Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,451)

Search Parameters:
Keywords = analytical mode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 512 KB  
Article
Free Vibration of FML Beam Considering Temperature-Dependent Property and Interface Slip
by Like Pan, Yingxin Zhao, Tong Xing and Yuan Yuan
Buildings 2025, 15(19), 3575; https://doi.org/10.3390/buildings15193575 - 3 Oct 2025
Abstract
This paper presents an analytical investigation of the free vibration behavior of fiber metal laminate (FML) beams with three types of boundary conditions, considering the temperature-dependent properties and the interfacial slip. In the proposed model, the non-uniform temperature field is derived based on [...] Read more.
This paper presents an analytical investigation of the free vibration behavior of fiber metal laminate (FML) beams with three types of boundary conditions, considering the temperature-dependent properties and the interfacial slip. In the proposed model, the non-uniform temperature field is derived based on one-dimensional heat conduction theory using a transfer formulation. Subsequently, based on the two-dimensional elasticity theory, the governing equations are established. Compared with shear deformation theories, the present solution does not rely on a shear deformation assumption, enabling more accurate capture of interlaminar shear effects and higher-order vibration modes. The relationship of stresses and displacements is determined by the differential quadrature method, the state-space method and the transfer matrix method. Since the corresponding matrix is singular due to the absence of external loads, the natural frequencies are determined using the bisection method. The comparison study indicates that the present solutions are consistent with experimental results, and the errors of finite element simulation and the solution based on the first-order shear deformation theory reach 3.81% and 3.96%, respectively. At last, the effects of temperature, the effects of temperature degree, interface bonding and boundary conditions on the vibration performance of the FML beams are investigated in detail. The research results provide support for the design and analysis of FML beams under high-temperature and vibration environments in practical engineering. Full article
11 pages, 1301 KB  
Article
Monitoring Single DNA Docking Site Activity with Sequential Modes of an Optoplasmonic Whispering-Gallery Mode Biosensor
by Narima Eerqing, Ekaterina Zossimova, Sivaraman Subramanian, Hsin-Yu Wu and Frank Vollmer
Sensors 2025, 25(19), 6059; https://doi.org/10.3390/s25196059 - 2 Oct 2025
Abstract
In recent years, there has been rapid advancement in single-molecule techniques, driven by their unparalleled precision in studying molecules whose sizes are beyond the diffraction limit. Among these techniques, optoplasmonic whispering gallery mode sensing has demonstrated great potential in label-free single-molecule characterization. It [...] Read more.
In recent years, there has been rapid advancement in single-molecule techniques, driven by their unparalleled precision in studying molecules whose sizes are beyond the diffraction limit. Among these techniques, optoplasmonic whispering gallery mode sensing has demonstrated great potential in label-free single-molecule characterization. It combines the principles of localized surface plasmon resonance (LSPR) and whispering gallery mode (WGM) sensing, offering exceptional sensing capabilities, even at the level of single ions. However, current optoplasmonic WGM sensing operates in a multiplexed channel, making it challenging to focus on individual binding sites of analyte molecules. In this article, we characterize different binding sites of DNA analyte molecules hybridizing to docking strands on the optoplasmonic WGM sensor, using the ratio of the resonance shift between sequential polar WGM modes. We identify specific docking sites that undergo transient interactions and eventually hybridize with the complementary analyte strands permanently. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

