Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = anatomy of leaves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 17214 KiB  
Article
Histological Features Detected for Separation of the Edible Leaves of Allium ursinum L. from the Poisonous Leaves of Convallaria majalis L. and Colchicum autumnale L.
by Márta M-Hamvas, Angéla Tótik, Csongor Freytag, Attila Gáspár, Amina Nouar, Tamás Garda and Csaba Máthé
Plants 2025, 14(15), 2377; https://doi.org/10.3390/plants14152377 - 1 Aug 2025
Viewed by 278
Abstract
Allium ursinum (wild garlic) has long been collected and consumed as food and medicine in the north temperate zone, where its popularity is growing. Colchicum autumnale and Convallaria majalis contain toxic alkaloids. Their habitats overlap, and without flowers, their vegetative organs are similar. [...] Read more.
Allium ursinum (wild garlic) has long been collected and consumed as food and medicine in the north temperate zone, where its popularity is growing. Colchicum autumnale and Convallaria majalis contain toxic alkaloids. Their habitats overlap, and without flowers, their vegetative organs are similar. Confusing the leaves of Colchicum or Convallaria with the leaves of wild garlic has repeatedly led to serious human and animal poisonings. Our goal was to find a histological characteristic that makes the separation of these leaves clear. We compared the anatomy of foliage leaves of these three species grown in the same garden (Debrecen, Hungary, Central Europe). We used a bright-field microscope to characterize the transversal sections of leaves. Cell types of epidermises were compared based on peels and different impressions. We established some significant differences in the histology of leaves. The adaxial peels of Allium consist of only “long” cells without stomata, but the abaxial ones show “long”, “short” and “T” cells with wavy cell walls as a peculiarity, and stomata. Convallaria and Colchicum leaves are amphystomatic, but in the case of Allium, they are hypostomatic. These traits were confirmed with herbarium specimens. Our results help to clearly identify these species even in mixed, dried plant material and may be used for diagnostic purposes. Full article
Show Figures

Graphical abstract

24 pages, 4352 KiB  
Article
Tissue-Specific Expression Analysis and Functional Validation of SiSCR Genes in Foxtail Millet (Setaria italica) Under Hormone and Drought Stresses, and Heterologous Expression in Arabidopsis
by Yingying Qin, Ruifu Wang, Shuwan Chen, Qian Gao, Yiru Zhao, Shuo Chang, Mao Li, Fangfang Ma and Xuemei Ren
Plants 2025, 14(14), 2151; https://doi.org/10.3390/plants14142151 - 11 Jul 2025
Viewed by 401
Abstract
The SCARECROW (SCR) transcription factor governs cell-type patterning in plant roots and Kranz anatomy of leaves, serving as a master regulator of root and shoot morphogenesis. Foxtail millet (Setaria italica), characterized by a compact genome, self-pollination, and a short growth cycle, [...] Read more.
The SCARECROW (SCR) transcription factor governs cell-type patterning in plant roots and Kranz anatomy of leaves, serving as a master regulator of root and shoot morphogenesis. Foxtail millet (Setaria italica), characterized by a compact genome, self-pollination, and a short growth cycle, has emerged as a C4 model plant. Here, we revealed two SCR paralogs in foxtail millet—SiSCR1 and SiSCR2—which exhibit high sequence conservation with ZmSCR1/1h (Zea mays), OsSCR1/2 (Oryza sativa), and AtSCR (Arabidopsis thaliana), particularly within the C-terminal GRAS domain. Both SiSCR genes exhibited nearly identical secondary structures and physicochemical profiles, with promoter analyses revealing five conserved cis-regulatory elements. Robust phylogenetic reconstruction resolved SCR orthologs into monocot- and dicot-specific clades, with SiSCR genes forming a sister branch to SvSCR from its progenitor species Setaria viridis. Spatiotemporal expression profiling demonstrated ubiquitous SiSCR gene transcription across developmental stages, with notable enrichment in germinated seeds, plants at the one-tip-two-leaf stage, leaf 1 (two days after heading), and roots during the seedling stage. Co-expression network analysis revealed that there is a correlation between SiSCR genes and other functional genes. Abscisic acid (ABA) treatment led to a significant downregulation of the expression level of SiSCR genes in Yugu1 roots, and the expression of the SiSCR genes in the roots of An04 is more sensitive to PEG6000 treatment. Drought treatment significantly upregulated SiSCR2 expression in leaves, demonstrating its pivotal role in plant adaptation to abiotic stress. Analysis of heterologous expression under the control of the 35S promoter revealed that SiSCR genes were expressed in root cortical/endodermal initial cells, endodermal cells, cortical cells, and leaf stomatal complexes. Strikingly, ectopic expression of SiSCR genes in Arabidopsis led to hypersensitivity to ABA, and ABA treatment resulted in a significant reduction in the length of the meristematic zone. These data delineate the functional divergence and evolutionary conservation of SiSCR genes, providing critical insights into their roles in root/shoot development and abiotic stress signaling in foxtail millet. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

