Effects of Different Essential Oil Blends and Fumaric Acid on In Vitro Fermentation, Greenhouse Gases, Nutrient Degradability, and Total and Molar Proportions of Volatile Fatty Acid Production in a Total Mixed Ration for Dairy Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Animals and Management
2.3. Ingredients and Treatments and Chemical Analysis
2.4. In Vitro Batch Culture, Degradability, and Gas Measurements
2.5. Microbial Mass Analysis
2.6. Measurement of Volatile Fatty Acids
2.7. Statistical Analysis
3. Results
3.1. In Vitro Nutrient Disappearance and Fermentation Parameters
3.2. Biogas Production
3.3. Volatile Fatty Acid Production
3.4. Fiber Degradability
4. Discussion
4.1. In Vitro Nutrient Disappearance and Fermentation Parameters
4.2. Biogases Production
4.3. Volatile Fatty Acid Production
4.4. Fiber Degradability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kholif, A.E. A Review of Effect of Saponins on Ruminal Fermentation, Health and Performance of Ruminants. Vet. Sci. 2023, 10, 450. [Google Scholar] [CrossRef] [PubMed]
- Króliczewska, B.; Pecka-Kiełb, E.; Bujok, J. Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and Issues. Agriculture 2023, 13, 602. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional Management for Enteric Methane Abatement: A Review. Aust. J. Exp. Agric. 2008, 48, 21. [Google Scholar] [CrossRef]
- Ghimpețeanu, O.M.; Pogurschi, E.N.; Popa, D.C.; Dragomir, N.; Drăgotoiu, T.; Mihai, O.D.; Petcu, C.D. Antibiotic Use in Livestock and Residues in Food—A Public Health Threat: A Review. Foods 2022, 11, 1430. [Google Scholar] [CrossRef]
- Kholif, A.E.; Olafadehan, O.A. Essential Oils and Phytogenic Feed Additives in Ruminant Diet: Chemistry, Ruminal Microbiota and Fermentation, Feed Utilization and Productive Performance. Phytochem. Rev. 2021, 20, 1087–1108. [Google Scholar] [CrossRef]
- Elghandour, M.M.Y.; Kholif, A.E.; Salem, A.Z.M.; Montes de Oca, R.; Barbabosa, A.; Mariezcurrena, M.; Olafadehan, O.A. Addressing Sustainable Ruminal Methane and Carbon Dioxide Emissions of Soybean Hulls by Organic Acid Salts. J. Clean. Prod. 2016, 135, 194–200. [Google Scholar] [CrossRef]
- Shaaban, M.M.; Kholif, A.E.; Abd El Tawab, A.M.; Radwan, M.A.; Hadhoud, F.I.; Khattab, M.S.A.; Saleh, H.M.; Anele, U.Y. Thyme and Celery as Potential Alternatives to Ionophores Use in Livestock Production: Their Effects on Feed Utilization, Growth Performance and Meat Quality of Barki Lambs. Small Rumin. Res. 2021, 200, 106400. [Google Scholar] [CrossRef]
- Khattab, M.S.A.A.; Kholif, A.E.; Abd El Tawab, A.M.; Shaaban, M.M.; Hadhoud, F.I.; El-Fouly, H.A.; Olafadehan, O.A. Effect of Replacement of Antibiotics with Thyme and Celery Seed Mixture on the Feed Intake and Digestion, Ruminal Fermentation, Blood Chemistry, and Milk Lactation of Lactating Barki Ewes. Food Funct. 2020, 11, 6889–6898. [Google Scholar] [CrossRef]