23 pages, 3652 KB  
Article
Vibration Control of a Two-Link Manipulator Using a Reduced Model
by Amir Mohamad Kamalirad and Reza Fotouhi
Vibration 2025, 8(4), 58; https://doi.org/10.3390/vibration8040058 - 1 Oct 2025
Abstract
This research aims to actively suppress vibrations at the end-effector of a flexible manipulator. When configured in a locked state, the system behaves as a two-link manipulator subjected to disturbances on the first link. To analyze its behavior, Finite Element Analysis (FEA) is [...] Read more.
This research aims to actively suppress vibrations at the end-effector of a flexible manipulator. When configured in a locked state, the system behaves as a two-link manipulator subjected to disturbances on the first link. To analyze its behavior, Finite Element Analysis (FEA) is employed to extract the natural frequencies (eigenvalues) and corresponding mode shapes (eigenvectors) of a two-link, two-joint flexible manipulator (2L2JM). The obtained eigenvectors are transformed into uncoupled state-space equations using balanced realization and the Match-DC-Gain model reduction algorithm. An H-infinity controller is then designed and applied to both the full-order and reduced-order models of the manipulator. The objective of this study is to validate an analytical framework through FEA, demonstrating its applicability to complex manipulators with multiple joints and flexible links. Given that the full state-space representation typically results in high-dimensional matrices, model reduction enables effective vibration control with a minimal number of states. The derivation of the 2L2JM state space, its model reduction, and a subsequent control strategy have not been previously addressed in this manner. Simulation results showcasing vibration suppression of a cantilever beam are presented and benchmarked against two alternative modeling approaches. Full article
Show Figures

Figure 1

86 pages, 1368 KB  
Article
Nonlinear Quasi-Classical Model of Isothermal Relaxation Polarization Currents in Functional Elements of Microelectronics, Optoelectronics, and Fiber Optics Based on Crystals with Ionic-Molecular Chemical Bonds with Complex Crystalline Structure
by Valeriy Kalytka, Ali Mekhtiyev, Yelena Neshina, Aleksey Yurchenko, Aliya Аlkina, Felix Bulatbayev, Valeriy Issayev, Kanat Makhanov, Dmitriy Lukin, Damir Kayumov and Alexandr Zaplakhov
Crystals 2025, 15(10), 863; https://doi.org/10.3390/cryst15100863 - 30 Sep 2025
Abstract
In this article, the mechanism of relaxation polarization currents occurring at a constant temperature (isothermal process) in crystals with ionic-molecular chemical bonds (CIMBs) in an alternating electric field was investigated. Methods of the quasi-classical kinetic theory of dielectric relaxation, based on solutions of [...] Read more.
In this article, the mechanism of relaxation polarization currents occurring at a constant temperature (isothermal process) in crystals with ionic-molecular chemical bonds (CIMBs) in an alternating electric field was investigated. Methods of the quasi-classical kinetic theory of dielectric relaxation, based on solutions of the nonlinear system of Fokker–Planck and Poisson equations (for the blocking electrode model) and perturbation theory (by expanding into an infinite series in powers of a dimensionless small parameter) were used. Generalized nonlinear mathematical expressions for calculating the complex amplitudes of relaxation modes of the volume-charge distribution of the main charge carriers (ions, protons, water molecules, etc.) were obtained. On this basis, formulas for the current density of relaxation polarization (for transient processes in a dielectric) in the k-th approximation of perturbation theory were constructed. The isothermal polarization currents are investigated in detail in the first four approximations (k = 1, 2, 3, 4) of perturbation theory. These expressions will be applied in the future to compare the results of theory and experiment, in analytical studies of the kinetics of isothermal ion-relaxation (in crystals with hydrogen bonds (HBC), proton-relaxation) polarization and in calculating the parameters of relaxers (molecular characteristics of charge carriers and crystal lattice parameters) in a wide range of field parameters (0.1–1000 MV/m) and temperatures (1–1550 K). Asymptotic (far from transient processes) recurrent formulas are constructed for complex amplitudes of relaxation modes and for the polarization current density in an arbitrary approximation k of perturbation theory with a multiplicity r by the polarizing field (a multiple of the fundamental frequency of the field). The high degree of reliability of the theoretical results obtained is justified by the complete agreement of the equations of the mathematical model for transient and stationary processes in the system with a harmonic external disturbance. This work is of a theoretical nature and is focused on the construction and analysis of nonlinear properties of a physical and mathematical model of isothermal ion-relaxation polarization in CIMB crystals under various parameters of electrical and temperature effects. The theoretical foundations for research (construction of equations and working formulas, algorithms, and computer programs for numerical calculations) of nonlinear kinetic phenomena during thermally stimulated relaxation polarization have been laid. This allows, with a higher degree of resolution of measuring instruments, to reveal the physical mechanisms of dielectric relaxation and conductivity and to calculate the parameters of a wide class of relaxators in dielectrics in a wide experimental temperature range (25–550 K). Full article
(This article belongs to the Section Inorganic Crystalline Materials)
27 pages, 7591 KB  
Article
Switching Frequency Figure of Merit for GaN FETs in Converter-on-Chip Power Conversion
by Liron Cohen, Joseph B. Bernstein, Roni Zakay, Aaron Shmaryahu and Ilan Aharon
Electronics 2025, 14(19), 3909; https://doi.org/10.3390/electronics14193909 - 30 Sep 2025
Abstract
Power converters are increasingly pushing toward higher switching frequencies, with current designs typically operating between tens of kilohertz and a few megahertz. The commercialization of gallium nitride (GaN) power transistors has opened new possibilities, offering performance far beyond the limitations of conventional silicon [...] Read more.
Power converters are increasingly pushing toward higher switching frequencies, with current designs typically operating between tens of kilohertz and a few megahertz. The commercialization of gallium nitride (GaN) power transistors has opened new possibilities, offering performance far beyond the limitations of conventional silicon devices. Despite this promise, the potential of GaN technology remains underutilized. This paper explores the feasibility of achieving sub-gigahertz switching frequencies using GaN-based switch-mode power converters, a regime currently inaccessible to silicon-based counterparts. To reach such operating speeds, it is essential to understand and quantify the intrinsic frequency limitations imposed by GaN device physics and associated parasitics. Existing power conversion topologies and control techniques are unsuitable at these frequencies due to excessive switching losses and inadequate drive capability. This work presents a detailed, systematic study of GaN transistor behavior at high frequencies, aiming to identify both fundamental and practical switching limits. A compact analytical model is developed to estimate the maximum soft-switching frequency, considering only intrinsic device parameters. Under idealized converter conditions, this upper bound is derived as a function of internal losses and the system’s target efficiency. From this, a soft-switching figure of merit is proposed to guide the design and layout of GaN field-effect transistors for highly integrated power systems. The key contribution of this study lies in its analytical insight into the performance boundaries of GaN transistors, highlighting the roles of parasitic elements and loss mechanisms. These findings provide a foundation for developing next-generation, high-frequency, chip-scale power converters. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Figure 1