16 pages, 5169 KiB  
Article
Analysis of Walnut Source–Sink–Flow Anatomical Structure Under Source–Sink Regulation Based on Fruit-Bearing Branch Scale
by Luyu Lv, Cuifang Zhang, Zhilong Yang, Zeyun Zhao and Shiwei Wang
Appl. Sci. 2025, 15(13), 7523; https://doi.org/10.3390/app15137523 - 4 Jul 2025
Viewed by 232
Abstract
This study used Xinxin 2 (Juglans regia L. ‘Xinxin2’), a major cultivated walnut variety in Xinjiang, China, to clarify the response and adaptation mechanisms of the anatomical structures of walnut related to source–sink–flow under altered source–sink relationships. We anatomically observed the leaves, [...] Read more.
This study used Xinxin 2 (Juglans regia L. ‘Xinxin2’), a major cultivated walnut variety in Xinjiang, China, to clarify the response and adaptation mechanisms of the anatomical structures of walnut related to source–sink–flow under altered source–sink relationships. We anatomically observed the leaves, fruit stalks, and fruit of bearing branches by artificially adjusting the leaf-to-fruit ratio (LFR). The LFR substantially affected the leaf structure and thickness of the fruit-bearing branches obtained via girdled (p < 0.05). The results of the analysis of the leaf anatomy revealed that a low LFR impeded leaf growth and internal structural development while accelerating senescence, whereas a high LFR promoted leaf growth and delayed senescence. The same trend was observed for the phloem area (PA) of the fruit stalk with the increase in fruit load when the number of leaves on the fruit branch was the same. The maximum PA was reached when the number of fruits was high (except for 4L:3F). This indicates that the micro-anatomical structure of the fruit stalk is more developed under the treatment of a higher number of pinnate compound leaves and fruit level of LFRs. The cells of the 1L:3F and 2L:3F were considerably smaller in the green peel and kernel of the fruit on the branches obtained via girdled than those of 5L:1F plants (p < 0.05). No significant difference was found in the number of cells per unit area or the cross-sectional area of cells in the pericarp and kernel of the fruit under LFRs (p > 0.05); however, a large difference was noted in the microanatomical structure of the pericarp and kernel of fruit. Changes in the structural adaptation characteristics of walnut leaves (source), fruit stalk (flow), and fruit (sink) are related to source–sink regulation. A change in the LFR affects the carbohydrate synthesis in the leaves (source), transport in fruit stalks (flow), and the carbohydrate reception in fruits (sink). Full article
Show Figures

Figure 1

14 pages, 877 KiB  
Article
No Learner Left Behind: How Medical Students’ Background Characteristics and Psychomotor/Visual–Spatial Abilities Correspond to Aptitude in Learning How to Perform Clinical Ultrasounds
by Samuel Ayala, Eric R. Abrams, Lawrence A. Melniker, Laura D. Melville and Gerardo C. Chiricolo
Emerg. Care Med. 2025, 2(3), 31; https://doi.org/10.3390/ecm2030031 - 25 Jun 2025
Viewed by 271
Abstract
Background/Objectives: The goal of educators is to leave no learner behind. Ultrasounds require dexterity and 3D image interpretation. They are technologically complex, and current medical residency programs lack a reliable means of assessing this ability among their trainees. This prompts consideration as to [...] Read more.
Background/Objectives: The goal of educators is to leave no learner behind. Ultrasounds require dexterity and 3D image interpretation. They are technologically complex, and current medical residency programs lack a reliable means of assessing this ability among their trainees. This prompts consideration as to whether background characteristics or certain pre-existing skills can serve as indicators of learning aptitude for ultrasounds. The objective of this study was to determine whether these characteristics and skills are indicative of learning aptitude for ultrasounds. Methods: This prospective study was conducted with third-year medical students rotating in emergency medicine at the New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY, USA. First, students were given a pre-test survey to assess their background characteristics. Subsequently, a psychomotor task (Purdue Pegboard) and visual–spatial task (Revised Purdue Spatial Visualization Tests) were administered to the students. Lastly, an ultrasound task was given to identify the subxiphoid cardiac view. A rubric assessed ability, and proficiency was determined as a 75% or higher score in the ultrasound task. Results: In total, 97 students were tested. An analysis of variance (ANOVA) was used to ascertain if any background characteristics from the pre-test survey was associated with the ultrasound task score. The student’s use of cadavers to learn anatomy had the most correlation (p-value of 0.02). Assessing the psychomotor and visual–spatial tasks, linear regressions were used against the ultrasound task scores. Correspondingly, the p-values were 0.007 and 0.008. Conclusions: Ultrasound ability is based on hand–eye coordination and spatial relationships. Increased aptitude in these abilities may forecast future success in this skill. Those who may need more assistance can have their training tailored to them and further support offered. Full article
Show Figures

