Convenient Solid-Phase Attachment of Small-Molecule Ligands to Oligonucleotides via a Biodegradable Acid-Labile P-N-Bond
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Amino-containing Ligands
2.2. Solid-Phase Synthesis of Oligonucleotide Conjugates
2.3. Stability of the P-N-Bond within the Oligonucleotide Conjugates at Different pH Values
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Physical Measurements
3.3. Preparation of Amino-Containing Compounds
3.4. Synthesis of Polymer-Bound Oligonucleotides
3.5. Solid-Phase Synthesis of Oligonucleotide Conjugates
3.6. Deprotection and Isolation of the Oligonucleotides and Their Conjugates
3.7. Synthesis of Biotin Conjugate (8) Using NHS Esters
3.8. Synthesis of Conjugates (13, 18) Using Click-Chemistry
3.9. RP-HPLC Analysis of the Oligonucleotide and Their Conjugates
3.10. Stability of the P-N-Bond within the Oligonucleotide Conjugates (14–16, 18) at Different pH Values
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Dedication
Sample Availability
References
- Laganà, A.; Shasha, D.; Croce, C.M. Synthetic RNAs for Gene Regulation: Design Principles and Computational Tools. Front. Bioeng. Biotechnol. 2014, 2, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sridharan, K.; Gogtay, N.J. Therapeutic Nucleic Acids: Current Clinical Status. Br. J. Clin. Pharmacol. 2016, 82, 659–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panigaj, M.; Johnson, M.B.; Ke, W.; McMillan, J.; Goncharova, E.A.; Chandler, M.; Afonin, K.A. Aptamers as Modular Components of Therapeutic Nucleic Acid Nanotechnology. ACS Nano 2019, 13, 12301–12321. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.I.E.; Zain, R. Therapeutic Oligonucleotides: State of the Art. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 605–630. [Google Scholar] [CrossRef]
- Jani, S.; Ramirez, M.S.; Tolmasky, M.E. Silencing Antibiotic Resistance with Antisense Oligonucleotides. Biomedicines 2021, 9, 416. [Google Scholar] [CrossRef]
- Bajan, S.; Hutvagner, G. RNA-Based Therapeutics: From Antisense Oligonucleotides to MiRNAs. Cells 2020, 9, 137. [Google Scholar] [CrossRef] [Green Version]
- Winkler, J. Oligonucleotide Conjugates for Therapeutic Applications. Ther. Deliv. 2013, 4, 791–809. [Google Scholar] [CrossRef] [Green Version]
- Juliano, R.L. The Delivery of Therapeutic Oligonucleotides. Nucleic Acids Res. 2016, 44, 6518–6548. [Google Scholar] [CrossRef]
- Nakagawa, O.; Ming, X.; Huang, L.; Juliano, R.L. Targeted Intracellular Delivery of Antisense Oligonucleotides via Conjugation with Small-Molecule Ligands. J. Am. Chem. Soc. 2010, 132, 8848–8849. [Google Scholar] [CrossRef] [Green Version]
