Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = anisic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2101 KiB  
Article
Optimizing Essential Oil Mixtures: Synergistic Effects on Cattle Rumen Fermentation and Methane Emission
by Memoona Nasir, María Rodríguez-Prado, Marica Simoni, Susana M. Martín-Orúe, José Francisco Pérez and Sergio Calsamiglia
Animals 2025, 15(14), 2105; https://doi.org/10.3390/ani15142105 - 16 Jul 2025
Viewed by 460
Abstract
Ruminant livestock contribute significantly to methane emissions, necessitating sustainable mitigation strategies. Essential oils (EOs) show promise for modulating ruminal fermentation, but their synergistic effects remain underexplored. Two 24 h in vitro experiments evaluated the synergistic effects of EO blends on rumen microbial fermentation. [...] Read more.
Ruminant livestock contribute significantly to methane emissions, necessitating sustainable mitigation strategies. Essential oils (EOs) show promise for modulating ruminal fermentation, but their synergistic effects remain underexplored. Two 24 h in vitro experiments evaluated the synergistic effects of EO blends on rumen microbial fermentation. Exp. 1 screened five oils using two triad combinations. Triad 1 tested 10 combinations of thyme (THY), peppermint (PPM), and cinnamon leaf (CIN) oils. Triad 2 tested 10 combinations of anise (ANI), clove leaf (CLO), and peppermint (PPM) oils. Each blend was tested at 400 mg/L, using batch culture methods measuring: pH, ammonia-N (NH3-N), and volatile fatty acids (VFAs). The two most effective blends, designated as T1 and T2, were selected for Exp. 2 to assess total gas and methane (CH4) production using pressure transducer methods. All treatments were incubated in a rumen fluid–buffer mix with a 50:50 forage-to-concentrate substrate (pH 6.6). In Exp. 1, data were analyzed according to the Simplex Centroid Design using R-Studio. In Exp. 2, an analysis was conducted using the MIXED procedure in SAS. Mean comparisons were assessed through Tukey’s test. The results from Exp. 1 identified CIN+PPM (80:20) and ANI+CLO (80:20) as optimal combinations, both increasing total VFAs while reducing acetate/propionate ratios and NH3-N concentrations. In Exp. 2, both combinations significantly reduced total gas and CH4 productions compared to the control, with CIN+PPM achieving the greatest methane reduction (similar to monensin, the positive control). Specific essential oil combinations demonstrated synergistic effects in modulating rumen fermentation and reducing methane emissions, offering potential for sustainable livestock production. Further in vivo validation is required to optimize dosing and assess long-term effects on animal performance. Full article
(This article belongs to the Special Issue Nutrients and Feed Additives in Ruminants)
Show Figures

Figure 1

15 pages, 2088 KiB  
Article
Antimicrobial and Anti-Biofilm Activities of Medicinal Plant-Derived Honey Against ESKAPE Pathogens: Insights into β-Lactamase Inhibition via Metabolomics and Molecular Modeling Studies
by Hanan Aati, Nadia M. Lithy, Sultan Y. Aati, Mohammad A. Khanfar, Hossam M. Hassan and Hebatallah S. Bahr
Processes 2025, 13(5), 1294; https://doi.org/10.3390/pr13051294 - 24 Apr 2025
Viewed by 711
Abstract
The emergence of multidrug-resistant bacterial infections is a major global public health concern. Human health is in danger from microorganisms that have developed resistance to currently used drugs. Honey is well known for its significant activity against antibiotic-resistant bacteria. In this study, the [...] Read more.
The emergence of multidrug-resistant bacterial infections is a major global public health concern. Human health is in danger from microorganisms that have developed resistance to currently used drugs. Honey is well known for its significant activity against antibiotic-resistant bacteria. In this study, the antibacterial properties of honey from various botanical sources in Saudi Arabia against seven significant nosocomial and foodborne pathogens were investigated. The physicochemical properties of four Saudi honey samples—aloe honey (HO1) (Aloe vera L.), anise honey (HO2) (Pimpinella anisum L.), moringa honey (HO4) (Moringa oleifera Lam.), and acacia honey (HO5) (Acacia sp.)—were examined. In addition, they were screened for antibacterial activity against ESKAPE pathogens (Enterobacter faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella Typhimurium, Escherichia coli, and Enterobacter sp.) and anti-biofilm activity against four pathogenic bacteria strains: S. aureus, P. aeruginosa, S. typhimurium, and E. coli. 1H NMR profiling and multivariate analysis (PCA and PLS-DA) were performed. Aloe honey (HO1) was the most distinct sample based on MVDA and its antibacterial activity, and it exhibited anti-biofilm activity against most biofilm-forming microorganisms. Its metabolic profile was deduced using LC-MS, and the resulting annotated compounds were docked against several β-lactamase enzyme classes. The results reveal the potential of honey-derived compounds to inhibit β-lactamases due to the presence of gallic acid hexoside and rosmarinic acid, suggesting their potential as competitive inhibitors. Our findings suggest that further honey antibacterial compounds could offer a novel approach to overcoming antibiotic resistance by targeting and inhibiting β-lactamase enzymes. Full article
(This article belongs to the Special Issue Microbial Biofilms: Latest Advances and Prospects)
Show Figures