Figure A1

21 pages, 4530 KiB  
Article
Leaf Morpho-Anatomy of Twelve Cymbidium (Orchidaceae) Species from China and Their Taxonomic Significance
by Xiangke Hu, Lei Tao, Jialin Huang, Kaifeng Tao, Dong Ma and Lu Li
Plants 2025, 14(9), 1396; https://doi.org/10.3390/plants14091396 - 6 May 2025
Viewed by 639
Abstract
Cymbidium are endangered and ornamental orchids, and the taxonomy and species identification of this genus have been debated due to some overlapping morphological features between taxa and limited data being available. The leaf morpho-anatomy of 12 Cymbidium species from China was investigated using [...] Read more.
Cymbidium are endangered and ornamental orchids, and the taxonomy and species identification of this genus have been debated due to some overlapping morphological features between taxa and limited data being available. The leaf morpho-anatomy of 12 Cymbidium species from China was investigated using light microscopy and paraffin sectioning. Based on a comparative analysis, some leaf morphological features that varied between species were selected and used for taxonomic differentiation as follows: (1) The shape and structure of leaves were varied and could be used for species delimitation. (2) Microscopic characteristics show that the leaves lacked trichomes and displayed polygonal to rectangular epidermal cells on both surfaces, with larger adaxial cells and more abaxial stigmata. Stomata were mostly distributed only on the abaxial side, but on both sides in Cymbidium mastersii, which exhibited a rare amphistomatic type. The stomatal complex was uniformly tetracytic in 11 species, while it was observed to be anomocytic in C. floribundum. (3) Anatomically, two distinct midrib configurations were identified, a shallow V-shape and V-shape. The mesophyll cells were homogeneous in 10 species, with the exception of a layer of parenchyma cells resembling palisade cells occurring in C. lancifolium and C. qiubeiense. The thickness of the cuticle varied between species, with the adaxial surface covered by a thicker cuticle than the abaxial surface and displaying either a smooth or corrugated surface. A fiber bundle was observed in six species, but absent in the other six. In the former group, the fiber bundle occurred adjacent to both epidermal cells in C. mastersii and C. hookerianum, while it was adjacent to the abaxial epidermis in four other species. The stegmata, with conical, spherical silica bodies, were associated with fiber bundles and mesophyll in seven species, but absent in the other five (C. kanran, C. defoliatum, C. floribundum, C. lancifolium, and C. serratum). Three kinds of crystals were identified, namely the terete bundle, the long tube bundle, and the raphide. (4) It was suggested that some of these variable features could be selected and used for the delimitation of the species and taxonomy of Cymbidium. In addition, a key to the 12 Cymbidium species based on their leaf morpho-anatomic features was proposed, which could lead to a better understanding of the taxonomy and conservation of Orchidaceae. Full article
(This article belongs to the Special Issue Plant Taxonomy, Phylogeny, and Evolution)
Show Figures