- Springer, A.D.; Dowdy, S.F. GalNAc-SiRNA Conjugates: Leading the Way for Delivery of RNAi Therapeutics. Nucleic Acid Ther. 2018, 28, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Siegwart, D.J.; Anderson, D.G. Strategies, Design, and Chemistry in SiRNA Delivery Systems. Adv. Drug Deliv. Rev. 2019, 144, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Benizri, S.; Gissot, A.; Martin, A.; Vialet, B.; Grinstaff, M.W.; Barthélémy, P. Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications. Bioconjug. Chem. 2019, 30, 366–383. [Google Scholar] [CrossRef] [PubMed]
- Hawner, M.; Ducho, C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020, 25, 5963. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, C.; Wang, C.; Jankovic, K.E.; Dong, Y. Lipids and Lipid Derivatives for RNA Delivery. Chem. Rev. 2021, 121, 12181–12277. [Google Scholar] [CrossRef]
- Wolff, J.A.; Rozema, D.B. Breaking the Bonds: Non-Viral Vectors Become Chemically Dynamic. Mol. Ther. 2008, 16, 8–15. [Google Scholar] [CrossRef]
- Leriche, G.; Chisholm, L.; Wagner, A. Cleavable Linkers in Chemical Biology. Bioorg. Med. Chem. 2012, 20, 571–582. [Google Scholar] [CrossRef]
- Choy, C.J.; Ley, C.R.; Davis, A.L.; Backer, B.S.; Geruntho, J.J.; Clowers, B.H.; Berkman, C.E. Second-Generation Tunable PH-Sensitive Phosphoramidate-Based Linkers for Controlled Release. Bioconjug. Chem. 2016, 27, 2206–2213. [Google Scholar] [CrossRef]
- Le Corre, S.S.; Berchel, M.; Couthon-Gourvès, H.; Haelters, J.-P.; Jaffrès, P.-A. Atherton–Todd Reaction: Mechanism, Scope and Applications. Beilstein J. Org. Chem. 2014, 10, 1166–1196. [Google Scholar] [CrossRef] [Green Version]
- Vlaho, D.; Fakhoury, J.F.; Damha, M.J. Structural Studies and Gene Silencing Activity of SiRNAs Containing Cationic Phosphoramidate Linkages. Nucleic Acid Ther. 2018, 28, 34–43. [Google Scholar] [CrossRef]
- Cooke, L.A.; Frauendorf, C.; Gîlea, M.A.; Holmes, S.C.; Vyle, J.S. Solid-Phase Synthesis of Terminal Oligonucleotide–Phosphoramidate Conjugates. Tetrahedron Lett. 2006, 47, 719–722. [Google Scholar] [CrossRef] [Green Version]
- Gołębiewska, J.; Rachwalak, M.; Jakubowski, T.; Romanowska, J.; Stawinski, J. Reaction of Boranephosphonate Diesters with Amines in the Presence of Iodine: The Case for the Intermediacy of H-Phosphonate Derivatives. J. Org. Chem. 2018, 83, 5496–5505. [Google Scholar] [CrossRef] [PubMed]
- Kupryushkin, M.S.; Apukhtina, V.S.; Vasilyeva, S.V.; Pyshnyi, D.V.; Stetsenko, D.A. A New Simple and Convenient Method for Preparation of Oligonucleotides Containing a Pyrene or a Cholesterol Moiety. Russ. Chem. Bull. 2015, 64, 1678–1681. [Google Scholar] [CrossRef]
- Derzhalova, A.; Markov, O.; Fokina, A.; Shiohama, Y.; Zatsepin, T.; Fujii, M.; Zenkova, M.; Stetsenko, D. Novel Lipid-Oligonucleotide Conjugates Containing Long-Chain Sulfonyl Phosphoramidate Groups: Synthesis and Biological Properties. Appl. Sci. 2021, 11, 1174. [Google Scholar] [CrossRef]