Figure 1

21 pages, 8553 KiB  
Article
Synthesis and Antifungal Activity of 1,2,4-Oxadiazole Derivatives
by Lili Yu, Kuan Yang, Lin Yao, Nana Wang, Hui Kang, Guangda Yao, Xiaomeng Li and Bei Qin
Molecules 2025, 30(8), 1851; https://doi.org/10.3390/molecules30081851 - 20 Apr 2025
Viewed by 1005
Abstract
1,2,4-Oxadiazole derivatives containing anisic acid or cinnamic acid were designed and synthesized, which were expected to be an effective Succinate dehydrogenase (SDH) inhibitor, and their structures were characterized by 1H NMR, 13C NMR, and ESI-MS. The antifungal activity of the compounds [...] Read more.
1,2,4-Oxadiazole derivatives containing anisic acid or cinnamic acid were designed and synthesized, which were expected to be an effective Succinate dehydrogenase (SDH) inhibitor, and their structures were characterized by 1H NMR, 13C NMR, and ESI-MS. The antifungal activity of the compounds against plant pathogenic fungi was screened by the mycelial growth inhibition test in vitro. Compounds 4f and 4q showed significant antifungal activities against Rhizoctonia solani (R. solani), Fusarium graminearum (F. graminearum), Exserohilum turcicum (E. turcicum), Botrytis cinerea (B. cinerea), and Colletotrichum capsica (C. capsica). The EC50 values of 4q were 38.88 μg/mL, 149.26 μg/mL, 228.99 μg/mL, and 41.67 μg/mL against R. solani, F. graminearum, E. turcicum, and C. capsica, respectively, and the EC50 values of 4f were 12.68 μg/mL, 29.97 μg/mL, 29.14 μg/mL, and 8.81 μg/mL, respectively. Compound 4f was better than commercial carbendazim against Exserohilum turcicum. Compounds 4f and 4q showed an antifungal effect on C. capsica of capsicum in vivo. Molecular docking simulation showed that 4f and 4q interacted with the target protein through the hydrogen bond and hydrophobic interaction, in which 4q can form hydrogen bonds with TRP173 and ILE27 of SDH, and 4f had hydrogen bonds with TYR58, TRP173, and SER39. This also explains the possible mechanism of action between the inhibitor and target protein. Full article
Show Figures

Figure 1

20 pages, 9197 KiB  
Article
Exosomal Delivery Enhances the Antiproliferative Effects of Acid-Hydrolyzed Apiaceae Spice Extracts in Breast Cancer Cells
by Jared L. Scott, Ramesh C. Gupta, Farrukh Aqil, Jeyaprakash Jeyabalan and David J. Schultz
Foods 2024, 13(17), 2811; https://doi.org/10.3390/foods13172811 - 4 Sep 2024
Cited by 1 | Viewed by 2251
Abstract
Breast cancer remains a leading cause of death worldwide. The Apiaceae plant family includes many culinary spices that have been shown to have medicinal properties. Many phytochemicals exhibit potent bioactivities but often suffer from poor uptake and oral bioavailability. Bovine milk and colostrum [...] Read more.
Breast cancer remains a leading cause of death worldwide. The Apiaceae plant family includes many culinary spices that have been shown to have medicinal properties. Many phytochemicals exhibit potent bioactivities but often suffer from poor uptake and oral bioavailability. Bovine milk and colostrum exosomes are a compelling drug delivery platform that could address this issue; these natural nanoparticles can be loaded with hydrophilic and lipophilic small molecules and biologics, resulting in lower doses needed to inhibit cancer growth. Ethanolic extracts of eight Apiaceae spices were examined for phytochemical content and antiproliferative potential. Acid hydrolysis (AH) was employed to remove glycosides, asses its impacts on extract efficacy, and evaluate its effects on exosome loading and subsequent formulation efficacy. Antiproliferative activity was assessed through MTT assays on T-47D, MDA-MB-231, and BT-474 breast cancer cells; all extracts exhibited broad antiproliferative activity. AH enhanced the bioactivity of cumin, caraway, and fennel in T-47D cells. Celery, cumin, anise, and ajwain showed the highest activity and were assayed in exosomal formulations, which resulted in reduced doses required to inhibit cellular proliferation for all extracts except AH-cumin. Apiaceae spice extracts demonstrated antiproliferative activities that can be improved with AH and further enhanced with exosomal delivery. Full article
Show Figures