Figure 1

11 pages, 1050 KiB  
Article
A Novel Method to Study Hip Growth and Development in Children with Cerebral Palsy
by Luiz Carlos Almeida da Silva, Yusuke Hori, Burak Kaymaz, Jason J. Howard, Arianna Trionfo, Michael Wade Shrader and Freeman Miller
Children 2025, 12(3), 367; https://doi.org/10.3390/children12030367 - 15 Mar 2025
Viewed by 840
Abstract
Background: Knowledge of the relative contributions to different growth areas in the proximal femur and acetabulum is limited due to the complex anatomy and lack of growth markers in children. There is increasing interest in using guided growth to improve hip joint stability [...] Read more.
Background: Knowledge of the relative contributions to different growth areas in the proximal femur and acetabulum is limited due to the complex anatomy and lack of growth markers in children. There is increasing interest in using guided growth to improve hip joint stability and decrease dysplasia in children with neurological disability. Some children with cerebral palsy (CP) are treated with bisphosphonates for bone insufficiency, which leaves a dense growth arrest band in the bone at the time of treatment. The aim of this study was to develop a novel approach to understand the growth and maturation impact on hip development in children with CP using this growth arrest band. Methods: Pelvic radiographs of children with CP Gross Motor Function Classification System (GMFCS) level IV/V treated with bisphosphonate were analyzed. We measured neck–shaft angle (NSA), head–shaft angle (HSA), and migration percentage (MP) based on pamidronate bands (PamMP), NSA based on pamidronate bands (PamNSA), and HSA based on pamidronate bands (PamHSA). These measurements were compared using t-test. Results: Seven children (two GMFCS IV and five GMFCS V) were included. The mean age of the radiographic assessment was 11.4 ± 1.3 (range, 8.6–12.5) years, mean MP 22 ± 7% (range, 13–39%), PamMP 33 ± 7% (range, 18–46%), NSA 151 ± 7° (range, 140–161°), PamNSA 153 ± 4° (range, 142–163°), HSA 164 ± 12° (range, 142–175°), and PamHSA 169 ± 8° (range, 154–175°). MP decreased by 10.5% compared with PamMP (p < 0.001). NSA compared with PamNSA (p = 0.117) and HSA compared with PamHSA (p = 0.325) were not statistically different. Conclusions: This novel assessment method demonstrates that ossification of the lateral acetabulum and femoral head in children with CP GMFCS IV/V from age 8 to 12 years undergoes a mean decrease of 10% MP. A decrease of 10% MP after proximal femoral-guided growth has been reported as a positive outcome. However, based on the current measurements, this may be due to normal development. HSA and NSA remained unchanged. Full article
(This article belongs to the Special Issue Pediatric Bone Disorders: Focus on Children's Bone Health)
Show Figures

Figure 1

17 pages, 11177 KiB  
Article
Phenological, Physiological, and Ultrastructural Analyses of ‘Green Islands’ on Senescent Leaves of Norway Maple (Acer platanoides L.)
by Violetta Katarzyna Macioszek, Kamila Chalamońska, Jakub Oliwa, Aleksandra Maria Staszak and Mirosław Sobczak
Plants 2025, 14(6), 909; https://doi.org/10.3390/plants14060909 - 14 Mar 2025
Cited by 1 | Viewed by 737
Abstract
‘Green island’ symptoms in the form of vivid green, round spots visible on the senescent leaves of many plants and trees are mostly the results of pathogenic colonization by fungi, and the greenish tissue is often dead. Therefore, this study investigates whether green [...] Read more.
‘Green island’ symptoms in the form of vivid green, round spots visible on the senescent leaves of many plants and trees are mostly the results of pathogenic colonization by fungi, and the greenish tissue is often dead. Therefore, this study investigates whether green spots observed on senescent Norway maple (Acer platanoides L.) leaves were still alive and photosynthetically active. The appearance of ‘green islands’ on the leaves of young Norway maple trees was observed from the autumn of 2019 to 2022 in an urban forest (Bialystok, eastern Poland). However, in the late summer (September) of 2023 and 2024, mostly tar spots caused by the fungus Rhytisma spp. on maple leaves could be observed, with only a few leaves having ‘green island’ symptoms. The percentage of ‘green island’ areas on senescent leaves observed during the 4 years (2019–2022) was influenced by a year of sampling (p < 0.001). A non-destructive physiological analysis of chlorophyll, flavonoids, and nitrogen balance index (NBI) in leaves revealed that these parameters were significantly lower in ‘green islands’ than in the summer leaves, but higher than in the senescent yellow area of the autumn leaves. In the case of anthocyanins, their level was significantly higher in ‘green islands’ than in yellow areas, although, in the summer leaves, anthocyanins were undetectable. The amount of chlorophyll and most photosynthetic parameters were significantly (p < 0.05) reduced in the ‘green islands’ of the senescent leaves compared to the mature green leaves. However, these parameters were significantly higher in the ‘green islands’ than in senescent yellow leaves. Carotenoid content in the ‘green island’ and yellow areas of senescent leaves were at the same level, twice as higher than in summer leaves. Green mature leaves and the ‘green islands’ on senescent leaves had the same structure and anatomy. The main differences concerned the chloroplasts, which were smaller and had less grana and starch grains, but had more plastoglobuli in ‘green island’ cells. The cells building the mesophyll in the yellow area of the leaf deteriorated and their chloroplasts collapsed. Epiphytes were present on the adaxial epidermis surface in all types of samples. Full article
Show Figures