33 pages, 20632 KB  
Article
A Complex Network Science Perspective on Urban Parcel Locker Placement
by Enrico Corradini, Mattia Mandorlini, Filippo Mariani, Paolo Roselli, Samuele Sacchetti and Matteo Spiga
Big Data Cogn. Comput. 2025, 9(10), 249; https://doi.org/10.3390/bdcc9100249 - 30 Sep 2025
Abstract
The rapid rise of e-commerce is intensifying pressure on last-mile delivery networks, making the strategic placement of parcel lockers an urgent urban challenge. In this work, we adapt multilayer two-mode Social Network Analysis to the parcel-locker siting problem, modeling city-scale systems as bipartite [...] Read more.
The rapid rise of e-commerce is intensifying pressure on last-mile delivery networks, making the strategic placement of parcel lockers an urgent urban challenge. In this work, we adapt multilayer two-mode Social Network Analysis to the parcel-locker siting problem, modeling city-scale systems as bipartite networks linking spatially resolved demand zones to locker locations using only open-source demographic and geographic data. We introduce two new Social Network Analysis metrics, Dual centrality and Coverage centrality, designed to identify both structurally critical and highly accessible lockers within the network. Applying our framework to Milan, Rome, and Naples, we find that conventional coverage-based strategies successfully maximize immediate service reach, but tend to prioritize redundant hubs. In contrast, Dual centrality reveals a distinct set of lockers whose presence is essential for maintaining overall connectivity and resilience, often acting as hidden bridges between user communities. Comparative analysis with state-of-the-art multi-criteria optimization baselines confirms that our network-centric metrics deliver complementary, and in some cases better, guidance for robust locker placement. Our results show that a network-analytic lens yields actionable guidance for resilient last-mile locker siting. The method is reproducible from open data (potential-access weights) and plug-in compatible with observed assignments. Importantly, the path-based results (Coverage centrality) are adjacency-driven and thus largely insensitive to volumetric weights. Full article
29 pages, 2669 KB  
Article
How Has Poets’ Reading Style Changed? A Phonetic Analysis of the Effects of Historical Phases and Gender on 20th Century Spanish Poetry Reading
by Valentina Colonna
Languages 2025, 10(10), 255; https://doi.org/10.3390/languages10100255 - 30 Sep 2025
Abstract
Poetry reading remains a largely underexplored area in phonetic research. While previous studies have highlighted its potential and challenges, experimental research in the Spanish context is still limited. This study aims to examine the evolution of Spanish poetry reading over time, focusing on [...] Read more.
Poetry reading remains a largely underexplored area in phonetic research. While previous studies have highlighted its potential and challenges, experimental research in the Spanish context is still limited. This study aims to examine the evolution of Spanish poetry reading over time, focusing on its main prosodic features. Applying the VIP-VSP phonetic model to 40 poetry recordings, we analyzed the organizational and prosodic indices that characterize poetry reading. Mean speech rate, plenus (the ratio of speaking time to pausing), and pitch span emerged as key parameters for capturing change. The results identified two distinct historical phases—first and second radio-television—showing significant effects on speech rate, plenus, and pitch span: speech rate and pitch span increased over time, while plenus decreased. Gender also played a key role, with female voices exhibiting significantly higher values in both pitch span and plenus. Variability and recurring strategies were observed within and across authors. This study confirms that poetry reading has evolved along a ‘stylistic-chronological’ trajectory, while also reflecting gender-based distinctions. These findings underscore the need for interdisciplinary analytical approaches and diversified classification groupings to fully capture the complexity of this mode of speech. Full article
Show Figures