Figure 1

16 pages, 4250 KiB  
Article
Investigating the Endophyte Actinomycetota sp. JW0824 Strain as a Potential Bioinoculant to Enhance the Yield, Nutritive Value, and Chemical Composition of Different Cultivars of Anise (Pimpinella anisum L.) Seeds
by Ahmed M. Mahmoud, Ahmed M. Reyad, Maha H. Khalaf, Mohamed S. Sheteiwy, Mona F. A. Dawood, Ahmed M. El-Sawah, Enas Shaban Ahmed, Abdul Malik, Wahidah H. Al-Qahtani, Mostafa A. Abdel-Maksoud, Nermien H. S. Mousa, Mohammed Alyafei and Hamada AbdElgawad
Biology 2024, 13(8), 553; https://doi.org/10.3390/biology13080553 - 23 Jul 2024
Cited by 12 | Viewed by 1896
Abstract
Anise (Pimpinella anisum L.) seeds have various nutritional and therapeutic benefits and are thus considered a valuable addition to animal and human health. Hence, in this study, we aimed to induce the nutritive and biological value of anise seeds. To this end, [...] Read more.
Anise (Pimpinella anisum L.) seeds have various nutritional and therapeutic benefits and are thus considered a valuable addition to animal and human health. Hence, in this study, we aimed to induce the nutritive and biological value of anise seeds. To this end, the potential biofortification effect of the endophytic Actinomycetota sp. JW0824 strain, isolated during the fall of 2023 from the medicinal plant Achyranthes aspera, exhibiting natural distribution in the Jazan region of Saudi Arabia, was investigated in four varieties of anise seeds from Egypt, Tunisia, Syria, and Morocco. Results revealed significant increments (p < 0.05) in the seed dry weight percentage (DW%) and oil yields. In line with increased biomass accumulation, the metabolism of the primary and secondary metabolites was increased. There were differential increases in proteins, sugars, flavonoids, alkaloids, phenols, vitamins (e.g., β-carotene, ascorbic acid), and essential oil components (e.g., phenylpropanoids and monoterpenes), along with their precursor phenylalanine. Consistently, the activity of L-phenylalanine aminolyase (PAL) was increased in the Egyptian and Tunisian varieties at 83.88% and 77.19%, respectively, while 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) activity increased in all varieties, with a significant 179.31% rise in the Egyptian variety. These findings highlight the beneficial effects of Actinomycetota sp. JW0824 as a bioinoculant for anise seeds, suggesting its potential application in agricultural practices to improve seed yield and quality. Further field trials are recommended to assess the commercial viability of this endophyte for enhancing anise seed production and potentially benefiting other plant species. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

12 pages, 1294 KiB  
Article
Contribution of Gamma-Aminobutyric Amino Acid and Free Amino Acids to Low-Salt Whole-Wheat Bread through the Addition of Spice Extracts—An Approach Based on Taste Quality
by Kumiko Hisaki, Chikae Sakamoto, Hina Matsui, Hiroshi Ueno and Yukiko Ueda
Foods 2024, 13(12), 1900; https://doi.org/10.3390/foods13121900 - 17 Jun 2024
Cited by 1 | Viewed by 1827
Abstract
Given the link between excessive salt consumption and hypertension, reducing salt levels in bread, an important staple food in Japan, is essential. γ-Aminobutyric acid (GABA) has a salty taste-enhancing effect in vivo, and its production is influenced by the type of spice extract [...] Read more.
Given the link between excessive salt consumption and hypertension, reducing salt levels in bread, an important staple food in Japan, is essential. γ-Aminobutyric acid (GABA) has a salty taste-enhancing effect in vivo, and its production is influenced by the type of spice extract in vitro. However, the effects of spices on GABA levels, total free amino acid composition, and taste quality in whole-wheat bread remain unclear. Therefore, this study aimed to investigate whether the addition of spice extracts, which do not affect bread flavor and taste, can increase the GABA level in low-salt whole-wheat bread and whether free amino acid content affects the taste quality of bread using an automatic home bread maker. Through free amino acid composition analysis and sensory testing, we evaluated the influence of six spice extracts on the composition of free amino acids, including GABA, in whole-wheat bread. We found that cumin and anise extracts were effective in increasing the GABA level to approximately twice that in whole-wheat bread. Moreover, both the preference and saltiness of the bread were favorable, indicating that these extracts are useful for reducing the salt content of whole-wheat bread. This study provides a theoretical basis for guiding industrial production. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