Figure 1

19 pages, 5125 KiB  
Article
Association Between Gall Structural and Metabolic Complexity: Evidence from Pistacia palaestina
by Daniela Batovska, Mirena Chakarova, Monica Dines, Ivayla Dincheva, Ilian Badjakov and Moshe Inbar
Plants 2025, 14(5), 721; https://doi.org/10.3390/plants14050721 - 26 Feb 2025
Viewed by 805
Abstract
Pistacia palaestina hosts several Fordini gall-forming aphid species, which manipulate its anatomy and metabolism, creating galls that provide nutrients and protection. This study compared the extended metabolic profiles of P. palaestina leaves and galls induced by Baizongia pistaciae, Paracletus cimiciformis, and [...] Read more.
Pistacia palaestina hosts several Fordini gall-forming aphid species, which manipulate its anatomy and metabolism, creating galls that provide nutrients and protection. This study compared the extended metabolic profiles of P. palaestina leaves and galls induced by Baizongia pistaciae, Paracletus cimiciformis, and Geoica spp. GC–MS analysis of ethyl acetate (EtOAc) and methanol (MeOH) extracts revealed a high abundance of shikimic acid and quinic acid isomers, along with diverse hydrocarbons, lipids, terpenoids, phenolics, and carbohydrates, each showing distinct distributions across gall types. Paracletus cimiciformis galls closely resembled intact leaves, exhibiting limited metabolic disruption. In contrast, the larger, more complex galls of Baizongia and Geoica underwent profound metabolic modifications. These aphids manipulate host metabolism, leading to triterpenoid and phenolics accumulation, which likely fortifies gall structure and enhances chemical defense. The considerable variation among individual trees suggests that specific host plant templates significantly influence the metabolic profile of the galls. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

19 pages, 752 KiB  
Systematic Review
Enhancing Root Canal Disinfection with Er:YAG Laser: A Systematic Review
by Jakub Fiegler-Rudol, Zuzanna Grzech-Leśniak, Marcin Tkaczyk, Kinga Grzech-Leśniak, Anna Zawilska and Rafał Wiench
Dent. J. 2025, 13(3), 101; https://doi.org/10.3390/dj13030101 - 26 Feb 2025
Cited by 4 | Viewed by 2095
Abstract
Background: The quest for minimally invasive disinfection in endodontics has led to using Erbium:Yttrium-Aluminum-Garnet (Er:YAG) lasers. Conventional approaches may leave bacterial reservoirs in complex canal anatomies. Er:YAG’s strong water absorption generates photoacoustic streaming, improving smear layer removal with lower thermal risk than other [...] Read more.
Background: The quest for minimally invasive disinfection in endodontics has led to using Erbium:Yttrium-Aluminum-Garnet (Er:YAG) lasers. Conventional approaches may leave bacterial reservoirs in complex canal anatomies. Er:YAG’s strong water absorption generates photoacoustic streaming, improving smear layer removal with lower thermal risk than other laser systems. Methods: This systematic review followed PRISMA 2020 guidelines. Database searches (PubMed/MEDLINE, Embase, Scopus, Cochrane Library) identified studies (2015–2025) on Er:YAG laser-assisted root canal disinfection. Fifteen articles met the inclusion criteria: antibacterial efficacy, biofilm disruption, or smear layer removal. Data on laser settings, irrigants, and outcomes were extracted. The risk of bias was assessed using a ten-item checklist, based on guidelines from the Cochrane Handbook for Systematic Reviews of Interventions. Results: All studies found Er:YAG laser activation significantly improved root canal disinfection over conventional or ultrasonic methods. Photon-induced photoacoustic streaming (PIPS) and shock wave–enhanced emission photoacoustic streaming (SWEEPS) yielded superior bacterial reduction, especially apically, and enabled lower sodium hypochlorite concentrations without sacrificing efficacy. Some research indicated reduced post-operative discomfort. However, protocols, laser parameters, and outcome measures varied, limiting direct comparisons and emphasizing the need for more standardized, long-term clinical trials. Conclusions: Er:YAG laser-assisted irrigation appears highly effective in biofilm disruption and smear layer removal, supporting deeper irrigant penetration. While findings are promising, further standardized research is needed to solidify guidelines and confirm Er:YAG lasers’ long-term clinical benefits. Full article
(This article belongs to the Special Issue Laser Dentistry: The Current Status and Developments)
Show Figures

