Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,519)

Search Parameters:
Keywords = analogy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3665 KiB  
Communication
Drug Repurposing for Kala-Azar
by Biljana Arsić, Budimir S. Ilić, Andreas Maier, Michael Hartung, Jovana Janjić, Jelena Milićević and Jan Baumbach
Pharmaceutics 2025, 17(8), 1021; https://doi.org/10.3390/pharmaceutics17081021 - 6 Aug 2025
Abstract
Objective: Visceral leishmaniasis (VL), a Neglected Tropical Disease caused by Leishmania donovani, remains insufficiently addressed by current therapies due to high toxicity, poor efficacy, and immunosuppressive complications. This study aimed to identify and characterize repurposed drugs that simultaneously target parasite-encoded and host-associated [...] Read more.
Objective: Visceral leishmaniasis (VL), a Neglected Tropical Disease caused by Leishmania donovani, remains insufficiently addressed by current therapies due to high toxicity, poor efficacy, and immunosuppressive complications. This study aimed to identify and characterize repurposed drugs that simultaneously target parasite-encoded and host-associated mechanisms essential for VL pathogenesis. Methods: Two complementary in silico drug repurposing strategies were employed. The first method utilized electron–ion interaction potential (EIIP) screening followed by molecular docking and molecular dynamics (MD) simulations targeting two L. donovani proteins: Rab5a and pteridine reductase 1 (PTR1). The second approach employed network-based drug repurposing using the Drugst.One platform, prioritizing candidates via STAT3-associated gene networks. Predicted drug–target complexes were validated by 100 ns MD simulations, and pharmacokinetic parameters were assessed via ADMET profiling using QikProp v7.0 and SwissADME web server. Results: Entecavir and valganciclovir showed strong binding to Rab5a and PTR1, respectively, with Glide Scores of −9.36 and −9.10 kcal/mol, and corresponding MM-GBSA ΔG_bind values of −14.00 and −13.25 kcal/mol, confirming their stable interactions and repurposing potential. Network-based analysis identified nifuroxazide as the top candidate targeting the host JAK2/TYK2–STAT3 axis, with high stability confirmed in MD simulations. Nifuroxazide also displayed the most favorable ADMET profile, including oral bioavailability, membrane permeability, and absence of PAINS alerts. Conclusions: This study highlights the potential of guanine analogs such as entecavir and valganciclovir, and the nitrofuran derivative nifuroxazide, as promising multi-target drug repurposing candidates for VL. Their mechanisms support a dual strategy targeting both parasite biology and host immunoregulation, warranting further preclinical investigation. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

15 pages, 871 KiB  
Article
Analogical Reasoning with Multimodal Knowledge Graphs: Fine-Tuning Model Performance Based on LoRA
by Zhenglong Zhang, Sijia Zhang, Zongshi An, Zhenglin Li and Chun Zhang
Electronics 2025, 14(15), 3140; https://doi.org/10.3390/electronics14153140 - 6 Aug 2025
Abstract
Multimodal knowledge graphs have recently been successfully applied to tasks such as those relating to information retrieval, question and answer, and recommender systems. In this study, we propose a dual-path fine-tuning mechanism technique with a low-rank adapter and an embedded cueing layer, aiming [...] Read more.
Multimodal knowledge graphs have recently been successfully applied to tasks such as those relating to information retrieval, question and answer, and recommender systems. In this study, we propose a dual-path fine-tuning mechanism technique with a low-rank adapter and an embedded cueing layer, aiming to improve the generalization and accuracy of the model in analogical reasoning tasks. The low-rank fine-tuning (LoRA) technique with rank-stable scaling factor is used to fine-tune the MKGformer model, and a cue-embedding layer is innovatively added to the input layer, which enables the model to better grasp the scale of the relationship between entities according to the dynamic cue vectors during the fine-tuning process and ensures that the model achieves the best results during training. The experimental results show that the R-MKG model improves several evaluation indexes by more than 20%, which is significantly better than the traditional DoRA and FA-LoRA methods. This research provides technical support for multimodal knowledge graph analogical reasoning. We hope that our work will bring benefits and inspire future research. Full article
Show Figures