- Alabi, J.O.; Dele, P.A.; Okedoyin, D.O.; Wuaku, M.; Anotaenwere, C.C.; Adelusi, O.O.; Gray, D.A.; Ike, K.A.; Oderinwale, O.A.; Subedi, K.; et al. Synergistic Effects of Essential Oil Blends and Fumaric Acid on Ruminal Fermentation, Volatile Fatty Acid Production and Greenhouse Gas Emissions Using the Rumen Simulation Technique (RUSITEC). Fermentation 2024, 10, 114. [Google Scholar] [CrossRef]
- Kholif, A.E.; Gouda, G.A.; Fahmy, M.; Morsy, T.A.; Abdelsattar, M.M.; Vargas-Bello-Pérez, E. Fennel Seeds Dietary Inclusion as a Sustainable Approach to Reduce Methane Production and Improve Nutrient Utilization and Ruminal Fermentation. Anim. Sci. J. 2024, 95, e13910. [Google Scholar] [CrossRef]
- Demirtaş, A.; Öztürk, H.; Pişkin, İ. Overview of Plant Extracts and Plant Secondary Metabolites as Alternatives to Antibiotics for Modification of Ruminal Fermentation. Ank. Univ. Vet.-Fak. Derg. 2018, 65, 213–217. [Google Scholar] [CrossRef]
- Conner, D.E.; Beuchat, L.R. Effects of Essential Oils from Plants on Growth of Food Spoilage Yeasts. J. Food Sci. 1984, 49, 429–434. [Google Scholar] [CrossRef]
- Amin, N.; Tagliapietra, F.; Arango, S.; Guzzo, N.; Bailoni, L. Free and Microencapsulated Essential Oils Incubated in Vitro: Ruminal Stability and Fermentation Parameters. Animals 2021, 11, 180. [Google Scholar] [CrossRef]
- Kholif, A.E.; Kassab, A.Y.; Azzaz, H.H.; Matloup, O.H.; Hamdon, H.A.; Olafadehan, O.A.; Morsy, T.A. Essential Oils Blend with a Newly Developed Enzyme Cocktail Works Synergistically to Enhance Feed Utilization and Milk Production of Farafra Ewes in the Subtropics. Small Rumin. Res. 2018, 161, 43–50. [Google Scholar] [CrossRef]
- Alabi, J.O.; Okedoyin, D.O.; Anotaenwere, C.C.; Wuaku, M.; Gray, D.; Adelusi, O.O.; Ike, K.A.; Olagunju, L.K.; Dele, P.A.; Anele, U.Y. Essential Oil Blends with or without Fumaric Acid Influenced In Vitro Rumen Fermentation, Greenhouse Gas Emission, and Volatile Fatty Acids Production of a Total Mixed Ration. Ruminants 2023, 3, 373–384. [Google Scholar] [CrossRef]
- Newbold, C.J.; López, S.; Nelson, N.; Ouda, J.O.; Wallace, R.J.; Moss, A.R. Propionate Precursors and Other Metabolic Intermediates as Possible Alternative Electron Acceptors to Methanogenesis in Ruminal Fermentation in Vitro. Br. J. Nutr. 2005, 94, 27–35. [Google Scholar] [CrossRef]
- Remling, N.; Riede, S.; Meyer, U.; Beineke, A.; Breves, G.; Flachowsky, G.; Dänicke, S. Influence of Fumaric Acid on Ruminal Parameters and Organ Weights of Growing Bulls Fed with Grass or Maize Silage. Animal 2017, 11, 1754–1761. [Google Scholar] [CrossRef]