Figure 1

31 pages, 5603 KiB  
Article
Oregano Young Plants Cultured at Low Temperature Reveal an Enhanced Healing Effect of Their Extracts: Anatomical, Physiological and Cytotoxicity Approach
by Aikaterina L. Stefi, Maria Chalkiadaki, Katerina Dimitriou, Konstantina Mitsigiorgi, Dimitrios Gkikas, Danae Papageorgiou, Georgia C. Ntroumpogianni, Dido Vassilacopoulou, Maria Halabalaki and Nikolaos S. Christodoulakis
Metabolites 2025, 15(2), 103; https://doi.org/10.3390/metabo15020103 - 7 Feb 2025
Viewed by 1576
Abstract
Background: The germination and early development of Origanum vulgare L. subsp. hirtum (Link) Ietswaart (Greek oregano) were studied to assess the plant’s response to different temperatures. Methods: After germination, seedlings were cultivated in control (25 °C) and cold (15 °C) chambers with standard [...] Read more.
Background: The germination and early development of Origanum vulgare L. subsp. hirtum (Link) Ietswaart (Greek oregano) were studied to assess the plant’s response to different temperatures. Methods: After germination, seedlings were cultivated in control (25 °C) and cold (15 °C) chambers with standard growth parameters. Comparative analyses of plant morphology and leaf anatomy were conducted to identify structural modifications induced by different temperatures. Physiological evaluations, including photosynthetic pigment measurements, phenolic content, and antioxidant activity, were performed to assess differences between the plants grown under the two temperature conditions. Methanolic extracts from the leaves were tested for cytotoxicity on MCF-7 breast adenocarcinoma cells and SH-SY5Y neuroblastoma cells, as well as on nine microbial strains. Additionally, biomarkers from the leaves affected by temperature changes were determined using LC-HRMS/MS analysis. Results: Comparative analyses revealed distinct structural and physiological modifications under cold conditions. The methanolic extracts from plants grown at 15 °C exhibited notably higher cytotoxic activity in both cell lines but demonstrated no activity against microbial strains. The results highlight the influence of low temperature on enhancing the bioactive properties of Greek oregano. Conclusions: The findings provide valuable insights into the environmental adaptability of oregano, demonstrating the impact of low temperature on its bioactive properties. The therapeutic potential of methanolic extracts cultured at 15 °C is imprinted in cytotoxicity in SH-SY5Y and MCF-7 cells and the absence of any activity against microbial strains. Full article
Show Figures

Figure 1

22 pages, 10493 KiB  
Article
Dissecting the Affinity of Neighboring Malvaceae Genera; Brachychiton and Sterculia Through Morphological, Anatomical, and Molecular Approaches
by Fatma A. Hamada, Doaa M. Elkholy, Rim Hamdy, Mohamed Zamzam, Ahmed M. El-Taher, Hammad Ahmad Jan and Nagwan H. Atia
Int. J. Plant Biol. 2025, 16(1), 18; https://doi.org/10.3390/ijpb16010018 - 1 Feb 2025
Cited by 2 | Viewed by 1281
Abstract
Morphological, anatomical, and molecular information facilitates the identification and inference of the relatedness of plant species. In this study, the macromorphological, micromorphological, and anatomical characteristics of nine species from the Brachychiton and Sterculia genera belonging to the Malvaceae family were examined by light [...] Read more.
Morphological, anatomical, and molecular information facilitates the identification and inference of the relatedness of plant species. In this study, the macromorphological, micromorphological, and anatomical characteristics of nine species from the Brachychiton and Sterculia genera belonging to the Malvaceae family were examined by light and a scanning electron microscope. The study recorded 66 macromorphological, micromorphological, and anatomical characteristics, thus revealing important variations between the studied species in leaf morphology and anatomy. This included variations in leaf complexity, leaf arrangement (phyllotaxy), epidermal cell walls, and their sculpture, as well as in the types of glandular and non-glandular trichomes. The studied species were mostly conserved in shedding patterns, being evergreen only in one out of nine studied species. Similarly, eight species were petiolate. Conversely, leaf arrangement and leaf complexity characteristics were highly divergent among the studied species, though only one species, Sterculia foetida, had compound leaves. The differences in the studied features and the chloroplast genes MaturaseK (MatK) and ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcl) were exploited to deduce the relationship between the studied species. While the morphological and anatomical features demonstrated a close relationship between the studied intrageneric species, the DNA barcoding analysis proved very efficient in distinguishing the two neighboring genera. Collectively, the different clustering analyses suggest a close relatedness between Brachychiton acerifolius and B. australis, while only DNA-based clustering demonstrates cladistic monophyly of the Sterculia species. This study, therefore, provides a detailed description of various morphological and anatomical features important for the systematic studies within the Malvaceae family and highlights the value of incorporating morphological, anatomical, and molecular approaches for inferring the evolutionary relationship between closely related plant species. Full article
(This article belongs to the Topic Diversity and Conservation of Flora in Africa)
Show Figures