Figure 1

24 pages, 11426 KB  
Article
Structural Behaviour of Slab-on-Grade Constructed Using High-Ductility Fiber-Reinforced Cement Composite: Experimental and Analytical Investigation
by Su-Tae Kang, Nilam Adsul and Bang Yeon Lee
Fibers 2025, 13(10), 133; https://doi.org/10.3390/fib13100133 - 29 Sep 2025
Abstract
This study investigated the structural behavior of slab-on-grade (SOG) specimens constructed using two materials: conventional concrete reinforced with steel mesh and high-ductility fiber-reinforced cement composites (HDFRCC) containing 1.2% polyethylene (PE) fiber without steel reinforcement. The compressive strengths of conventional concrete and HDFRCC were [...] Read more.
This study investigated the structural behavior of slab-on-grade (SOG) specimens constructed using two materials: conventional concrete reinforced with steel mesh and high-ductility fiber-reinforced cement composites (HDFRCC) containing 1.2% polyethylene (PE) fiber without steel reinforcement. The compressive strengths of conventional concrete and HDFRCC were 37 MPa and 54 MPa, respectively. The average flexural tensile strength of HDFRCC was 3.9 MPa at first cracking and 9.7 MPa at peak load. Punching shear tests were performed under three loading configurations: internal (center), edge, and corner loading. Crack patterns and load–displacement responses were analyzed for both material types. Under center loading, the experimentally measured load-bearing capacities were 174.52 kN for conventional concrete and 380.82 kN for HDFRCC, with both materials exhibiting reduced capacities under edge and corner loading. Analytical predictions demonstrated close agreement with the experimental results for conventional concrete but significantly underestimated the load capacity of HDFRCC SOG. This discrepancy is attributed to the strain-hardening and crack-bridging mechanisms inherent in HDFRCC, which contribute to enhanced strength beyond conventional analytical predictions. In terms of failure mode, the conventional concrete SOG exhibited the expected flexural failure. In contrast, the HDFRCC SOG experienced either flexural failure or a combination of flexural and punching failure, in contradiction to the analytical prediction of exclusive punching shear failure. These findings indicate that the punching shear resistance of the HDFRCC SOG is substantially higher than predicted. Full article
Show Figures