12 pages, 264 KiB  
Article
Effects of Different Essential Oil Blends and Fumaric Acid on In Vitro Fermentation, Greenhouse Gases, Nutrient Degradability, and Total and Molar Proportions of Volatile Fatty Acid Production in a Total Mixed Ration for Dairy Cattle
by Kelechi A. Ike, Oludotun O. Adelusi, Joel O. Alabi, Lydia K. Olagunju, Michael Wuaku, Chika C. Anotaenwere, Deborah O. Okedoyin, DeAndrea Gray, Peter A. Dele, Kiran Subedi, Ahmed E. Kholif and Uchenna Y. Anele
Agriculture 2024, 14(6), 876; https://doi.org/10.3390/agriculture14060876 - 31 May 2024
Cited by 11 | Viewed by 1507
Abstract
The present study evaluated the inclusion of fumaric acid and essential oil blends (EOBs) containing anise, cedarwood, clove, cumin, eucalyptus, garlic, ginger, lavender, lemongrass, nutmeg, oregano, and peppermint at different proportions on in vitro dry matter (DM) disappearance (DMD), fiber fraction disappearance, the [...] Read more.
The present study evaluated the inclusion of fumaric acid and essential oil blends (EOBs) containing anise, cedarwood, clove, cumin, eucalyptus, garlic, ginger, lavender, lemongrass, nutmeg, oregano, and peppermint at different proportions on in vitro dry matter (DM) disappearance (DMD), fiber fraction disappearance, the efficiency of microbial production, and the total volatile fatty acids (VFAs). Ten treatments without (control treatment) or with different EOB/fumaric combinations were used in the study with eight replicates. The EOB inclusion level was 200 μL/g of feed (total mixed ration, (TMR)) while fumaric acid was administered at 3% of the TMR (DM basis). The highest DMD, in vitro true degradable DM, partitioning factor (PF24), and in vitro apparent degradable DM were recorded for the fumaric only treatment and the control. Neutral detergent fiber disappearance was reduced with the inclusion of EOB/fumaric combinations. The production of microbial mass and undegraded DM were higher (p < 0.001) for all EOBs and EOB and fumaric treatments. The inclusion of EOB and fumaric combinations reduced (p < 0.001) the total gas production, methane, and ammonia, with a higher PF24 value noted for EOB3 treatment. The inclusion of individual EOB1 containing garlic, lemongrass, cumin, lavender, and nutmeg in a ratio of 4:2:2:1:1 or combined with fumaric acid yielded the highest propionate concentration across all treatments. We concluded that EOBs decreased methane production and nutrient degradability with better results with the individual EOB1 or EOB1/fumaric combination, which showed a potential enhancement in energy production. Full article
(This article belongs to the Section Farm Animal Production)
21 pages, 1151 KiB  
Review
Apiaceae Family an Important Source of Petroselinic Fatty Acid: Abundance, Biosynthesis, Chemistry, and Biological Proprieties
by Ahmed Hajib, Said El Harkaoui, Hasnae Choukri, Aya Khouchlaa, Sarra Aourabi, Naoual El Menyiy, Abdelhakim Bouyahya and Bertrand Matthaeus
Biomolecules 2023, 13(11), 1675; https://doi.org/10.3390/biom13111675 - 20 Nov 2023
Cited by 13 | Viewed by 3584
Abstract
Petroselinic fatty acid (PeFA) is considered a rare fatty acid and one of the most important fatty acids in the Apiaceae family. Its content varies depending on plant species, geographical origin, extraction method, ripeness, etc. Indeed, reported levels of petroselinic fatty acid range [...] Read more.
Petroselinic fatty acid (PeFA) is considered a rare fatty acid and one of the most important fatty acids in the Apiaceae family. Its content varies depending on plant species, geographical origin, extraction method, ripeness, etc. Indeed, reported levels of petroselinic fatty acid range from 10.4 to 75.6% (in anise seed oil), 1 to 81.9% (in coriander seed oil), 28.5 to 57.6% (in caraway seed oil), 49.4 to 75.6% (in celery seed oil), 41.3 to 61.8% (in caraway seed oil), 79.9 to 87.2% (in dill seed oil), 43.1 to 81.9% (in fennel seed oil), and 35 to 75.1% (parsley seed oil). In this review, we also show current knowledge about genes encoding biosynthesis, from the desaturation of 16:0-ACP to petroselinic acid stored in triacylglycerol in the seeds. Furthermore, petroselinic acid is not related to the synthesis of ABA. PeFA was successfully isolated from Apiaceae family plant seeds in order to study their reactivity and biological activities. Several investigations showed that this fatty acid has a wide range of biological potentials, including antidiabetic, antibacterial, and antifungal activities. In cosmetics, PeFA alone or in association with other active compounds has interesting applications as an anti-inflammatory agent for the treatment of skin, hair, and nail disorders. Full article
Show Figures

