Antioxidant, Anti-Obesity, and Hypolipidemic Effects of Polyphenol Rich Star Anise (Illicium verum) Tea in High-Fat-Sugar Diet-Induced Obesity Rat Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Identification of Plant Materials
2.2. Reagents, Reference Compounds and Chemicals
2.3. Preparation of Star Anise Tea
2.4. Simultaneous HPLC ANALYSIS of Phenolic Acids and Flavonoids
2.5. In Vitro Antioxidant Activity
2.5.1. Determination of Total Phenolic and Flavonoid Contents
2.5.2. DPPH Free Radical Scavenging Capacity
2.6. In Vivo Anti-Obesity Activity
2.6.1. Composition of Normal and High Fat Diet for Rats
2.6.2. Animals and Experimental Design
2.7. Observations Recorded
2.7.1. Obesity Parameters
2.7.2. Collection of Blood and Tissues Samples
2.8. Biochemical Investigations
2.8.1. Estimation of Cholesterol
2.8.2. Estimation of Oxidative Stress Parameters
2.8.3. Estimation of Liver and Kidney Functions
2.9. Histopathology of Liver and Kidney Tissues
2.10. Statistical Analysis
3. Results and Discussion
3.1. Aqueous Extract Yield and Antioxidant Activity
3.2. HPLC Analysis of Phenolic Acids and Flavonoids
3.3. Effect of SAT on a High-Fat Diet-Induced Obesity Model
3.3.1. Effect on Body Weight, Organs Weights and Their Indexes
3.3.2. Effect on Serum Lipid Profile
3.3.3. Effect on Oxidative Stress Parameters
3.3.4. Effect on Serum Levels of Liver and Kidney Enzymes
3.4. Histopathological Evidence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez-Pérez, C.; Segura-Carretero, A.; del Mar Contreras, M. Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1212–1229. [Google Scholar] [CrossRef] [PubMed]
- Hasani-Ranjbar, S.; Jouyandeh, Z.; Abdollahi, M. A systematic review of anti-obesity medicinal plants-an update. J. Diabetes Metab. Disord. 2013, 12, 28. [Google Scholar] [CrossRef] [Green Version]
- Jabri, M.-A.; Sakly, M.; Marzouki, L.; Sebai, H. Chamomile (Matricaria recutita L.) decoction extract inhibits in vitro intestinal glucose absorption and attenuates high fat diet-induced lipotoxicity and oxidative stress. Biomed. Pharmacother. 2017, 87, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Ali, E.S.; Mubarak, M.S. Anti-obesity effect of plant diterpenes and their derivatives: A review. Phytother. Res. 2020, 34, 1216–1225. [Google Scholar] [CrossRef] [PubMed]
- Boccellino, M.; D’Angelo, S. Anti-obesity effects of polyphenol intake: Current status and future possibilities. Int. J. Mol. Sci. 2020, 21, 5642. [Google Scholar] [CrossRef]
- Kwok, S.; Adam, S.; Ho, J.H.; Iqbal, Z.; Turkington, P.; Razvi, S.; Le Roux, C.W.; Soran, H.; Syed, A.A. Obesity: A critical risk factor in the COVID-19 pandemic. Clin. Obes. 2020, 10, e12403. [Google Scholar] [CrossRef]
- Alberca, R.W.; Oliveira, L.D.M.; Branco, A.C.C.C.; Pereira, N.Z.; Sato, M.N. Obesity as a risk factor for COVID-19: An overview. Crit. Rev. Food Sci. Nutr. 2021, 61, 2262–2276. [Google Scholar] [CrossRef]
- Sattar, N.; Valabhji, J. Obesity as a risk factor for severe COVID-19: Summary of the best evidence and implications for health care. Curr. Obes. Rep. 2021, 10, 282–289. [Google Scholar] [CrossRef]