Figure 1

29 pages, 13705 KiB  
Article
Stabilization of Zwitterionic Versus Canonical Glycine by DMSO Molecules
by Verónica Martín, Alejandro Colón, Carmen Barrientos and Iker León
Pharmaceuticals 2025, 18(8), 1168; https://doi.org/10.3390/ph18081168 - 6 Aug 2025
Abstract
Background/Objectives: Understanding the stabilization mechanisms of amino acid conformations in different solvent environments is crucial for elucidating biomolecular interactions and crystallization processes. This study presents a comprehensive computational investigation of glycine, the simplest amino acid, in both its canonical and zwitterionic forms [...] Read more.
Background/Objectives: Understanding the stabilization mechanisms of amino acid conformations in different solvent environments is crucial for elucidating biomolecular interactions and crystallization processes. This study presents a comprehensive computational investigation of glycine, the simplest amino acid, in both its canonical and zwitterionic forms when interacting with dimethyl sulfoxide (DMSO) molecules. Methods: Using density functional theory (DFT) calculations at the B3LYP/6-311++G(d,p) level with empirical dispersion corrections, we examined the conformational landscape of glycine–DMSO clusters with one and two DMSO molecules, as well as implicit solvent calculations, and compared them with analogous water clusters. Results: Our results demonstrate that while a single water molecule is insufficient to stabilize the zwitterionic form of glycine, one DMSO molecule successfully stabilizes this form through specific interactions between the S=O and the methyl groups of DMSO and the NH3+ and the oxoanion group of zwitterionic glycine, respectively. Topological analysis of the electron density using QTAIM and NCI methods reveals the nature of these interactions. When comparing the relative stability between canonical and zwitterionic forms, we found that two DMSO molecules significantly reduce the energy gap to approximately 12 kJ mol−1, suggesting that increasing DMSO coordination could potentially invert this stability. Implicit solvent calculations indicate that in pure DMSO medium, the zwitterionic form becomes more stable below 150 K, while remaining less stable at room temperature, contrasting with aqueous environments where the zwitterionic form predominates. Conclusions: These findings provide valuable insights into DMSO’s unique role in biomolecular stabilization and have implications for protein crystallization protocols where DMSO is commonly used as a co-solvent. Full article
(This article belongs to the Special Issue Classical and Quantum Molecular Simulations in Drug Design)
Show Figures