Figure 1

35 pages, 1779 KiB  
Review
A Comprehensive Review of the Pharmacology, Chemistry, Traditional Uses and Quality Control of Star Anise (Illicium verum Hook. F.): An Aromatic Medicinal Plant
by Qiyuan Zou, Yuanyuan Huang, Wenyan Zhang, Chen Lu and Jingquan Yuan
Molecules 2023, 28(21), 7378; https://doi.org/10.3390/molecules28217378 - 1 Nov 2023
Cited by 30 | Viewed by 7788
Abstract
Illicium verum Hook. F., also known as star anise, is one of the most important plants of the genus Anise in the family Magnoliaceae. I. verum not only has the functions of warming Yang, dispersing cold, regulating Qi and relieving pain but can [...] Read more.
Illicium verum Hook. F., also known as star anise, is one of the most important plants of the genus Anise in the family Magnoliaceae. I. verum not only has the functions of warming Yang, dispersing cold, regulating Qi and relieving pain but can also be used as a condiment to increase flavor as well as reconcile and remove fish smells. Currently, 201 chemical constituents have been identified from star anise; among these, star anise oil and shikimic acid are the two most widely used and studied chemical components in star anise, with the oil accounting for a large proportion of the total. This review integrates, classifies and updates studies related to the botany, pharmacology, phytochemistry, traditional and modern uses and quality control of star anise, with a special reference to its phytochemical composition and pharmacological activity. It will provide a reference for further research on this important medicinal plant. In addition, the broad applications and research profiles of star anise essential oil and shikimic acid are highlighted. Our review indicates that the research prospects regarding star anise are very broad and worthy of further investigation. Full article
Show Figures

Figure 1

13 pages, 1732 KiB  
Article
Convenient Solid-Phase Attachment of Small-Molecule Ligands to Oligonucleotides via a Biodegradable Acid-Labile P-N-Bond
by Nadezhda O. Kropacheva, Arseniy A. Golyshkin, Mariya A. Vorobyeva and Mariya I. Meschaninova
Molecules 2023, 28(4), 1904; https://doi.org/10.3390/molecules28041904 - 16 Feb 2023
Cited by 2 | Viewed by 2573
Abstract
One of the key problems in the design of therapeutic and diagnostic oligonucleotides is the attachment of small-molecule ligands for targeted deliveries in such a manner that provides the controlled release of the oligonucleotide at a certain moment. Here, we propose a novel, [...] Read more.
One of the key problems in the design of therapeutic and diagnostic oligonucleotides is the attachment of small-molecule ligands for targeted deliveries in such a manner that provides the controlled release of the oligonucleotide at a certain moment. Here, we propose a novel, convenient approach for attaching ligands to the 5′-end of the oligonucleotide via biodegradable, acid-labile phosphoramide linkage. The method includes the activation of the 5′-terminal phosphate of the fully protected, support-bound oligonucleotide, followed by interaction with a ligand bearing the primary amino group. This technique is simple to perform, allows for forcing the reaction to completion by adding excess soluble reactant, eliminates the problem of the limited solubility of reagents, and affords the possibility of using different solvents, including water/organic media. We demonstrated the advantages of this approach by synthesizing and characterizing a wide variety of oligonucleotide 5′-conjugates with different ligands, such as cholesterol, aliphatic oleylamine, and p-anisic acid. The developed method suits different types of oligonucleotides (deoxyribo-, 2′-O-methylribo-, ribo-, and others). Full article
Show Figures