Figure 1

19 pages, 3537 KiB  
Article
Rapeseed Supports Hairy Vetch in Intercropping, Enhancing Root and Stem Morphology, Nitrogen Metabolism, Photosynthesis, and Forage Yield
by Jianli Ji, Zongkai Wang, Pan Gao, Xiaoqiang Tan, Xianling Wang, Jie Kuai, Jing Wang, Zhenghua Xu, Bo Wang, Guangsheng Zhou and Jie Zhao
Agronomy 2025, 15(1), 220; https://doi.org/10.3390/agronomy15010220 - 17 Jan 2025
Cited by 2 | Viewed by 1056
Abstract
The global shortage of high-quality forage has significantly constrained the development of animal husbandry. Leveraging the complementary effects of forage rapeseed and hairy vetch intercropping can enhance forage yield and quality; however, the underlying mechanisms of overyielding in forage rapeseed–hairy vetch intercropping systems [...] Read more.
The global shortage of high-quality forage has significantly constrained the development of animal husbandry. Leveraging the complementary effects of forage rapeseed and hairy vetch intercropping can enhance forage yield and quality; however, the underlying mechanisms of overyielding in forage rapeseed–hairy vetch intercropping systems remain unclear. Over two years of field experiments, three cropping systems—rapeseed sole cropping, hairy vetch sole cropping, and rapeseed–hairy vetch intercropping—were investigated to assess the effects of intercropping on root and stem morphology, canopy light distribution, leaf photosynthetic physiology, and nitrogen metabolism. Our results demonstrated that intercropping increased forage biomass and crude protein yield by 14.3–20.0% and 30.7–92.8%, respectively, compared to sole cropping. Intercropping significantly enhanced root biomass, increasing lateral root biomass by 81% compared to rapeseed sole cropping. It also improved stem anatomical traits, including the cortex area (58.8–80.7%), cortex thickness (25.1–38.3%), number of vascular bundles (18.0–37.3%), vascular bundle length (17.8–18.4%), vascular bundle perimeter (6.7–18.7%), vascular bundle area (34.6–63.9%), and stem breaking strength (25.7–76.6%). Additionally, intercropping optimized vertical canopy light interception, reduced the activity of antioxidant enzymes (CAT, POD, SOD) and reactive oxygen species (ROS) accumulation, and enhanced the activities of glutamine synthetase and nitrate reductase, stomatal traits, and photosynthetic rates in the leaves of both crops. Structural equation modeling revealed that, in the intercropping system, improved population lodging resistance directly promoted nitrogen metabolism and leaf photosynthetic rates, ultimately increasing population biomass. In summary, rapeseed–hairy vetch intercropping improved canopy light distribution, strengthened rapeseed stem anatomy and root penetration, and enhanced population lodging resistance, leaf photosynthetic physiology, and nitrogen metabolism, thereby boosting forage biomass and quality. The supportive role of rapeseed in the intercropping system elucidates the overyielding mechanisms of rapeseed–hairy vetch intercropping, offering a theoretical framework for optimizing forage production systems worldwide. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

12 pages, 2730 KiB  
Article
Variations and Coordination of Leaflet and Petiole Functional Traits Within Compound Leaves in Three Hardwood Species
by Xiaohui Guo, Jinshan Zhang, Jiacun Gu, Zhongyue Li and Yan Wang
Forests 2025, 16(1), 139; https://doi.org/10.3390/f16010139 - 14 Jan 2025
Cited by 1 | Viewed by 974
Abstract
Leaf morphology and anatomy traits are key determinants for plant performance; however, their roles within compound leaves—comprising both leaflets and petioles—remain insufficiently studied. This study examined the anatomy, morphology, and biomass allocation of leaflets and petioles in three temperate species (Fraxinus mandshurica [...] Read more.
Leaf morphology and anatomy traits are key determinants for plant performance; however, their roles within compound leaves—comprising both leaflets and petioles—remain insufficiently studied. This study examined the anatomy, morphology, and biomass allocation of leaflets and petioles in three temperate species (Fraxinus mandshurica Rupr., Juglans mandshurica Maxim., and Phellodendron amurense Rupr.). The results showed pronounced anatomical variations within the whole leaf. Specifically, as phyllotaxy increased, the number of conduits significantly increased in petioles but showed less variation. Within the same growth position, the number of conduits was highest in the petiole, followed by the petiolule, main vein, and minor veins. In the terminal leaf vascular network, thinner conduits of minor veins may result in a lower hydraulic efficiency but a higher resistance to embolism. Biomass allocation favored leaflets over petioles in all three examined species. Additionally, the specific leaf area slightly increased with an increase in the degree of phyllotaxy. These findings underscore the trade-offs of efficiency and safety in vascular tissues, as well as the expanding leaf and investment between the leaflet and petiole. Full article
(This article belongs to the Special Issue Water Relations in Tree Physiology)
Show Figures