- Li, Z.; Liu, N.; Cao, Y.; Jin, C.; Li, F.; Cai, C.; Yao, J. Effects of Fumaric Acid Supplementation on Methane Production and Rumen Fermentation in Goats Fed Diets Varying in Forage and Concentrate Particle Size. J. Anim. Sci. Biotechnol. 2018, 9, 21. [Google Scholar] [CrossRef]
- Li, Z.; Lei, X.; Chen, X.; Yin, Q.; Shen, J.; Yao, J. Long-Term and Combined Effects of N-[2-(Nitrooxy)Ethyl]-3-Pyridinecarboxamide and Fumaric Acid on Methane Production, Rumen Fermentation, and Lactation Performance in Dairy Goats. J. Anim. Sci. Biotechnol. 2021, 12, 125. [Google Scholar] [CrossRef]
- Zhou, Y.W.; McSweeney, C.S.; Wang, J.K.; Liu, J.X. Effects of Disodium Fumarate on Ruminal Fermentation and Microbial Communities in Sheep Fed on High-Forage Diets. Animal 2012, 6, 815–823. [Google Scholar] [CrossRef]
- Guo, Y.; Hassan, F.; Li, M.; Tang, Z.; Peng, L.; Peng, K.; Yang, C. Effect of Hydrogen-Consuming Compounds on In Vitro Ruminal Fermentation, Fatty Acids Profile, and Microbial Community in Water Buffalo. Curr. Microbiol. 2022, 79, 220. [Google Scholar] [CrossRef]
- Lin, B.; Lu, Y.; Salem, A.Z.M.; Wang, J.H.; Liang, Q.; Liu, J.X. Effects of Essential Oil Combinations on Sheep Ruminal Fermentation and Digestibility of a Diet with Fumarate Included. Anim. Feed Sci. Technol. 2013, 184, 24–32. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 21st ed.; Oxford University Press: Washington DC, USA, 2019; ISBN 9780197610138. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Anele, U.Y.; Refat, B.; Swift, M.L.; He, Z.X.; Zhao, Y.L.; McAllister, T.A.; Yang, W.Z. Effects of Bulk Density, Precision Processing and Processing Index on in Vitro Ruminal Fermentation of Dry-Rolled Barley Grain. Anim. Feed Sci. Technol. 2014, 195, 28–37. [Google Scholar] [CrossRef]
- Olagunju, L.K.; Isikhuemhen, O.S.; Dele, P.A.; Anike, F.N.; Ike, K.A.; Shaw, Y.; Brice, R.M.; Orimaye, O.E.; Wuaku, M.; Essick, B.G.; et al. Effects of the Incubation Period of Pleurotus Ostreatus on the Chemical Composition and Nutrient Availability of Solid-State-Fermented Corn Stover. Animals 2023, 13, 2587. [Google Scholar] [CrossRef]
- Blümmel, M.; Lebzien, P. Predicting Ruminal Microbial Efficiencies of Dairy Rations by in Vitro Techniques. Livest. Prod. Sci. 2001, 68, 107–117. [Google Scholar] [CrossRef]
- Blümmel, M.; Steingaβ, H.; Becker, K. The Relationship between in Vitro Gas Production, in Vitro Microbial Biomass Yield and 15 N Incorporation and Its Implications for the Prediction of Voluntary Feed Intake of Roughages. Br. J. Nutr. 1997, 77, 911–921. [Google Scholar] [CrossRef]
- Ruiz-Moreno, M.; Binversie, E.; Fessenden, S.W.; Stern, M.D. Mitigation of in Vitro Hydrogen Sulfide Production Using Bismuth Subsalicylate with and without Monensin in Beef Feedlot Diets. J. Anim. Sci. 2015, 93, 5346–5354. [Google Scholar] [CrossRef]