Figure 1

33 pages, 4674 KiB  
Article
Antioxidant Activity and Phenolic Compound Identification and Quantification in Western Australian Honeys
by Ivan Lozada Lawag, Md Khairul Islam, Tomislav Sostaric, Lee Yong Lim, Katherine Hammer and Cornelia Locher
Antioxidants 2023, 12(1), 189; https://doi.org/10.3390/antiox12010189 - 12 Jan 2023
Cited by 38 | Viewed by 5880
Abstract
This study reports on the total phenolic content and antioxidant activity as well as the phenolic compounds that are present in Calothamnus spp. (Red Bell), Agonis flexuosa (Coastal Peppermint), Corymbia calophylla (Marri) and Eucalyptus marginata (Jarrah) honeys from Western Australia. The honey’s total [...] Read more.
This study reports on the total phenolic content and antioxidant activity as well as the phenolic compounds that are present in Calothamnus spp. (Red Bell), Agonis flexuosa (Coastal Peppermint), Corymbia calophylla (Marri) and Eucalyptus marginata (Jarrah) honeys from Western Australia. The honey’s total phenolic content (TPC) was determined using a modified Folin–Ciocalteu assay, while their total antioxidant activity was determined using FRAP and DPPH assays. Phenolic constituents were identified using a High Performance Thin-Layer Chromatography (HTPLC)-derived phenolic database, and the identified phenolic compounds were quantified using HPTLC. Finally, constituents that contribute to the honeys’ antioxidant activity were identified using a DPPH-HPTLC bioautography assay. Based on the results, Calothamnus spp. honey (n = 8) was found to contain the highest (59.4 ± 7.91 mg GAE/100 g) TPC, followed by Eucalyptus marginata honey (50.58 ± 3.76 mg GAE/100 g), Agonis flexuosa honey (36.08 ± 4.2 mg GAE/100 g) and Corymbia calophylla honey (29.15 ± 5.46 mg GAE/100 g). In the FRAP assay, Calothamnus spp. honey also had the highest activity (9.24 ± 1.68 mmol Fe2+/kg), followed by Eucalyptus marginata honey (mmol Fe2+/kg), whereas Agonis flexuosa (5.45 ± 1.64 mmol Fe2+/kg) and Corymbia calophylla honeys (4.48 ± 0.82 mmol Fe2+/kg) had comparable FRAP activity. In the DPPH assay, when the mean values were compared, it was found that Calothamnus spp. honey again had the highest activity (3.88 ± 0.96 mmol TE/kg) while the mean DPPH antioxidant activity of Eucalyptus marginata, Agonis flexuosa, and Corymbia calophylla honeys were comparable. Kojic acid and epigallocatechin gallate were found in all honeys, whilst other constituents (e.g., m-coumaric acid, lumichrome, gallic acid, taxifolin, luteolin, epicatechin, hesperitin, eudesmic acid, syringic acid, protocatechuic acid, t-cinnamic acid, o-anisic acid) were only identified in some of the honeys. DPPH-HPTLC bioautography demonstrated that most of the identified compounds possess antioxidant activity, except for t-cinnamic acid, eudesmic acid, o-anisic acid, and lumichrome. Full article
(This article belongs to the Special Issue Antioxidant Activity of Honey Bee Products)
Show Figures