- Chien, M.-Y.; Ku, Y.-H.; Chang, J.-M.; Yang, C.-M.; Chen, C.-H. Effects of herbal mixture extracts on obesity in rats fed a high-fat diet. J. Food Drug Anal. 2016, 24, 594–601. [Google Scholar] [CrossRef] [Green Version]
- Kang, N.L. Association between obesity and blood pressure in common Korean people. Vasc. Health Risk Manag. 2021, 17, 371. [Google Scholar] [CrossRef]
- Mahmoud, R.; Elnour, W. Comparative evaluation of the efficacy of ginger and orlistat on obesity management, pancreatic lipase and liver peroxisomal catalase enzyme in male albino rats. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 75–83. [Google Scholar] [PubMed]
- Rufino, A.T.; Costa, V.M.; Carvalho, F.; Fernandes, E. Flavonoids as antiobesity agents: A review. Med. Res. Rev. 2020, 41, 556–585. [Google Scholar] [CrossRef] [PubMed]
- Shang, A.; Gan, R.Y.; Xu, X.Y.; Mao, Q.Q.; Zhang, P.Z.; Li, H.B. Effects and mechanisms of edible and medicinal plants on obesity: An updated review. Crit. Rev. Food Sci. Nutr. 2020, 61, 2061–2077. [Google Scholar] [CrossRef] [PubMed]
- Ezzat, S.M.; El Bishbishy, M.H.; Aborehab, N.M.; Salama, M.M.; Hasheesh, A.; Motaal, A.A.; Rashad, H.; Metwally, F.M. Upregulation of MC4R and PPAR-α expression mediates the anti-obesity activity of Moringa oleifera Lam. in high-fat diet-induced obesity in rats. J. Ethnopharmacol. 2020, 251, 112541. [Google Scholar] [CrossRef]
- Hussain, A.I.; Rathore, H.A.; Sattar, M.Z.; Chatha, S.A.; ud din Ahmad, F.; Ahmad, A.; Johns, E.J. Phenolic profile and antioxidant activity of various extracts from Citrullus colocynthis (L.) from the Pakistani flora. Ind. Crop. Prod. 2013, 45, 416–422. [Google Scholar] [CrossRef]
- Iftikhar, N.; Hussain, A.I.; Chatha, S.A.S.; Sultana, N.; Rathore, H.A. Effects of polyphenol-rich traditional herbal teas on obesity and oxidative stress in rats fed a high-fat-sugar diet. Food Sci. Nutr. 2022, 10, 698–711. [Google Scholar] [CrossRef]
- Saravanan, G.; Ponmurugan, P.; Deepa, M.A.; Senthilkumar, B. Anti-obesity action of gingerol: Effect on lipid profile, insulin, leptin, amylase and lipase in male obese rats induced by a high-fat diet. J. Sci. Food Agric. 2014, 94, 2972–2977. [Google Scholar] [CrossRef]
- Sarikahya, N.B.; Varol, E.; Okkali, G.S.; Yucel, B.; Margaoan, R.; Nalbantsoy, A. Phenolic profile and chemical content of propolis samples in different colors from Turkiye. Antioxiants 2022, 10, 2075. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.F.; Wang, L.; Tan, J.; Li, R.; Jiang, Z.T.; Tang, S.H.; Li, T.T. Improvement of the stabilities and antioxidant activities of polyphenols from the leaves of Chinese star anise (Illicium verum Hook. f.) using β-cyclodextrin-based metal-organic frameworks. J. Sci. Food Agric. 2021, 101, 287–296. [Google Scholar]
- Aly, S.E.; Sabry, B.A.; Shaheen, M.S.; Hathout, A.S. Assessment of antimycotoxigenic and antioxidant activity of star anise (Illicium verum) in vitro. J. Saudi Soc. Agric. Sci. 2016, 15, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.-W.; Hu, W.-T.; Huang, B.-K.; Qin, L.-P. Illicium verum: A review on its botany, traditional use, chemistry and pharmacology. J. Ethnopharmacol. 2011, 136, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Guo, X.; Liang, H.; Sun, P. Microwave-assisted extraction and antioxidant activity of star anise oil from I llicium verum Hook. f. Int. J. Food Sci. Technol. 2013, 48, 2324–2330. [Google Scholar]