Figure 1

16 pages, 1228 KB  
Article
Simulation of an Asymmetric Photonic Structure Integrating Tamm Plasmon Polariton Modes and a Cavity Mode for Potential Urinary Glucose Sensing via Refractive Index Shifts
by Hung-Che Chou, Rashid G. Bikbaev, Ivan V. Timofeev, Mon-Juan Lee and Wei Lee
Biosensors 2025, 15(10), 644; https://doi.org/10.3390/bios15100644 - 29 Sep 2025
Abstract
Diabetes has become a global health challenge, driving the demand for innovative, non-invasive diagnostic technologies to improve glucose monitoring. Urinary glucose concentration, a reliable indicator of metabolic changes, provides a practical alternative for frequent monitoring without the discomfort of invasive methods. In this [...] Read more.
Diabetes has become a global health challenge, driving the demand for innovative, non-invasive diagnostic technologies to improve glucose monitoring. Urinary glucose concentration, a reliable indicator of metabolic changes, provides a practical alternative for frequent monitoring without the discomfort of invasive methods. In this simulation-based study, we propose a novel asymmetric photonic structure that integrates Tamm plasmon polariton (TPP) modes and a cavity mode for high-precision refractive index sensing, with a conceptual focus on the potential detection of urinary glucose. The structure supports three distinct resonance modes, each with unique field localization. Both the TPP modes, confined at the metallic–dielectric interfaces, serve as stable references whose wavelengths are unaffected by refractive-index variations in human urine, whereas the cavity mode exhibits a redshift with increasing refractive index, enabling high responsiveness to analyte changes. The evaluation of sensing performance employs a sensitivity formulation that leverages either TPP mode as a reference and the cavity mode as a probe, thereby achieving dependable measurement and spectral stability. The optimized design achieves a sensitivity of 693 nm·RIU−1 and a maximum figure of merit of 935 RIU−1, indicating high detection resolution and spectral sharpness. The device allows both reflectance and transmittance measurements to ensure enhanced versatility. Moreover, the coupling between TPP and cavity modes demonstrates hybrid resonance, empowering applications such as polarization-sensitive or angle-dependent filtering. The figure of merit is analyzed further, considering resonance wavelength shifts and spectral sharpness, thus manifesting the structure’s robustness. Although this study does not provide experimental data such as calibration curves, recovery rates, or specificity validation, the proposed structure offers a promising conceptual framework for refractive index-based biosensing in human urine. The findings position the structure as a versatile platform for advanced photonic systems, offering precision, tunability, and multifunctionality beyond the demonstrated optical sensing capabilities. Full article
Show Figures