Figure 1

31 pages, 11315 KiB  
Article
Determination and Quantification of Phytochemicals from the Leaf Extract of Parthenium hysterophorus L. and Their Physio-Biochemical Responses to Several Crop and Weed Species
by HM Khairul Bashar, Abdul Shukor Juraimi, Muhammad Saiful Ahmad-Hamdani, Md. Kamal Uddin, Norhayu Asib, Md. Parvez Anwar, Ferdoushi Rahaman, SM Rezaul Karim, Mohammad Amdadul Haque, Zulkarami Berahim, Nik Amelia Nik Mustapha and Akbar Hossain
Plants 2022, 11(23), 3209; https://doi.org/10.3390/plants11233209 - 23 Nov 2022
Cited by 11 | Viewed by 3249
Abstract
This current investigation was undertaken both in laboratory and glasshouse for documentation and quantification of phytochemicals from different parts of the parthenium (Parthenium hysterophorus L.) plant through LC-MS and HPLC to study their effect on two crops namely, Bambara groundnut (Vigna [...] Read more.
This current investigation was undertaken both in laboratory and glasshouse for documentation and quantification of phytochemicals from different parts of the parthenium (Parthenium hysterophorus L.) plant through LC-MS and HPLC to study their effect on two crops namely, Bambara groundnut (Vigna subterranean L.) and maize (Zea mays L.), and six different types of weed e.g., Digitaria sanguinalis, Eleusine indica, Ageratum conyzoides, Cyperus iria, Euphorbia hirta, and Cyperus difformis. The parthenium methanolic leaf extracts at 25, 50, 75, and 100 g L−1 were sprayed in the test crops and weeds to assess their physiological and biochemical reactions after 6, 24, 48, and 72 h of spraying these compounds (HAS). The LC-MS analysis confirmed seven types of phytochemicals (caffeic acid, ferulic acid, vanillic acid, parthenin, chlorogenic acid, quinic acid, and p-anisic acid) in the parthenium leaf extract that were responsible for the inhibition of tested crops and weeds. From the HPLC analysis, higher amounts in leaf methanol extracts (40,752.52 ppm) than those of the stem (2664.09 ppm) and flower extracts (30,454.33 ppm) were recorded. Parthenium leaf extract at 100 g L−1 had observed higher phytotoxicity on all weed species except C. difformis. However, all crops were found safe under this dose of extraction. Although both crops were also affected to some extent, they could recover from the stress after a few days. The photosynthetic rate, transpiration rate, stomatal conductance, carotenoid and chlorophyll content were decreased due to the application of parthenium leaf extract. However, when parthenium leaf extract was applied at 100 g L−1 for 72 h, the malondialdehyde (MDA) and proline content were increased in all weeds. Enzymatic antioxidant activity (e.g., superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) contents) were also elevated as a result of the sprayed parthenium leaf extract. The negative impact of physiological and biochemical responses as a consequence of the parthenium leaf extract led the weed species to be stressed and finally killed. The current findings show the feasibility of developing bioherbicide from the methanolic extract of parthenium leaf for controlling weeds, which will be cost-effective, sustainable, and environment friendly for crop production during the future changing climate. Full article
(This article belongs to the Special Issue New Insights into Plants' Defense Mechanisms against Abiotic Stresses)
Show Figures

Figure 1

15 pages, 7135 KiB  
Article
Antioxidant, Anti-Obesity, and Hypolipidemic Effects of Polyphenol Rich Star Anise (Illicium verum) Tea in High-Fat-Sugar Diet-Induced Obesity Rat Model
by Neelam Iftikhar, Abdullah Ijaz Hussain, Ghulam Mustafa Kamal, Sidra Manzoor, Tabinda Fatima, Farhan Khashim Alswailmi, Ashfaq Ahmad, Bader Alsuwayt and Sulaiman Mohammed Abdullah Alnasser
Antioxidants 2022, 11(11), 2240; https://doi.org/10.3390/antiox11112240 - 14 Nov 2022
Cited by 24 | Viewed by 4605
Abstract
Star anise (Illicium verum Hook. fil.) is commonly utilized as a culinary and medicinal fruit and is most famous in indigenous systems of medicine. The present research work aims to appraise and validate the potential of polyphenol-rich star anise tea (SAT) on [...] Read more.
Star anise (Illicium verum Hook. fil.) is commonly utilized as a culinary and medicinal fruit and is most famous in indigenous systems of medicine. The present research work aims to appraise and validate the potential of polyphenol-rich star anise tea (SAT) on oxidative stress, obesity and related biochemical parameters in high-fat-sugar-diet (HFSD)-induced obesity model in rats. SAT was prepared using the traditional method in warm water. The Reverse Phase High Pressure Liquid Chromatography (RP-HPLC) analysis was performed for the simultaneous determination of phenolic acids and flavonoids in SAT. Two doses (250 and 500 mg/kg body weight) were selected to investigate the anti-obesity potential of SAT using HFSD-induced obese rat model. Major (>5 mg/100 mL) phenolic acids in SAT were p-coumeric acid, gallic aid, cinamic acid, chlorogenic acid and ferulic acid while catechin and rutin were the major flavonoids detected in the SAT. SAT exhibited 51.3% DPPH radical scavenging activity. In vivo study showed that higher doses of SAT (500 mg/kg body weight) significantly reduced the body weight increase (74.82%) and BMI (0.64 g/cm2). Moreover, significant reductions in the levels of serum total cholesterol, triglyceride, LDL and VLDL were recorded in all the treatment groups in comparison to the HFSDC group. Furthermore, SAT reduced the alterations in MDA, SOD and GSH levels of experimental groups thus showing the potential against oxidative stress. The SAT-500 group showed a significant decrease in the elevated kidney and liver weights and atherogenic index in comparison to the HFSDC group. The present study proved that SAT exhibited strong protective effects against obesity and oxidative stress, especially at higher doses. Full article
Show Figures