- FAE Ghozy, S. Protective Effect of Star Anise Seeds on Cadmium Induced Changes on Biochemical Parameters of Rat. J. Spec. Educ. Res. 2017, 2017, 593–621. [Google Scholar] [CrossRef]
- Kamoun, J.; Krichen, F.; Koubaa, I.; Zouari, N.; Bougatef, A.; Abousalham, A.; Aloulou, A. In vitro lipolysis and physicochemical characterization of unconventional star anise oil towards the development of new lipid-based drug delivery systems. Heliyon 2021, 7, e06717. [Google Scholar] [CrossRef]
- Miró-Andreu, A.; Lopez-Bernabe, R.; Garnés Sánchez, M.C.; Maeztu Sardiña, M.C. New cases of star anise poisoning: Are we providing enough information? Neurologia 2019, 34, 211–213. [Google Scholar]
- Salem, M.A.; El-Shiekh, R.A.; Hashem, R.A.; Hassan, M. In vivo antibacterial activity of star anise (Illicium verum Hook.) Extract Using Murine MRSA skin infection model in relation to its metabolite profile. Infect. Drug Resist. 2021, 14, 33. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, G.; Chen, K.; Chen, X.; Hong, Q.; Kan, J. Assessment of fresh star anise (Illicium verum Hook. f.) drying methods for influencing drying characteristics, color, flavor, volatile oil and shikimic acid. Food Chem. 2021, 342, 128359. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Survey on Chemical Constituent, Traditional and Modern Pharmaceutical and Health Benefits of Chinese Star Anise, a Treasure from the East. Pharmacogn. Commun. 2021, 11, 31–35. [Google Scholar] [CrossRef]
- Nuutila, A.M.; Kammiovirta, K.; Oksman-Caldentey, K.M. Comparison of methods for the hydrolysis of flavonoids and phenolic acids from onion and spinach for HPLC analysis. Food Chem. 2002, 76, 519–525. [Google Scholar] [CrossRef]
- Haque, R.A.; Hasanudin, N.; Iqbal, M.A.; Ahmad, A.; Hashim, S.; Abdul Majid, A.; Ahamed, M.B.K. Synthesis, crystal structures, in vitro anticancer, and in vivo acute oral toxicity studies of bis-imidazolium/benzimidazolium salts and respective dinuclear Ag(I)-N-heterocyclic carbene complexes. J. Coord. Chem. 2013, 66, 3211–3228. [Google Scholar] [CrossRef]
- Goyal, R.K.; Kadnur, S.V. Beneficial effects of Zingiber officinale on goldthioglucose induced obesity. Fitoterapia 2006, 77, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, H.-J. Evaluation of the biological activity of extracts from star-anise (Illicium verum). Prev. Nutr. Food Sci. 2009, 14, 195–200. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Chawla, S.; Sharma, A. Antioxidant and radio-protective activities of lemon grass and star anise extracts. Food Biosci. 2014, 6, 24–30. [Google Scholar] [CrossRef]
- Oh, J.; Jo, H.; Cho, A.R.; Kim, S.-J.; Han, J. Antioxidant and antimicrobial activities of various leafy herbal teas. Food Control 2013, 31, 403–409. [Google Scholar] [CrossRef]
- Hernández-Saavedra, D.; Pérez-Ramírez, I.F.; Ramos-Gómez, M.; Mendoza-Díaz, S.; Loarca-Pina, G.; Reynoso-Camacho, R. Phytochemical characterization and effect of Calendula officinalis, Hypericum perforatum, and Salvia officinalis infusions on obesity-associated cardiovascular risk. Med. Chem. Res. 2016, 25, 163–172. [Google Scholar] [CrossRef]