Figure 1

22 pages, 3057 KB  
Article
Consumer Carbon Footprint of Fashion E-Commerce: A Comparative Analysis Between Omnichannel and Pure-Player Models in Spain
by David Antonio Rosas, Carlos Lli-Torrabadella, María Tamames-Sobrino, Irene Miguel-Corbacho and José Luis Olazagoitia
Sustainability 2025, 17(19), 8690; https://doi.org/10.3390/su17198690 - 26 Sep 2025
Abstract
The rapid expansion of fashion e-commerce has raised concerns over the environmental cost of last-mile deliveries, especially in pure-player models. This preliminary study examines the estimated carbon footprint of TENDAM’s omnichannel model—based on in-store pickup and returns—compared to pure-player home delivery, using a [...] Read more.
The rapid expansion of fashion e-commerce has raised concerns over the environmental cost of last-mile deliveries, especially in pure-player models. This preliminary study examines the estimated carbon footprint of TENDAM’s omnichannel model—based on in-store pickup and returns—compared to pure-player home delivery, using a customer-level approach across 11 Spanish cities of varying sizes. A total of 3106 face-to-face surveys were conducted in TENDAM stores, capturing data on mobility behavior, transport modes, trip chaining, and service types. Emission factors were applied using a Python-based analytical model, and results were contrasted with Monte Carlo simulations from existing literature on pure players. Our findings indicate that the average per-service footprint of the omnichannel model is around 400 g CO2eq, significantly lower than the 1500–3000 g CO2eq range for pure players. Emissions were especially low in large cities and in street-level stores, largely due to the high rate of walking and multipurpose trips among customers. The study also includes geospatial analysis through interactive influence maps. These results suggest that dense store networks embedded in walkable urban areas can substantially reduce last-mile GHG emissions. While preliminary, the study highlights the potential for omnichannel retail to support urban decarbonization goals and sustainability when integrated with sustainable mobility patterns. Full article
Show Figures

Figure 1

22 pages, 3551 KB  
Article
Research on the Dynamic Response Characteristics of Soft Coal Under Impact Disturbance Based on Hamilton
by Feng Li, Tianyi Zhang, Chenchen Wang and Binchan Tian
Appl. Sci. 2025, 15(19), 10443; https://doi.org/10.3390/app151910443 - 26 Sep 2025
Abstract
To address the limitations of traditional elasticity theory in analyzing the dynamic response of soft coal under external impact, this study establishes a vibration control equation with an analytical solution based on Hamiltonian mechanics. Key control parameters within the equation were solved to [...] Read more.
To address the limitations of traditional elasticity theory in analyzing the dynamic response of soft coal under external impact, this study establishes a vibration control equation with an analytical solution based on Hamiltonian mechanics. Key control parameters within the equation were solved to determine the theoretical dominant vibration modes and natural frequencies of the weakest coal layer. Triangular and rectangular waves were transformed via FFT to analyze their harmonic components, and the superposition of the first four harmonics was selected as the input impact signal. The modal and natural frequency changes during the fragmentation of the central weak zone under external impact were simulated, and the dynamic displacement response was analyzed. The results indicate a strong response frequency range of 4.4–5.2 Hz, with the rectangular wave identified as the most effective response waveform. A similarity simulation platform was constructed, and experimental data showed that the velocity and displacement response trend of the coal mass aligned closely with theoretical predictions. Therefore, in actual underground operations, emphasis should be placed on monitoring low-frequency vibrations in mines, minimizing rectangular wave disturbances in the low-frequency range, and implementing pressure relief measures in high-risk zones to reduce the likelihood of coal and gas outbursts. By separately modeling high-risk zones and analyzing their dynamic response under external impact, this study explains the outburst mechanism of the weakest layer in soft coal from a dynamic perspective. Combining theoretical and experimental approaches, it provides a new theoretical basis for understanding and preventing coal and gas outbursts. Full article
Show Figures