Graphical abstract

25 pages, 1489 KiB  
Article
Dynamic Characteristic (Axial Impedances) of a Novel Sandwich Flexible Insert with Fluid
by Leipeng Song, Lulu Chang, Feng Li, Xinjian Xiang, Zhiyong Yin, Xichen Hou, Yongping Zheng, Xiaozhou Xu, Yang Li and Zhihua Huang
J. Mar. Sci. Eng. 2025, 13(8), 1515; https://doi.org/10.3390/jmse13081515 - 6 Aug 2025
Abstract
Piping systems can be analogized to the “vascular systems” of vessels, but their transmission characteristics often result in loud noises and large vibrations. The integration of flexible inserts within these piping systems has been shown to isolate and/or mitigate such vibrations and noise. [...] Read more.
Piping systems can be analogized to the “vascular systems” of vessels, but their transmission characteristics often result in loud noises and large vibrations. The integration of flexible inserts within these piping systems has been shown to isolate and/or mitigate such vibrations and noise. In this work, a novel sandwich flexible insert (NSFI) was presented specifically to reduce the vibrations and noise associated with piping systems on vessels. In contrast to conventional flexible inserts, the NSFI features a distinctive three-layer configuration, comprising elastic inner and outer layers, along with a honeycomb core exhibiting a zero Poisson’s ratio. The dynamic characteristics, specifically axial impedance, of the fluid-filled NSFI are examined utilizing a fluid–structure interaction (FSI) four-equation model. The validity of the theoretical predictions is corroborated through finite element analysis, experimental results, and comparisons with existing literature. Furthermore, the study provides a comprehensive evaluation of the effects of geometric and structural parameters on the dynamic characteristics of the NSFI. It is worth noting that axial impedance is significantly affected by these parameters, which suggests that the dynamic characteristics of the NSFI can be customized by parameter adjustments. Full article
(This article belongs to the Section Ocean Engineering)
16 pages, 4197 KiB  
Review
Conformational Dynamics and Structural Transitions of Arginine Kinase: Implications for Catalysis and Allergen Control
by Sung-Min Kang
Life 2025, 15(8), 1248; https://doi.org/10.3390/life15081248 - 6 Aug 2025
Abstract
Arginine kinase is a key phosphagen kinase in invertebrates that facilitates rapid ATP regeneration by reversibly transferring phosphate groups between phosphoarginine and ADP. Structural studies have shown that the enzyme adopts distinct conformations in its ligand-free and ligand-bound states, known as the “open” [...] Read more.
Arginine kinase is a key phosphagen kinase in invertebrates that facilitates rapid ATP regeneration by reversibly transferring phosphate groups between phosphoarginine and ADP. Structural studies have shown that the enzyme adopts distinct conformations in its ligand-free and ligand-bound states, known as the “open” and “closed” forms, respectively. These conformational changes are crucial for catalytic activity, enabling precise positioning of active-site residues and loop closure during phosphoryl transfer. Transition-state analog complexes have provided additional insights by mimicking intermediate states of catalysis, supporting the functional relevance of the open/closed structural model. Furthermore, studies across multiple species reveal how monomeric and dimeric forms of arginine kinase contribute to its allosteric regulation and substrate specificity. Beyond its metabolic role, arginine kinase is also recognized as a major allergen in crustaceans. Its structural uniqueness and absence in vertebrates make it a promising candidate for selective drug targeting. By integrating crystallographic data with functional context, this review highlights conserved features and species-specific variations of arginine kinase that may inform the design of inhibitors. Such molecules have the potential to serve both as antiparasitic agents and as novel therapeutics to manage crustacean-related allergic responses in humans. Full article
(This article belongs to the Section Proteins and Proteomics)
Show Figures

Figure 1

26 pages, 1698 KiB  
Article
Photoplethysmography-Based Blood Pressure Calculation for Neonatal Telecare in an IoT Environment
by Camilo S. Jiménez, Isabel Cristina Echeverri-Ocampo, Belarmino Segura Giraldo, Carolina Márquez-Narváez, Diego A. Cortes, Fernando Arango-Gómez, Oscar Julián López-Uribe and Santiago Murillo-Rendón
Electronics 2025, 14(15), 3132; https://doi.org/10.3390/electronics14153132 - 6 Aug 2025
Abstract
This study presents an algorithm for non-invasive blood pressure (BP) estimation in neonates using photoplethysmography (PPG), suitable for resource-constrained neonatal telecare platforms. Using the Windkessel model, the algorithm processes PPG signals from a MAX 30102 sensor, (Analog Devices (formerly Maxim Integrated), based in [...] Read more.
This study presents an algorithm for non-invasive blood pressure (BP) estimation in neonates using photoplethysmography (PPG), suitable for resource-constrained neonatal telecare platforms. Using the Windkessel model, the algorithm processes PPG signals from a MAX 30102 sensor, (Analog Devices (formerly Maxim Integrated), based in San Jose, CA, USA) filtering motion noise and extracting cardiac cycle time and systolic time (ST). These parameters inform a derived blood flow signal, the input for the Windkessel model. Calibration utilizes average parameters based on the newborn’s post-conceptional age, weight, and gestational age. Performance was validated against readings from a standard non-invasive BP cuff at SES Hospital Universitario de Caldas. Two parameter estimation methods were evaluated. The first yielded root mean square errors (RMSEs) of 24.14 mmHg for systolic and 19.13 mmHg for diastolic BP. The second method significantly improved accuracy, achieving RMSEs of 2.31 mmHg and 5.13 mmHg, respectively. The successful adaptation of the Windkessel model to single PPG signals allows for BP calculation alongside other physiological variables within the telecare program. A device analysis was conducted to determine the appropriate device based on computational capacity, availability of programming tools, and ease of integration within an Internet of Things environment. This study paves the way for future research that focuses on parameter variations due to cardiovascular changes in newborns during their first month of life. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