- Dovydenko, I.S.; Kupryushkin, M.S.; Pyshnyi, D.V.; Apartsin, E.K. A Convenient Solid Phase Approach to Obtain Lipophilic 5′-Phosphoramidate Derivatives of DNA and RNA Oligonucleotides. Nucleosides Nucleotides Nucleic Acids 2018, 37, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.H.; Kim, S.W.; Park, T.G. Novel Intracellular Delivery System of Antisense Oligonucleotide by Self-Assembled Hybrid Micelles Composed of DNA/PEG Conjugate and Cationic Fusogenic Peptide. Bioconjug. Chem. 2003, 14, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-P.; Ko, N.C.; Su, Y.-C.; Wang, E.-C.; Severance, S.; Hwang, C.-C.; Shih, Y.T.; Wu, M.H.; Chen, Y.-H. Advanced Aqueous-Phase Phosphoramidation Reactions for Effectively Synthesizing Peptide–Oligonucleotide Conjugates Trafficked into a Human Cell Line. Bioconjug. Chem. 2012, 23, 2417–2433. [Google Scholar] [CrossRef]
- Mukaiyama, T.; Hashimoto, M. Synthesis of Oligothymidylates and Nucleoside Cyclic Phosphates by Oxidation-Reduction Condensation. J. Am. Chem. Soc. 1972, 94, 8528–8532. [Google Scholar] [CrossRef]
- Zarytova, V.; Ivanova, E.; Venyaminova, A. Design of Functional Diversity in Oligonucleotides via Zwitter-Ionic Derivatives of Deprotected Oligonucleotides. Nucleosides Nucleotides 1998, 17, 649–662. [Google Scholar] [CrossRef]
- Grimm, G.N.; Boutorine, A.S.; Helene, C. Rapid Routes of Synthesis of Oligonucleotide Conjugates from Non-Protected Oligonucleotides and Ligands Possessing Different Nucleophilic or Electrophilic Functional Groups. Nucleosides Nucleotides Nucleic Acids 2000, 19, 1943–1965. [Google Scholar] [CrossRef]
- Novopashina, D.S.; Totskaya, O.S.; Kholodar’, S.A.; Meshchaninova, M.I.; Ven’yaminova, A.G. Oligo(2′-O-Methylribonucleotides) and Their Derivatives: III. 5′-Mono- and 5′-Bispyrenyl Derivatives of Oligo(2′-O- Methylribonucleotides) and Their 3′-Modified Analogues: Synthesis and Properties. Russ. J. Bioorganic Chem. 2008, 34, 602–612. [Google Scholar] [CrossRef]
- Krasheninina, O.A.; Novopashina, D.S.; Lomzov, A.A.; Venyaminova, A.G. 2′-Bispyrene-Modified 2′-O-Methyl RNA Probes as Useful Tools for the Detection of RNA: Synthesis, Fluorescent Properties, and Duplex Stability. ChemBioChem 2014, 15, 1939–1946. [Google Scholar] [CrossRef] [PubMed]
- Lönnberg, H. Solid-Phase Synthesis of Oligonucleotide Conjugates Useful for Delivery and Targeting of Potential Nucleic Acid Therapeutics. Bioconjug. Chem. 2009, 20, 1065–1094. [Google Scholar] [CrossRef] [PubMed]
- Cedillo, I.; Chreng, D.; Engle, E.; Chen, L.; McPherson, A.; Rodriguez, A. Synthesis of 5′-GalNAc-Conjugated Oligonucleotides: A Comparison of Solid and Solution-Phase Conjugation Strategies. Molecules 2017, 22, 1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, Y.; Murat, P.; Defrancq, E. Recent Developments in Oligonucleotide Conjugation. Chem. Soc. Rev. 2010, 39, 2054–2070. [Google Scholar] [CrossRef]
- Raouane, M.; Desmaële, D.; Urbinati, G.; Massaad-Massade, L.; Couvreur, P. Lipid Conjugated Oligonucleotides: A Useful Strategy for Delivery. Bioconjug. Chem. 2012, 23, 1091–1104. [Google Scholar] [CrossRef]