Figure 1

30 pages, 4648 KB  
Article
Bootstrap-Based Stabilization of Sparse Solutions in Tensor Models: Theory, Assessment, and Application
by Gresky Gutiérrez-Sánchez, María Purificación Vicente-Galindo and Purificación Galindo-Villardón
Algorithms 2025, 18(10), 602; https://doi.org/10.3390/a18100602 - 26 Sep 2025
Abstract
This paper introduces BCenetTucker, a novel bootstrap-enhanced extension of the CenetTucker model designed to address the instability of sparse support recovery in high-dimensional tensor settings. By integrating mode-specific resampling directly into the penalized tensor decomposition process, BCenetTucker improves the reliability and reproducibility [...] Read more.
This paper introduces BCenetTucker, a novel bootstrap-enhanced extension of the CenetTucker model designed to address the instability of sparse support recovery in high-dimensional tensor settings. By integrating mode-specific resampling directly into the penalized tensor decomposition process, BCenetTucker improves the reliability and reproducibility of latent structure estimation without compromising the model′s interpretability. The proposed method is systematically benchmarked against classical CenetTucker, Stability Selection, and Bolasso, using real-world gene expression data from the GSE13159 leukemia dataset. Across multiple stability metrics—including support-size deviation, average Jaccard index, inclusion frequency, proportion of stable support, and Stable Selection Index (SSI)—BCenetTucker consistently demonstrates superior robustness and structural coherence relative to competing approaches. In the real data application, BCenetTucker preserved all essential signals originally identified by CenetTucker while uncovering additional marginal yet reproducible features. The method achieved high reproducibility (Jaccard index = 0.975; support-size deviation = 1.7 genes), confirming its sensitivity to weak but stable signals. The protocol was implemented in the GSparseBoot R library, enabling reproducibility, transparency, and applicability to diverse domains involving structured high-dimensional data. Altogether, these results establish BCenetTucker as a powerful and extensible framework for achieving stable sparse decompositions in modern tensor analytics. Full article
(This article belongs to the Section Evolutionary Algorithms and Machine Learning)
Show Figures

Figure 1

45 pages, 2444 KB  
Review
A Review of Modified/Consistent Couple Stress and Strain Gradient Theories for Analyzing Static and Dynamic Behaviors of Functionally Graded Microscale Plates and Shells
by Chih-Ping Wu and Ting-Yu Chang
Materials 2025, 18(19), 4475; https://doi.org/10.3390/ma18194475 - 25 Sep 2025
Abstract
This paper provides an overview of various size-dependent theories based on modified/consistent couple stress and strain gradient theories (CSTs and SGTs), highlighting the development of two-dimensional (2D) refined and advanced shear deformation theories (SDTs) and three-dimensional (3D) pure analytical and semi-analytical numerical methods, [...] Read more.
This paper provides an overview of various size-dependent theories based on modified/consistent couple stress and strain gradient theories (CSTs and SGTs), highlighting the development of two-dimensional (2D) refined and advanced shear deformation theories (SDTs) and three-dimensional (3D) pure analytical and semi-analytical numerical methods, including their applications, for analyzing the static and dynamic behaviors of microscale plates and shells made from advanced materials such as fiber-reinforced composites, functionally graded (FG) materials, and carbon nanotube/graphene platelet-reinforced composite materials. The strong and weak formulations of the 3D consistent CST, along with their corresponding boundary conditions for FG microplates, are derived and presented for illustration. A comparison study is provided to show the differences in the results of a simply supported FG microplate’s central deflection, stress, and lowest natural frequency obtained using various 2D size-dependent SDTs and 3D analytical and numerical methods based on the consistent CST. A parametric study is conducted to examine how primary factors, such as the effects of dilatational and deviatoric strain gradients and couple stress, impact the static bending and free vibration behaviors of a simply supported FG microplate using a size-dependent local Petrov–Galerkin meshless method based on the consistent SGT. Influences such as the inhomogeneity index and length-to-thickness ratio are considered. It is shown that the significance of the impact of various material length-scale parameters on the central deflection and its lowest natural frequency (in the flexural mode) of the FG microplate is ranked, from greatest to least, as follows: the couple stress effect, the deviatoric strain gradient effect, and finally the dilatational strain gradient effect. Additionally, when the microplate’s thickness is less than 10−7 m, the couple stress effect on its static and dynamic behaviors becomes saturated. Conversely, the impact of the dilatational and deviatoric strain gradients consistently influences the microplate’s static and dynamic behaviors. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