- Cobellis, G.; Petrozzi, A.; Forte, C.; Acuti, G.; Orrù, M.; Marcotullio, M.; Aquino, A.; Nicolini, A.; Mazza, V.; Trabalza-Marinucci, M. Evaluation of the Effects of Mitigation on Methane and Ammonia Production by Using Origanum vulgare L. and Rosmarinus officinalis L. Essential Oils on in Vitro Rumen Fermentation Systems. Sustainability 2015, 7, 12856–12869. [Google Scholar] [CrossRef]
- Metwally, A. Effects of a Specific Blend of Essential Oil on Rumen Degradability, Total Tract Digestibility and Fermentation Characteristics in Rumen Fistulated Cows. J. Dairy Vet. Anim. Res. 2016, 3, 72. [Google Scholar] [CrossRef]
- Susanto, I.; Rahmadani, M.; Wiryawan, K.G.; Laconi, E.B.; Jayanegara, A. Evaluation of Essential Oils as Additives during Fermentation of Feed Products: A Meta-Analysis. Fermentation 2023, 9, 583. [Google Scholar] [CrossRef]
- Brice, R.M.; Dele, P.A.; Ike, K.A.; Shaw, Y.A.; Olagunju, L.K.; Orimaye, O.E.; Subedi, K.; Anele, U.Y. Effects of Essential Oil Blends on In Vitro Apparent and Truly Degradable Dry Matter, Efficiency of Microbial Production, Total Short-Chain Fatty Acids and Greenhouse Gas Emissions of Two Dairy Cow Diets. Animals 2022, 12, 2185. [Google Scholar] [CrossRef]
- Monzote, L.; Alarcón, O.; Setzer, W.N. Antiprotozoal Activity of Essential Oils. Agric. Conspec. Sci. 2012, 77, 167–175. [Google Scholar]
- Benetel, G.; Silva, T.D.S.; Fagundes, G.M.; Welter, K.C.; Melo, F.A.; Lobo, A.A.G.; Muir, J.P.; Bueno, I.C.S. Essential Oils as In Vitro Ruminal Fermentation Manipulators to Mitigate Methane Emission by Beef Cattle Grazing Tropical Grasses. Molecules 2022, 27, 2227. [Google Scholar] [CrossRef]
- Roy, D.; Tomar, S.K.; Sirohi, S.K.; Kumar, V.; Kumar, M. Efficacy of Different Essential Oils in Modulating Rumen Fermentation in Vitro Using Buffalo Rumen Liquor. Vet. World 2014, 7, 213–218. [Google Scholar] [CrossRef]
- Molho-Ortiz, A.A.; Romero-Pérez, A.; Ramírez-Bribiesca, E.; Márquez-Mota, C.C.; Castrejón-Pineda, F.A.; Corona, L. Effect of Essential Oils and Aqueous Extracts of Plants on in Vitro Rumen Fermentation and Methane Production. J. Anim. Behav. Biometeorol. 2022, 10. [Google Scholar] [CrossRef]
- Matthews, C.; Crispie, F.; Lewis, E.; Reid, M.; O’Toole, P.W.; Cotter, P.D. The Rumen Microbiome: A Crucial Consideration When Optimising Milk and Meat Production and Nitrogen Utilisation Efficiency. Gut Microbes 2019, 10, 115–132. [Google Scholar] [CrossRef]
- Foskolos, A.; Cavini, S.; Ferret, A.; Calsamiglia, S. Effects of Essential Oil Compounds Addition on Ryegrass Silage Protein Degradation. Can. J. Anim. Sci. 2016, 96, 100–103. [Google Scholar] [CrossRef]
- Kouazounde, J.B.; Jin, L.; Assogba, F.M.; Ayedoun, M.A.; Wang, Y.; Beauchemin, K.A.; Mcallister, T.A.; Gbenou, J.D. Effects of Essential Oils from Medicinal Plants Acclimated to Benin on in Vitro Ruminal Fermentation of Andropogon Gayanus Grass. J. Sci. Food Agric. 2015, 95, 1031–1038. [Google Scholar] [CrossRef]
