoxy Molding Compounds
by Keisuke Wakamoto, Masaya Ukita, Ayumi Saito and Ken Nakahara
Electronics 2025, 14(16), 3227; https://doi.org/10.3390/electronics14163227 - 14 Aug 2025
Cited by 1 | Viewed by 1208
Abstract
This paper investigates the suppression of the cohesive cracking mode (CCM) in the sintered silver (s-Ag) die layer by intentionally introducing anisotropic porosity through two press sintering methods. Full press (FP) and local press (LP) bonding represent the s-Ag formed by pressing the [...] Read more.
This paper investigates the suppression of the cohesive cracking mode (CCM) in the sintered silver (s-Ag) die layer by intentionally introducing anisotropic porosity through two press sintering methods. Full press (FP) and local press (LP) bonding represent the s-Ag formed by pressing the die-attached assemblies (DAAs) on either the entire top surface or only on the silicon carbide (SiC) top surface, respectively. The fabricated DAAs were encapsulated with epoxy molding compounds. Degradation was evaluated using a nine-point bending test (NBT) under cyclic force between 0 and 270 N with a triangle waveform for 3 min per cycle at 150 °C. Scanning tomography images after 500 NBT cycles showed that the LP reduced the inner degradation ratio by up to 21.1% compared to the FP. Cross-sectional scanning electron microscopy revealed that the FP progressed cracking in the s-Ag die layer, whereas the LP showed no evidence of cracking. A finite element analysis revealed that in the FP, the accumulated plastic strain (APS) was concentrated in the s-Ag layer within the inner SiC chip. In contrast, the APS of the LP was preferentially concentrated outside the SiC chip. This preferential localization of damage outside the chip presents a promising approach for enhancing the reliability of packaging products. Full article
Show Figures

Figure 1

16 pages, 4508 KB  
Article
Natural Kelp (Laminaria japonica) Hydrogel with Anisotropic Mechanical Properties, Low Friction and Self-Cleaning for Triboelectric Nanogenerator
by Dongnian Chen, Hui Yu, Jiajia Hao, Qiang Chen and Lin Zhu
Gels 2025, 11(8), 597; https://doi.org/10.3390/gels11080597 - 1 Aug 2025
Viewed by 656
Abstract
Kelp is a natural hydrogel material, which has been widely used in food industry. However, as a natural material, its properties have not been well explored. In this work, the surface and mechanical properties of kelp were investigated. The surface of kelp exhibited [...] Read more.
Kelp is a natural hydrogel material, which has been widely used in food industry. However, as a natural material, its properties have not been well explored. In this work, the surface and mechanical properties of kelp were investigated. The surface of kelp exhibited superoleophobicity and a self-clean property. The friction coefficient (COF) of the kelp surface was also low (<0.1). Interestingly, kelp demonstrated anisotropic mechanical properties either with or without metal ions. The tensile strength and toughness of kelp along with the growth direction (H) were better than those at the direction vertical to the growth direction (V). The adsorption of metal ions would significantly enhance the mechanical properties and ionic conductivity. Triboelectric nanogenerator (TENG) was assembled using kelp with NaCl, which showed excellent output performance (open-circuit voltage of 30 V, short-circuit current of 0.73 μA and charge transfer on contact of 10.5 nC). A writing tablet was prepared to use as the kelp-based self-powered tactile sensor. This work provides a new insight into natural kelp, which may be used as a renewable material. Full article
(This article belongs to the Special Issue Applications of Gels in Energy Materials and Devices)
Show Figures

Graphical abstract

16 pages, 1420 KB  
Article
Light-Driven Quantum Dot Dialogues: Oscillatory Photoluminescence in Langmuir–Blodgett Films
by Tefera Entele Tesema
Nanomaterials 2025, 15(14), 1113; https://doi.org/10.3390/nano15141113 - 18 Jul 2025
Viewed by 712
Abstract
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm [...] Read more.
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm laser illumination on the red absorption edge of the blue-emitting smaller QDs (QD450), the red-emitting larger QDs (QD645) exhibited oscillatory temporal dynamics in their photoluminescence (PL), characterized by a pronounced blueshift in the emission peak wavelength and an abrupt decrease in peak intensity. Conversely, excitation by a 405 nm laser on the blue absorption edge induced a drastic redshift in the emission wavelength over time. These significant shifts in emission spectra are attributed to photon- and anisotropic-strain-assisted interlayer atom transfer. The findings provide new insights into strain-driven atomic rearrangements and their impact on the photophysical behavior of QD systems. Full article
Show Figures

Graphical abstract

37 pages, 8085 KB  
Review
Scaling Amphiphilicity with Janus Nanoparticles: A New Frontier in Nanomaterials and Interface Science
by Mirela Honciuc and Andrei Honciuc
Nanomaterials 2025, 15(14), 1079; https://doi.org/10.3390/nano15141079 - 11 Jul 2025
Cited by 5 | Viewed by 2528
Abstract
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and [...] Read more.
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and are capable of reducing interfacial tension, adsorbing spontaneously at interfaces, stabilizing emulsions and foams, and forming micelles, bilayers, or vesicles. Recent experimental, theoretical, and computational studies demonstrate that these behaviors are scalable to nanostructured colloids such as JNPs. Amphiphilic JNPs, defined by anisotropic surface chemistry on distinct hemispheres, display interfacial activity driven by directional wetting, variable interfacial immersion depth, and strong interfacial anchoring. They can stabilize liquid/liquid and liquid/gas interfaces, and enable templated or spontaneous self-assembly into supra-structures, such as monolayer sheets, vesicles, capsules, etc., both in bulk and at interfaces. Their behavior mimics the “soft” molecular amphiphiles but also includes additional particularities given by their “hard” structure, as well as contributions from capillary, van der Waals, hydrophobic, and shape-dependent forces. This review focuses on compiling the evidence supporting amphiphilicity as a scalable property, discussing how JNPs function as colloidal amphiphiles and how geometry, polarity contrast, interfacial interactions, and environmental parameters influence their behavior. By comparing surfactant behavior and JNP assembly, this work aims to clarify the transferable principles, the knowledge gap, as well as the emergent properties associated with amphiphilic Janus colloids. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Graphical abstract

Back to TopTop