21 pages, 3918 KiB  
Article
Design of BPC LF Time Code Signal Generator Based on ARM Architecture Microcontroller and FPGA
by Hongzhen Cao, Jianfeng Wu, Xiaolong Guan, Dangli Zhao, Yan Xing, Zhibo Zhou, Yuji Li and Kexin Yin
Electronics 2025, 14(15), 3128; https://doi.org/10.3390/electronics14153128 - 6 Aug 2025
Abstract
Low-frequency (LF) time code timing technology holds significant importance in civilian applications such as radio-controlled clocks. This study focuses on the design and implementation of a high-precision Binary Phase Code (BPC) LF time code signal generator. A generator system was constructed, demonstrating good [...] Read more.
Low-frequency (LF) time code timing technology holds significant importance in civilian applications such as radio-controlled clocks. This study focuses on the design and implementation of a high-precision Binary Phase Code (BPC) LF time code signal generator. A generator system was constructed, demonstrating good stability, superior resolution, and flexible adjustment capabilities for both amplitude and phase. The system employs an ARM + FPGA cooperative architecture: the ARM processor is responsible for parsing and scheduling the time code data, while the FPGA implements carrier wave generation and high-precision digital modulation. This digital processing is combined with analog circuitry to achieve digital-to-analog (D/A) signal conversion. Compared to traditional methods, carrier generation is achieved using Direct Digital Synthesis (DDS) technology. Digital modulation techniques enable the precise control of the modulation depth (adjustable between 70% and 90%) and phase (with a resolution of 1 ns). A sliding window algorithm was utilized for time difference calculation and compensation. Testing confirmed the stability of key signal parameters, including integrity, carrier frequency and modulation depth. These results validate the feasibility and superiority of the digital LF time code generation technology proposed in this study, providing a valuable reference for the development of next-generation timing equipment. Full article
Show Figures

Figure 1

21 pages, 347 KiB  
Article
The Classical Geometry of Chaotic Green Functions and Wigner Functions
by Alfredo M. Ozorio de Almeida
Physics 2025, 7(3), 35; https://doi.org/10.3390/physics7030035 - 5 Aug 2025
Abstract
Semiclassical (SC) approximations for various representations of a quantum state are constructed on a single (Lagrangian) surface in the phase space but such surface is not available for chaotic systems. An analogous evolution surface underlies SC representations of the evolution operator, albeit in [...] Read more.
Semiclassical (SC) approximations for various representations of a quantum state are constructed on a single (Lagrangian) surface in the phase space but such surface is not available for chaotic systems. An analogous evolution surface underlies SC representations of the evolution operator, albeit in a doubled phase space. Here, it is shown that corresponding to the Fourier transform on a unitary operator, represented as a Green function or spectral Wigner function, a Legendre transform generates a resolvent surface as the classical basis for SC representations of the resolvent operator in the double-phase space, independently of the integrable or chaotic nature of the system. This surface coincides with derivatives of action functions (or generating functions) depending on the choice of appropriate coordinates, and its growth departs from the energy shell following trajectories in the double-phase space. In an initial study of the resolvent surface based on its caustics, its complex nature is revealed to be analogous to a multidimensional sponge. Resummation of the trace of the resolvent in terms of linear combinations of periodic orbits, known as pseudo orbits or composite orbits, provides a cutoff to the SC sum at the Heisenberg time. Here, it is shown that the corresponding actions for higher times can be approximately included within true secondary periodic orbits, in which heteroclinic orbits join multiple windings of relatively short periodic orbits into larger circuits. Full article
Show Figures