- Foggi, G.; Terranova, M.; Conte, G.; Mantino, A.; Amelchanka, S.L.; Kreuzer, M.; Mele, M. In Vitro Screening of the Ruminal Methane and Ammonia Mitigating Potential of Mixtures of Either Chestnut or Quebracho Tannins with Blends of Essential Oils as Feed Additives. Ital. J. Anim. Sci. 2022, 21, 1520–1532. [Google Scholar] [CrossRef]
- Rossi, C.A.S.; Grossi, S.; Dell’anno, M.; Compiani, R.; Rossi, L. Effect of a Blend of Essential Oils, Bioflavonoids and Tannins on In Vitro Methane Production and In Vivo Production Efficiency in Dairy Cows. Animals 2022, 12, 728. [Google Scholar] [CrossRef] [PubMed]
- Hua, D.; Hendriks, W.H.; Xiong, B.; Pellikaan, W.F. Starch and Cellulose Degradation in the Rumen and Applications of Metagenomics on Ruminal Microorganisms. Animals 2022, 12, 3020. [Google Scholar] [CrossRef] [PubMed]
- Passetti, L.C.G.; Passetti, R.A.C.; McAllister, T.A. Effect of Essential Oil Blends and a Nonionic Surfactant on Rumen Fermentation, Anti-Oxidative Status, and Growth Performance of Lambs. Transl. Anim. Sci. 2021, 5, txab118. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; Greathead, H. Essential Oils and Opportunities to Mitigate Enteric Methane Emissions from Ruminants. Anim. Feed Sci. Technol. 2011, 166–167, 338–355. [Google Scholar] [CrossRef]
- Lin, X.; Hu, Z.; Zhang, S.; Cheng, G.; Hou, Q.; Wang, Y.; Yan, Z.; Shi, K.; Wang, Z. A Study on the Mechanism Regulating Acetate to Propionate Ratio in Rumen Fermentation by Dietary Carbohydrate Type. Adv. Biosci. Biotechnol. 2020, 11, 369–390. [Google Scholar] [CrossRef]
- Remesar, X.; Alemany, M. Dietary Energy Partition: The Central Role of Glucose. Int. J. Mol. Sci. 2020, 21, 7729. [Google Scholar] [CrossRef] [PubMed]
- Tavares, T.D.; Antunes, J.C.; Padrão, J.; Ribeiro, A.I.; Zille, A.; Amorim, M.T.P.; Ferreira, F.; Felgueiras, H.P. Activity of Specialized Biomolecules against Gram-Positive and Gram-Negative Bacteria. Antibiotics 2020, 9, 314. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Xiong, B.; Zhao, X. Could Propionate Formation Be Used to Reduce Enteric Methane Emission in Ruminants? Sci. Total Environ. 2023, 855, 158867. [Google Scholar] [CrossRef]
- Wang, G.Y.; Qin, S.L.; Zheng, Y.N.; Geng, H.J.; Chen, L.; Yao, J.H.; Deng, L. Propionate Promotes Gluconeogenesis by Regulating Mechanistic Target of Rapamycin (MTOR) Pathway in Calf Hepatocytes. Anim. Nutr. 2023, 15, 88–98. [Google Scholar] [CrossRef]
Nutrient | Total Mixed Ration 1 |
---|---|
Dry matter | 66.7 |
Organic matter | 93.0 |
Crude protein | 13.4 |
Ether extract | 4.88 |
Nonstructural carbohydrates | 12.7 |
Neutral detergent fiber | 62.0 |