Figure 1

14 pages, 842 KiB  
Article
Nutritive and Phytochemical Composition of Aromatic Microgreen Herbs and Spices Belonging to the Apiaceae Family
by Maria Giordano, Spyridon A. Petropoulos, Marios C. Kyriacou, Giulia Graziani, Armando Zarrelli, Youssef Rouphael and Christophe El-Nakhel
Plants 2022, 11(22), 3057; https://doi.org/10.3390/plants11223057 - 11 Nov 2022
Cited by 17 | Viewed by 3605
Abstract
Microgreens represent a new generation of food products, commonly used to garnish and embellish culinary dishes, and recently associated with an increasing interest in their nutraceutical and phytochemical profiles. Four Apiaceae species: Pimpinella anisum L. (anise), Anthriscus cerefolium L. (chervil), Carum carvi L. [...] Read more.
Microgreens represent a new generation of food products, commonly used to garnish and embellish culinary dishes, and recently associated with an increasing interest in their nutraceutical and phytochemical profiles. Four Apiaceae species: Pimpinella anisum L. (anise), Anthriscus cerefolium L. (chervil), Carum carvi L. (caraway), and Anethum graveolens L. (dill) were assessed for fresh yield, macro- and microminerals, total chlorophylls, total ascorbic acid, carotenoids, polyphenols, and their antioxidant activity. Anise was the species yielding the most (2.53 kg m−2) and having the highest lutein content (18.4 µg g−1 dry weight (DW)). Chervil and dill were characterized by the highest total ascorbic acid content (~151 mg AA g−1 fresh weight (FW)). The phenolic profile highlighted the presence of five flavonoid derivatives and 12 phenolic acid derivatives, with quinic acid derivatives being the most abundant phenols in the species tested. In addition, anise, caraway, and dill proved to be considerably rich in total polyphenols (~11056 μg g−1 DW). Caraway and dill were characterized by the highest antioxidant activity measured by the DPPH and ABTS methods, whereas the FRAP method revealed caraway as having the highest antioxidant activity. Such results highlight the potential of Apiaceae species as an alternative to other families which are commonly used for microgreens production. Full article
Show Figures

Figure 1

22 pages, 22448 KiB  
Article
Morpho-Physiological and Biochemical Responses of Hydroponically Grown Basil Cultivars to Salt Stress
by Michele Ciriello, Luigi Formisano, Marios C. Kyriacou, Petronia Carillo, Luca Scognamiglio, Stefania De Pascale and Youssef Rouphael
Antioxidants 2022, 11(11), 2207; https://doi.org/10.3390/antiox11112207 - 8 Nov 2022
Cited by 9 | Viewed by 2613
Abstract
Depending on duration and magnitude, abiotic stresses interfere with plant metabolic processes and may severely impact developmental and qualitative attributes. In this study, in addition to characterizing three different cultivars of basil (‘Anise’, ‘Cinnamon’, and ‘Lemon’) grown under hydroponics, we appraised the impact [...] Read more.
Depending on duration and magnitude, abiotic stresses interfere with plant metabolic processes and may severely impact developmental and qualitative attributes. In this study, in addition to characterizing three different cultivars of basil (‘Anise’, ‘Cinnamon’, and ‘Lemon’) grown under hydroponics, we appraised the impact of NaCl salt stress (60 mM) on morphophysiological and nutraceutical properties of the basil crop. Salt stress significantly reduced fresh yield (51.54%, on average) and photosynthetic parameters (ACO2, E, and gs) in all cultivars by raising tissue concentrations of Na+ and Cl. In addition to reducing the concentration of nitrate (77.21%), NaCl salt stress increased the concentrations of key bioactive molecules, notably carotenoids (lutein and β-carotene), phenolic acids, and flavonoid derivatives, thus resulting in a higher antioxidant activity of salt-treated basil plants compared to the untreated ones. Analysis by UHPLC revealed that cichoric acid was the most abundant polyphenolic compound in all basil cultivars, with the highest values recorded in ‘Cinnamon’. Full article
Show Figures

Figure 1

Back to TopTop