- Gooding, M.; Malhotra, M.; Evans, J.C.; Darcy, R.; O’Driscoll, C.M. Oligonucleotide Conjugates—Candidates for Gene Silencing Therapeutics. Eur. J. Pharm. Biopharm. 2016, 107, 321–340. [Google Scholar] [CrossRef]
- Dasargyri, A.; Kümin, C.D.; Leroux, J.-C. Targeting Nanocarriers with Anisamide: Fact or Artifact? Adv. Mater. 2017, 29, 1603451. [Google Scholar] [CrossRef]
- Hayashi, T.; Su, T. Sigma-1 Receptors at Galactosylceramide-Enriched Lipid Microdomains Regulate Oligodendrocyte Differentiation. Proc. Natl. Acad. Sci. USA 2004, 101, 14949–14954. [Google Scholar] [CrossRef] [Green Version]
- Qu, D.; Jiao, M.; Lin, H.; Tian, C.; Qu, G.; Xue, J.; Xue, L.; Ju, C.; Zhang, C. Anisamide-Functionalized PH-Responsive Amphiphilic Chitosan-Based Paclitaxel Micelles for Sigma-1 Receptor Targeted Prostate Cancer Treatment. Carbohydr. Polym. 2020, 229, 115498. [Google Scholar] [CrossRef]
- Meschaninova, M.I.; Novopashina, D.S.; Semikolenova, O.A.; Silnikov, V.N.; Venyaminova, A.G. Novel Convenient Approach to the Solid-Phase Synthesis of Oligonucleotide Conjugates. Molecules 2019, 24, 4266. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.K.; Friedman, S.H. The ULTIMATE Reagent: A Universal Photocleavable and Clickable Reagent for the Regiospecific and Reversible End Labeling of Any Nucleic Acid. ChemBioChem 2018, 19, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Coffey, D.S.; McDonald, A.I.; Overman, L.E.; Rabinowitz, M.H.; Renhowe, P.A. A Practical Entry to the Crambescidin Family of Guanidine Alkaloids. Enantioselective Total Syntheses of Ptilomycalin A, Crambescidin 657 and Its Methyl Ester (Neofolitispates 2), and Crambescidin 800. J. Am. Chem. Soc. 2000, 122, 4893–4903. [Google Scholar] [CrossRef]
- Sekine, M.; Tsuruoka, H.; Iimura, S.; Kusuoku, H.; Wada, T.; Furusawa, K. Studies on Steric and Electronic Control of 2‘–3‘ Phosphoryl Migration in 2‘-Phosphorylated Uridine Derivatives and Its Application to the Synthesis of 2‘-Phosphorylated Oligouridylates. J. Org. Chem. 1996, 61, 4087–4100. [Google Scholar] [CrossRef] [PubMed]
- Petrova, N.S.; Chernikov, I.V.; Meschaninova, M.I.; Dovydenko, I.S.; Venyaminova, A.G.; Zenkova, M.A.; Vlassov, V.V.; Chernolovskaya, E.L. Carrier-Free Cellular Uptake and the Gene-Silencing Activity of the Lipophilic SiRNAs Is Strongly Affected by the Length of the Linker between SiRNA and Lipophilic Group. Nucleic Acids Res. 2012, 40, 2330–2344. [Google Scholar] [CrossRef] [Green Version]
- Bramsen, J.B.; Laursen, M.B.; Damgaard, C.K.; Lena, S.W.; Babu, B.R.; Wengel, J.; Kjems, J. Improved Silencing Properties Using Small Internally Segmented Interfering RNAs. Nucleic Acids Res. 2007, 35, 5886–5897. [Google Scholar] [CrossRef] [PubMed]
- Meschaninova, M.I.; Entelis, N.S.; Chernolovskaya, E.L.; Venyaminova, A.G. A Versatile Solid-Phase Approach to the Synthesis of Oligonucleotide Conjugates with Biodegradable Hydrazone Linker. Molecules 2021, 26, 2119. [Google Scholar] [CrossRef]