Acid detergent fiber | 11.9 |
Acid detergent lignin | 13.8 |
Treatments 1,2 | DMD (%) | Undegraded Residual (g/g DM) | Microbial Mass (g/kg DM) | IVADDM (g/g DM) | IVTDDM (g/g DM) | PF24 |
---|---|---|---|---|---|---|
Control | 58.5 a | 0.16 b | 0.08 c | 0.54 a | 0.69 a | 3.43 a |
FA | 58.6 a | 0.15 b | 0.08 c | 0.53 a | 0.70 a | 3.47 a |
EOB1 | 48.2 b | 0.18 a | 0.12 b | 0.39 b | 0.63 b | 3.15 b |
EOB2 | 47.7 b | 0.19 a | 0.18 a | 0.26 c | 0.62 b | 3.11 b |
EOB3 | 49.0 b | 0.19 a | 0.21 a | 0.20 d | 0.62 b | 3.10 b |
EOB4 | 49.2 b | 0.19 a | 0.19 a | 0.25 c | 0.62 b | 3.11 b |
EOB1FA | 48.6 b | 0.18 a | 0.13 b | 0.39 b | 0.64 b | 3.19 b |
EOB2FA | 48.4 b | 0.18 a | 0.17 a | 0.29 c | 0.63 b | 3.15 b |
EOB3FA | 46.4 b | 0.19 a | 0.18 a | 0.27 c | 0.63 b | 3.12 b |
EOB4FA | 48.0 b | 0.18 a | 0.19 a | 0.26 c | 0.63 b | 3.15 b |
SEM | 0.69 | 0.020 | 0.003 | 0.020 | 0.040 | 0.200 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Treatments 1,2 | Gas Production (mL/g DM) | CH4 (mg/g DM) | CO2 (mg/g DM) | NH3 (mmol/g DM) | H2S (mmol/g DM) | NH3N (mg/dL) |
---|---|---|---|---|---|---|
Control | 189.0 a | 8.75 a | 43.7 a | 198.5 b | 880.5 b | 11.1 |
FA | 197.1 a | 7.10 b | 38.4 a | 288.1 a | 1268.1 a | 10.8 |
EOB1 | 104.3 b | 0.53 c | 24.1 b | 102.9 cd | 890.4 b | 12.4 |
EOB2 | 46.5 cd | 0.23 c | 6.3 c | 38.2 de | 153.1 c | 12.3 |
EOB3 | 30.2e | 0.08 c | 3.7 c | 9.3 e | 16.3 c | 12.4 |
EOB4 | 42.9 cd | 0.22 c | 8.1 c | 11.4 e | 29.9 c | 11.4 |
EOB1FA | 108.9 b | 0.50 c | 18.6 b | 143.7 bc | 741.0 b | 11.5 |
EOB2FA | 50.3 c | 0.16 c | 6.1 c | 39.8 de | 86.5 c | 11.1 |
EOB3FA | 37.5 de | 0.05 c | 2.4 c | 12.7 e | 13.5 c | 10.7 |
EOB4FA | 41.9 cd | 0.11 c | 5.5 c | 6.6 e | 11.5 c | 11.2 |
SEM | 7.87 | 0.41 | 1.97 | 13.69 | 68.48 | 0.18 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.185 |
Treatments 1,2 | Total (mmol/g DM) | Acetate (%) | Propionate (%) | A:P Ratio | Butyrate (%) | Isobutyrate (%) | Valerate (%) | Isovalerate (%) |
---|---|---|---|---|---|---|---|---|
Control | 214.2 a | 73 d | 17 b | 4.2 cd | 9 b | 0.1 bc | 0.5 c | 0.1 e |
FA | 212.5 a | 73 d | 18 b | 4.1 cd | 9 b | 0.2 abc | 0.5 c | 0.1 e |
EOB1 | 139.7 cb | 63 e | 21 a | 3.1 d | 15 a | 0.3 abc | 1.1 a | 0.1 de |
EOB2 | 95.4 de | 77 bc | 14 cd | 5.9 abc | 8 bc | 0.3 abc | 0.8 b | 0.2 ab |
EOB3 | 95.4 de. | 77 bc | 16 bc | 5.1 bc | 6 cd | 0.4 abc | 0.8 b | 0.1 bc |
EOB4 | 93.2 de | 78 b | 15 bc | 5.1 bc | 6 cd | 0.0 c | 0.8 ab | 0.1 bc |
EOB1FA | 159.6 b | 64 e | 21 a | 3.0 d | 14 a | 0.3 abc | 0.8 b | 0.1 e |
EOB2FA | 78.1 e | 74 cd | 16 bc | 4.8 c | 9 b | 0.6 a | 0.9 ab | 0.2 a |
EOB3FA | 117.9 cde | 82 a | 12 d | 7.4 a | 5 d | 0.5 ab | 0.8 ab | 0.1 cd |
EOB4FA | 120.6 bcd | 80 ab | 13 cd | 6.7 ab | 6 cd | 0.2 bc | 0.7 bc | 0.1 cd |