Figure 1

12 pages, 742 KiB  
Article
Postoperative Recovery of Balance Function in Lumbar Spinal Stenosis: A 12-Month Longitudinal Study Using the Brief BESTest and Its Association with Patient-Reported Outcomes
by Tomoyoshi Sakaguchi, Masato Tanaka, Shinya Arataki, Tadashi Komatsubara, Akiyoshi Miyamoto, Mandar Borde, Umarani Arvind, Kazuhiko Takamatsu, Yosuke Yasuda, Adrian Doană-Prodan and Kaoruko Ishihara
J. Clin. Med. 2025, 14(15), 5520; https://doi.org/10.3390/jcm14155520 - 5 Aug 2025
Abstract
Study Design: Prospective observational study. Background: Lumbar spinal stenosis (LSS) impairs balance and gait function, increasing fall risk and limiting quality of life. Although postoperative recovery of balance is clinically important, longitudinal data using multidimensional balance assessments are limited. Methods: A prospective cohort [...] Read more.
Study Design: Prospective observational study. Background: Lumbar spinal stenosis (LSS) impairs balance and gait function, increasing fall risk and limiting quality of life. Although postoperative recovery of balance is clinically important, longitudinal data using multidimensional balance assessments are limited. Methods: A prospective cohort study was conducted in 101 patients (mean age 74.9 ± 6.9 years) undergoing surgery for LSS. The Brief Balance Evaluation Systems Test (Brief BESTest), Oswestry Disability Index (ODI), Modified Falls Efficacy Scale (MFES), Zurich Claudication Questionnaire (ZCQ), and Visual Analog Scales (VAS) for pain/numbness were evaluated preoperatively and at 6 and 12 months postoperatively. Changes over time and correlations between Brief BESTest and PROMs were analyzed. Results: The total Brief BESTest score significantly improved from 13.3 ± 5.3 preoperatively to 16.1 ± 5.1 at 6 months and 16.0 ± 5.1 at 12 months (p < 0.01). Subdomains including Anticipatory Adjustments, Postural Responses, Sensory Orientation, and Stability in Gait improved significantly, while Stability Limits did not. At 12 months postoperatively, ODI decreased by 19.1%, ZCQ symptom and function scores improved by 0.8 and 0.9 points, respectively, and VAS scores improved by 17.1 mm for low back pain, 26.5 mm for lower limb pain, and 19.5 mm for numbness, all showing marked improvements from baseline. MFES also increased significantly postoperatively. The Brief BESTest score correlated significantly with MFES and ZCQ-PFS at baseline, and with ODI, ZCQ, and VAS scores at 12 months. Conclusions: Balance ability in LSS patients improved after surgery, as measured by the Brief BESTest, with clinically meaningful changes maintained for 12 months. Improvements in balance were significantly associated with reductions in pain, disability, and fear of falling, suggesting the Brief BESTest is a comprehensive indicator of postoperative recovery. Full article
Show Figures