- Gilleron, J.; Querbes, W.; Zeigerer, A.; Borodovsky, A.; Marsico, G.; Schubert, U.; Manygoats, K.; Seifert, S.; Andree, C.; Stöter, M.; et al. Image-Based Analysis of Lipid Nanoparticle–Mediated SiRNA Delivery, Intracellular Trafficking and Endosomal Escape. Nat. Biotechnol. 2013, 31, 638–646. [Google Scholar] [CrossRef]
№ | Oligonucleotide Conjugate, 5′-3′ |
RP HPLC
Retention Time, min 1 | Molecular Weight | Yield, % 3 | |
---|---|---|---|---|---|
Calculated | Experimental 2 | ||||
1 | MB-L6-NH-p-d(TTTTTTT) | 12.88 (+3.64) | 2379.7 | 2378.5 | 19 |
2 | Chol-C(O)-L6-NH-p-d(TTTTTTT) | 24.05 (+14.81) | 2658.2 | 2656.5 | 18 |
3 | Oleyl-NH-p-d(TTTTTTT) | 23.53 (+14.29) | 2396.8 | 2395.5 | 24 |
4 | CH≡C-CH2-NH-p-d(TTTTTTT) | 9.93 (+0.69) | 2184.4 | 2183.0 | 23 |
5 | Pyr-CH2-NH-p-d(TTTTTTT) | 15.21 (+5.97) | 2360.3 | 2358.9 | 23 |
6 | HO-(CH2)3-NH-p-d(TTTTTTT) | 9.63 (+0.39) | 2204.4 | 2203.2 | 22 |
7 | NH2-(CH2)6-NH-p-d(TTTTTTT) | 9.43 (+0.19) | 2245.6 | 2244.0 | 18 |
8 | Biot-NH-(CH2)6-NH-p-d(TTTTTTT) | 11.88 (2.64) | 2471.6 | 2470.2 | 17 5,* |
9 | CH3-NH-p-d(TTTTTTT) | 9.55 (+0.31) | 2161.1 | 2159.7 | 21 * |
10 | Oleyl-NH-p-GmGmCmUmUmGmAmCmAm | 17.12 (+7.01) | 3310.3 | 3309.0 | 18 |
11 | MB-L6-NH-p-GmGmCmUmUmGmAmCmAm | 12.01 (+1.9) | 3293.3 | 3291.3 | 18 |
12 | CH≡C-CH2-NH-p-GmGmCmUmUmGmAmCmAm | 10.39 (+0.28) | 3098.1 | 3096.2 | 21 |
13 | FAM-click-CH2-NH-p-GmGmCmUmUmGmAmCmAm | 11.81 (+1.70) | 3555.5 | 3554.5 | 21 5,* |
14 | MB-L6-NH-p-GGCUUGACAAGUUGUAUAUGGm | n/a 4 | 7080.4 | 7080.28 | 20 |
15 | Chol-C(O)-L6-NH-p-GGCUUGACAAGUUGUAUAUGGm | n/a 4 | 7358.9 | 7358.98 | 17 |
16 | Oleyl-NH-p-GGCUUGACAAGUUGUAUAUGGm | n/a 4 | 7097.6 | 7097.2 | 21 |
17 | CH≡C-CH2-NH-p-GGCUUGACAAGUUGUAUAUGGm | n/a 4 | 6885.1 | 6886.4 | 20 |
18 | GalNAc-click-CH2-NH-p-GGCUUGACAAGUUGUAUAUGGm | n/a 4 | 7263.7 | 7263.87 | 19 5,* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kropacheva, N.O.; Golyshkin, A.A.; Vorobyeva, M.A.; Meschaninova, M.I. Convenient Solid-Phase Attachment of Small-Molecule Ligands to Oligonucleotides via a Biodegradable Acid-Labile P-N-Bond. Molecules 2023, 28, 1904. https://doi.org/10.3390/molecules28041904
Kropacheva NO, Golyshkin AA, Vorobyeva MA, Meschaninova MI. Convenient Solid-Phase Attachment of Small-Molecule Ligands to Oligonucleotides via a Biodegradable Acid-Labile P-N-Bond. Molecules. 2023; 28(4):1904. https://doi.org/10.3390/molecules28041904
Chicago/Turabian StyleKropacheva, Nadezhda O., Arseniy A. Golyshkin, Mariya A. Vorobyeva, and Mariya I. Meschaninova. 2023. "Convenient Solid-Phase Attachment of Small-Molecule Ligands to Oligonucleotides via a Biodegradable Acid-Labile P-N-Bond" Molecules 28, no. 4: 1904. https://doi.org/10.3390/molecules28041904
APA StyleKropacheva, N. O., Golyshkin, A. A., Vorobyeva, M. A., & Meschaninova, M. I. (2023). Convenient Solid-Phase Attachment of Small-Molecule Ligands to Oligonucleotides via a Biodegradable Acid-Labile P-N-Bond. Molecules, 28(4), 1904. https://doi.org/10.3390/molecules28041904