SEM | 7.13 | 7.0 | 0.4 | 0.24 | 0.5 | 0.001 | 0.03 | 0.001 |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.008 | 0.003 | <0.001 |
Treatments 1,2 | NDFD (%) | ADFD (%) | ADLD (%) | CELD (%) | HEMD (%) |
---|---|---|---|---|---|
Control | 74.6 a | 64.7 | 19.4 ab | 37.7 b | 20.7 a |
FA | 72.0 abc | 61.8 | 19.9 a | 37.2 b | 19.5 ab |
EOB1 | 70.6 bc | 68.4 | 17.1 abc | 39.5 ab | 12.9 cd |
EOB2 | 71.9 abc | 62.2 | 15.6 c | 40.5 a | 13.0 cd |
EOB3 | 74.1 ab | 59.1 | 15.2 c | 40.3 a | 17.1 abc |
EOB4 | 73.8 ab | 61.2 | 15.1 c | 41.0 a | 15.8 abcd |
EOB1FA | 69.6 c | 63.2 | 16.6 bc | 39.4 ab | 14.8 bcd |
EOB2FA | 71.2 abc | 63.2 | 15.5 c | 41.2 a | 15.2 bcd |
EOB3FA | 69.7 c | 59.8 | 14.8 c | 40.8 a | 10.8 d |
EOB4FA | 70.5 bc | 63.3 | 15.3 c | 40.4 a | 13.0 cd |
SEM | 0.42 | 0.97 | 0.40 | 0.31 | 0.66 |
p value | 0.026 | 0.703 | 0.002 | 0.010 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ike, K.A.; Adelusi, O.O.; Alabi, J.O.; Olagunju, L.K.; Wuaku, M.; Anotaenwere, C.C.; Okedoyin, D.O.; Gray, D.; Dele, P.A.; Subedi, K.; et al. Effects of Different Essential Oil Blends and Fumaric Acid on In Vitro Fermentation, Greenhouse Gases, Nutrient Degradability, and Total and Molar Proportions of Volatile Fatty Acid Production in a Total Mixed Ration for Dairy Cattle. Agriculture 2024, 14, 876. https://doi.org/10.3390/agriculture14060876
Ike KA, Adelusi OO, Alabi JO, Olagunju LK, Wuaku M, Anotaenwere CC, Okedoyin DO, Gray D, Dele PA, Subedi K, et al. Effects of Different Essential Oil Blends and Fumaric Acid on In Vitro Fermentation, Greenhouse Gases, Nutrient Degradability, and Total and Molar Proportions of Volatile Fatty Acid Production in a Total Mixed Ration for Dairy Cattle. Agriculture. 2024; 14(6):876. https://doi.org/10.3390/agriculture14060876
Chicago/Turabian StyleIke, Kelechi A., Oludotun O. Adelusi, Joel O. Alabi, Lydia K. Olagunju, Michael Wuaku, Chika C. Anotaenwere, Deborah O. Okedoyin, DeAndrea Gray, Peter A. Dele, Kiran Subedi, and et al. 2024. "Effects of Different Essential Oil Blends and Fumaric Acid on In Vitro Fermentation, Greenhouse Gases, Nutrient Degradability, and Total and Molar Proportions of Volatile Fatty Acid Production in a Total Mixed Ration for Dairy Cattle" Agriculture 14, no. 6: 876. https://doi.org/10.3390/agriculture14060876
APA StyleIke, K. A., Adelusi, O. O., Alabi, J. O., Olagunju, L. K., Wuaku, M., Anotaenwere, C. C., Okedoyin, D. O., Gray, D., Dele, P. A., Subedi, K., Kholif, A. E., & Anele, U. Y. (2024). Effects of Different Essential Oil Blends and Fumaric Acid on In Vitro Fermentation, Greenhouse Gases, Nutrient Degradability, and Total and Molar Proportions of Volatile Fatty Acid Production in a Total Mixed Ration for Dairy Cattle. Agriculture, 14(6), 876. https://doi.org/10.3390/agriculture14060876