Figure 1

23 pages, 3937 KiB  
Article
Effect of Plant Growth-Promoting Rhizobacteria Synthetic Consortium on Growth, Yield, and Metabolic Profile of Lettuce (Lactuca sativa L.) Grown Under Suboptimal Nutrient Regime
by Renée Abou Jaoudé, Francesca Luziatelli, Anna Grazia Ficca and Maurizio Ruzzi
Horticulturae 2025, 11(1), 64; https://doi.org/10.3390/horticulturae11010064 - 9 Jan 2025
Cited by 3 | Viewed by 2586
Abstract
Soilless cultivation allows for the exploitation of the benefits of plant growth-promoting rhizobacteria (PGPR) without the loss of efficacy observed with soil inoculation. In this study, we investigated the effects of a PGPR consortium on the plant growth, ecophysiology, and metabolic profile of [...] Read more.
Soilless cultivation allows for the exploitation of the benefits of plant growth-promoting rhizobacteria (PGPR) without the loss of efficacy observed with soil inoculation. In this study, we investigated the effects of a PGPR consortium on the plant growth, ecophysiology, and metabolic profile of lettuce (Lactuca sativa L.) grown in an aeroponic system under a low-nutrient regime. Overall, the plant biomass increased by 25% in the PGPR-inoculated plants due to enhanced leaf and root growth. The rise in the leaf biomass was primarily due to an increase in the leaf number and average leaf mass, coupled with a higher total leaf area. In addition, the inoculated plants exhibited an altered leaf anatomy characterized by an increased palisade parenchyma thickness and reduced airspace area, suggesting an improved photosynthetic efficiency and changes in the mesophyll conductance. The root morphology was also altered, with the PGPR-inoculated plants showing higher lateral root development. Furthermore, PGPR inoculation induced significant metabolic reprogramming in the leaves, affecting several pathways related to growth, development, and stress responses. These findings provide valuable insights into the intricate metabolic dialog between plants and beneficial microbes and demonstrate that the integration of soilless culture with an analysis of the ecophysiological, anatomical, and metabolomic plant responses can be a powerful approach to accelerate the design of new PGPR consortia for use as microbial biostimulants. Full article
Show Figures

Figure 1

19 pages, 2935 KiB  
Article
Morphoanatomic and Physiological Characterization of Cacao (Theobroma cacao L.) Genotypes in the South of Bahia, Brazil
by Rogerio S. Alonso, Fábio P. Gomes and Delmira C. Silva
Agronomy 2024, 14(11), 2730; https://doi.org/10.3390/agronomy14112730 - 19 Nov 2024
Viewed by 2931
Abstract
Cocoa tree genotypes (Theobroma cacao L.) were studied and characterized in terms of their morphoanatomical and physiological attributes in a non-stressful environment, as these attributes are of fundamental importance to understanding the plant’s relationship with the environment. Therefore, the objective of this [...] Read more.
Cocoa tree genotypes (Theobroma cacao L.) were studied and characterized in terms of their morphoanatomical and physiological attributes in a non-stressful environment, as these attributes are of fundamental importance to understanding the plant’s relationship with the environment. Therefore, the objective of this study is to describe morphoanatomical and physiological patterns that can differentiate the seven cocoa genotypes, evaluated under the same conditions of temperature, humidity, and light. The genotypes remained in a greenhouse for 40 days, where sample collection procedures were carried out to analyze gas exchange parameters, such as net photosynthetic rate, stomatal conductance, and transpiration; growth parameters, such as dry weight, height, and leaf area; and the anatomy of leaves and stems via root, stem, and leaf dimensions and histochemistry. The cluster divided the genotypes into six groups. The Ipiranga-01, CCN-10, and PH-16 genotypes were grouped since they presented the highest means of anatomical variables and photosynthetic parameters. The PS-1319 genotype was segregated from the others for having the lowest physiological parameter values. CCN-51 and Cepec-2002 were grouped due to their similarity only in the internal concentration of CO2, while Ipiranga-01, CCN-10, SJ-02, and PH-16 were grouped due to having higher physiological parameters and morphoanatomical variables. The results indicated an intergenotypic variation in physiological and morphoanatomical variables, serving as a basis for the six genotype groups. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

Back to TopTop