- Velez-Carrasco, W.; Merkel, M.; Twiss, C.O.; Smith, J.D. Dietary methionine effects on plasma homocysteine and HDL metabolism in mice. J. Nutr. Biochem. 2008, 19, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Nammi, S.; Sreemantula, S.; Roufogalis, B.D. Protective effects of ethanolic extract of Zingiber officinale rhizome on the development of metabolic syndrome in high-fat diet-fed rats. Basic Clin. Pharmacol. Toxicol. 2009, 104, 366–373. [Google Scholar] [CrossRef]
- Hosen, M.B.; Islam, M.R.; Begum, F.; Kabir, Y.; Howlader, M.Z.H. Oxidative stress induced sperm DNA damage, a possible reason for male infertility. Iran. J. Reprod. Med. 2015, 13, 525. [Google Scholar]
- Wang, C.; Chan, J.S.; Ren, L.; Yan, J.H. Obesity reduces cognitive and motor functions across the lifespan. Neural Plast. 2016, 2016, 2473081. [Google Scholar] [CrossRef] [Green Version]
- Rice-Evans, C.; Miller, N. Measurement of the antioxidant status of dietary constituents, low density lipoproteins and plasma. Prostaglandins Leukot. Essent. Fat. Acids 1997, 57, 499–505. [Google Scholar] [CrossRef]
- Vamanu, E. Polyphenolic nutraceuticals to combat oxidative stress through microbiota modulation. Front. Pharmacol. 2019, 10, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karadag, F.; Sengul, C.B.; Enli, Y.; Karakulah, K.; Alacam, H.; Kaptanoglu, B.; Kalkanci, O.; Herken, H. Relationship between serum bilirubin levels and metabolic syndrome in patients with schizophrenia spectrum disorders. Clin. Psychopharmacol. Neurosci. 2017, 15, 153. [Google Scholar] [CrossRef] [PubMed]
- Jenko-Pražnikar, Z.; Petelin, A.; Jurdana, M.; Žiberna, L. Serum bilirubin levels are lower in overweight asymptomatic middle-aged adults: An early indicator of metabolic syndrome? Metabolism 2013, 62, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Ryu, S.; Zhang, Y.; Son, H.J.; Kim, J.-Y.; Cho, J.; Guallar, E. A cohort study of serum bilirubin levels and incident non-alcoholic fatty liver disease in middle aged Korean workers. PLoS ONE 2012, 7, e37241. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y.; Fukusato, T. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol. 2014, 20, 15539. [Google Scholar] [CrossRef]
Assays | Star Anise | BHT |
---|---|---|
Extract Yield (g/100g) | 4.83 ± 0.28 | ---- |
TP (mg/g) | 0.83 ± 0.05 | ---- |
TF (mg/g) | 1.24 ± 0.08 | ---- |
DPPH radical scavenging activity (%) | 51.3 ± 2.3 a | 89 ± 4 c |
Compounds | Concentration of Compounds (mg/100 mL of Tea) |
---|---|
Gallic acid | 35.24 ± 1.67 |
4-Hydroxybenzoic acid | 2.99 ± 0.15 |
Catechin | 85.51 ± 3.45 |
Chlorogenic acid | 8.79 ± 0.40 |
Caffeic acid | 1.87 ± 0.09 |
Syringic acid | 0.63 ± 0.03 |
Vanillic acid | 8.58 ± 0.45 |
p-Coumaric acid | 74.16 ± 2.36 |
Salicylic acid | 3.69 ± 0.19 |
Rutin | 67.91 ± 2.23 |
Sinapic acid | 0.93 ± 0.07 |
Ferulic acid | 6.15 ± 0.24 |
Ellagic acid | 0.91 ± 0.05 |
Cinamic acid | 10.85 ± 0.42 |
Benzoic acid | 0.97 ± 0.05 |
Myricetin | 0.41 ± 0.02 |
Quercetin | 5.52 ± 0.13 |
Kaempferol | 2.44 ± 0.13 |