14 pages, 637 KB  
Article
Neonatal Factors Associated with Mortality Among Preterm Infants Admitted to Neonatal Intensive Care in a Peruvian National Hospital
by Rosana S. Haro-Norabuena, Javier J. Gonzales-Carrillo and Miguel A. Arce-Huamani
Healthcare 2025, 13(19), 2420; https://doi.org/10.3390/healthcare13192420 - 24 Sep 2025
Viewed by 49
Abstract
Background/Objectives: Preterm birth is a leading cause of neonatal mortality, especially in low- and middle-income countries. Despite advances in neonatal care, mortality among preterm infants in intensive care units remains high, and specific risk factors are not fully understood. This study aimed [...] Read more.
Background/Objectives: Preterm birth is a leading cause of neonatal mortality, especially in low- and middle-income countries. Despite advances in neonatal care, mortality among preterm infants in intensive care units remains high, and specific risk factors are not fully understood. This study aimed to identify neonatal factors associated with mortality among preterm infants admitted to the neonatal intensive care unit (NICU) of a Peruvian national hospital. Methods: An analytical cross-sectional study was conducted at Guillermo Almenara National Hospital in Lima, Peru, including all preterm neonates (<37 weeks gestational age) admitted to the NICU in 2022. Clinical and demographic data were extracted from medical records. Bivariate and multivariate logistic regression analyses identified independent associations with in-hospital mortality. Results: A total of 300 preterm neonates were included, with an in-hospital mortality rate of 15%. In adjusted analysis, extremely low birth weight (<1000 g) was the strongest predictor of mortality. Mild and severe depression in Apgar score at 1 min were associated with increased risk of death (adjusted OR: 12.08 and 6.18, respectively). Hypoglycemia was also independently associated with higher mortality (adjusted OR: 5.65). Conversely, perinatal asphyxia was linked to a lower risk of death in the multivariate model. Sex, mode of delivery, and other neonatal complications were not significant predictors after adjustment. Conclusions: Extremely low birth weight, abnormal Apgar scores at 1 min, and hypoglycemia are key determinants of mortality in preterm infants in intensive care. Early risk identification and focused management are essential to reducing preventable deaths in similar resource-limited settings. Full article
Show Figures

Figure 1

13 pages, 3922 KB  
Article
Circular Slab Track—Structural Analysis of Adapting Composite Materials to Ballastless Track Systems
by Lasse Hansen, Lars Voll, Dragan Marinkovic and Birgit Milius
Infrastructures 2025, 10(10), 257; https://doi.org/10.3390/infrastructures10100257 - 24 Sep 2025
Viewed by 64
Abstract
Rail transport is widely regarded as an efficient and environmentally sustainable mode of mobility, although lifecycle emissions from infrastructure can diminish its ecological benefits. This study assesses a novel slab track system design that replaces conventional concrete components with recycled polymeric composite sleepers, [...] Read more.
Rail transport is widely regarded as an efficient and environmentally sustainable mode of mobility, although lifecycle emissions from infrastructure can diminish its ecological benefits. This study assesses a novel slab track system design that replaces conventional concrete components with recycled polymeric composite sleepers, supporting circular economy objectives. Analytical calculations (per EN 16432-2 and EN 13230-6) and finite element analysis (FEA) were conducted on a 2.6 m polymeric composite sleeper model under static vertical loading. The results demonstrate that bonded base layers comprising asphalt and hydraulically bound materials reduce bending stresses within the sleeper to 1.307 N/mm2, substantially below the 5.50 N/mm2 observed without bound layers and well below both characteristic fatigue limits. Laboratory validation via strain-gauge measurements corroborates the numerical model. Despite minor torsional effects from first-batch production, the polymeric composite sleeper design is structurally viable for slab track applications. The methodology is directly transferable to alternative composite designs, allowing material-based adaptation of mechanical performance. These findings support the use of recycled polymeric composite sleepers in slab track systems, combining structural adequacy with enhanced circularity. Further research can base itself on the findings and should incorporate long-term durability testing. Full article
Show Figures

Figure 1

Back to TopTop