Groups | Body Weight | BMI (g/cm2) | Kidney Weight (g) | Kidney Index (%) | Liver Weight (g) | Liver Index (%) | ||
---|---|---|---|---|---|---|---|---|
Initial (g) | Final (g) | Increase (%) | ||||||
NC | 155 ± 15 aa | 218 ± 12 ab | 41 | 0.60 ± 0 b | 1.6 ± 0.2 a | 0.71 | 7 ± 1 a | 3.17 |
HFDC | 143 ± 14 aa | 285 ± 12 bb | 99 | 0.79 ± 0.0 d | 1.7 ± 0.2 a | 0.61 | 10 ± 1 b | 3.54 |
PC | 145 ± 11 aa | 228 ± 21 ab | 57 | 0.57 ± 0.0 ab | 1.6 ± 0.2 a | 0.68 | 8 ± 1 ab | 3.45 |
SA-250 | 147 ± 12 aa | 270 ± 11 bb | 84 | 0.68 ± 0.0 c | 1.7 ± 0.2 a | 0.61 | 9 ± 1 ab | 3.49 |
SA-500 | 147 ± 11 aa | 257 ± 11 abb | 75 | 0.64 ± 0.0 bc | 1.7 ± 0.2 a | 0.64 | 8 ± 1 ab | 3.41 |
Groups | Oxidative Stress Parameters | |||
---|---|---|---|---|
MDA (nmol/L) | SOD (U/mL) | GSH (mg/L) | TAC (mmol/L) | |
NC | 2.7 ± 0.2 | 159.0 ± 8.2 | 160.1 ± 11 | 1.90 ± 0.2 |
HFDC | 7.0 ± 0.4 * | 120.1 ± 9.3 * | 123.7 ± 10 * | 1.42 ± 0.1 * |
PC | 3.2 ± 0.2 *# | 137.1 ± 8.0 * | 149.2 ± 9 *# | 1.70 ± 0.2 # |
SA-250 | 4.8 ± 0.2 *# | 129.0 ± 10.1 * | 139.0 ± 7 * | 1.50 ± 0.1 |
SA-500 | 3.9 ± 0.3 *# | 133.3 ± 10.4 * | 145.0 ± 9 # | 1.63 ± 0.1 *# |
Groups | Liver Parameters | Kidney Parameters | |||
---|---|---|---|---|---|
AST (µ/L) | ALT) (µ/L) | BT (mg/dL) | AP (µ/L) | SC (mg/dL) | |
NC | 63.3 ± 5 | 81.7 ± 4 | 0.45 ± 0.05 | 143 ± 10 | 0.41 ± 0.06 |
HFDC | 98.9 ± 5 * | 82.3 ± 5 | 0.28 ± 0.02 * | 164 ± 9 * | 0.56 ± 0.04 * |
PC | 63.0 ± 6 # | 62.5 ± 4 *# | 0.38 ± 0.03 # | 152 ±11 | 0.42 ± 0.06 # |
SA-250 | 88.4 ± 4 *# | 77.1 ± 3 | 0.31 ± 0.03 * | 158 ± 15 | 0.44 ± 0.05 # |
SA-500 | 74.4 ± 5 *# | 71.4 ± 4 *# | 0.34 ± 0.03 *# | 153 ± 15 | 0.41 ± 0.02 # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iftikhar, N.; Hussain, A.I.; Kamal, G.M.; Manzoor, S.; Fatima, T.; Alswailmi, F.K.; Ahmad, A.; Alsuwayt, B.; Abdullah Alnasser, S.M. Antioxidant, Anti-Obesity, and Hypolipidemic Effects of Polyphenol Rich Star Anise (Illicium verum) Tea in High-Fat-Sugar Diet-Induced Obesity Rat Model. Antioxidants 2022, 11, 2240. https://doi.org/10.3390/antiox11112240
Iftikhar N, Hussain AI, Kamal GM, Manzoor S, Fatima T, Alswailmi FK, Ahmad A, Alsuwayt B, Abdullah Alnasser SM. Antioxidant, Anti-Obesity, and Hypolipidemic Effects of Polyphenol Rich Star Anise (Illicium verum) Tea in High-Fat-Sugar Diet-Induced Obesity Rat Model. Antioxidants. 2022; 11(11):2240. https://doi.org/10.3390/antiox11112240
Chicago/Turabian StyleIftikhar, Neelam, Abdullah Ijaz Hussain, Ghulam Mustafa Kamal, Sidra Manzoor, Tabinda Fatima, Farhan Khashim Alswailmi, Ashfaq Ahmad, Bader Alsuwayt, and Sulaiman Mohammed Abdullah Alnasser. 2022. "Antioxidant, Anti-Obesity, and Hypolipidemic Effects of Polyphenol Rich Star Anise (Illicium verum) Tea in High-Fat-Sugar Diet-Induced Obesity Rat Model" Antioxidants 11, no. 11: 2240. https://doi.org/10.3390/antiox11112240
APA StyleIftikhar, N., Hussain, A. I., Kamal, G. M., Manzoor, S., Fatima, T., Alswailmi, F. K., Ahmad, A., Alsuwayt, B., & Abdullah Alnasser, S. M. (2022). Antioxidant, Anti-Obesity, and Hypolipidemic Effects of Polyphenol Rich Star Anise (Illicium verum) Tea in High-Fat-Sugar Diet-Induced Obesity Rat Model. Antioxidants, 11(11), 2240. https://doi.org/10.3390/antiox11112240