Figure 1

14 pages, 2837 KiB  
Article
Design, Synthesis, and Bioactivity Assessment of Modified Vemurafenib Analog
by Fabiana Sélos Guerra, Rosana Helena Coimbra Nogueira de Freitas, Florina Moldovan, David Rodrigues da Rocha, Renato Sampaio Carvalho and Patricia Dias Fernandes
Pharmaceuticals 2025, 18(8), 1161; https://doi.org/10.3390/ph18081161 - 5 Aug 2025
Abstract
Background: Metastatic melanoma is a highly aggressive malignancy with poor prognoses and frequent resistance to conventional chemotherapy. Approximately 40% of melanoma cases carry the BRAFV600E mutation, for which vemurafenib, a selective BRAFV600E inhibitor, is approved. Despite initial clinical benefits, vemurafenib often [...] Read more.
Background: Metastatic melanoma is a highly aggressive malignancy with poor prognoses and frequent resistance to conventional chemotherapy. Approximately 40% of melanoma cases carry the BRAFV600E mutation, for which vemurafenib, a selective BRAFV600E inhibitor, is approved. Despite initial clinical benefits, vemurafenib often leads to drug resistance and relapse, highlighting the need for improved therapeutic strategies. Objectives, methods: In this study, we designed, synthesized, and characterized five novel vemurafenib analogs—RF-86A, RF-87A, RF-94A, RF-94B, and RF-96B—with the aim of enhancing anti-proliferative and anti-metastatic effects against human melanoma cells. Results: All compounds induced apoptosis in BRAFV600E-mutated A375 cells, with RF-86A displaying the lowest IC50 value among the series, comparable to that of vemurafenib. Moreover, RF-86A exhibited the highest selectivity index, as determined using HEK293T cells as a non-tumorigenic control. Additionally, migration assays and gelatin zymography demonstrated that the analogs, unlike vemurafenib, significantly inhibited matrix metalloproteinases MMP-2 and MMP-9, key enzymes involved in tumor invasion and metastasis. Conclusions: These findings suggest that structural modifications to the vemurafenib scaffold may improve therapeutic efficacy and offer a promising strategy to overcome acquired resistance. Full article
Show Figures

Figure 1

9 pages, 204 KiB  
Article
Mitotane-Induced Endocrine Alterations in Children with Adrenocortical Carcinoma: Clinical Implications from a 20-Year Retrospective Study
by Gerdi Tuli, Jessica Munarin, Stefano Gabriele Vallero, Matilde Piglione, Eleonora Biasin, Luisa De Sanctis and Franca Fagioli
Children 2025, 12(8), 1031; https://doi.org/10.3390/children12081031 - 5 Aug 2025
Abstract
Background/Objectives: Mitotane is a key component in the treatment of adrenocortical carcinoma (ACC), but its endocrine side effects in children remain under-characterized. Methods: We conducted a retrospective analysis of 11 pediatric patients (6 males, 5 females) diagnosed with ACC and followed between 2000 [...] Read more.
Background/Objectives: Mitotane is a key component in the treatment of adrenocortical carcinoma (ACC), but its endocrine side effects in children remain under-characterized. Methods: We conducted a retrospective analysis of 11 pediatric patients (6 males, 5 females) diagnosed with ACC and followed between 2000 and 2025. Seven received mitotane therapy. Data included age at diagnosis, treatment duration and dosage, serum mitotane levels, and endocrine complications. Results: The mean age at diagnosis was 6.6 ± 1.45 years, with a mean follow-up of 10.05 ± 2.45 years. Patients received mitotane for an average of 2.5 ± 0.54 years, with a mean daily dose of 2805.5 ± 145.82 mg and a mean serum level of 16.1 ± 5.92 mg/mL. All mitotane-treated patients developed adrenal insufficiency, requiring supraphysiological hydrocortisone replacement. Four also required mineralocorticoid therapy. Five developed precocious puberty; two males presented with prepubertal gynecomastia; three females were managed with GnRH analogs or aromatase inhibitors followed by estrogen receptor antagonists. Four patients developed central hypothyroidism, treated with levothyroxine. A positive correlation was found between mean serum mitotane levels and the onset of precocious puberty (p = 0.04), while mitotane levels correlated negatively with the development of central hypothyroidism (p = 0.001). Conclusions: Mitotane therapy in pediatric ACC is strongly associated with significant endocrine dysfunction. These findings emphasize the need for proactive, multidisciplinary endocrine management throughout treatment. Full article
(This article belongs to the Section Pediatric Endocrinology & Diabetes)
17 pages, 838 KiB  
Article
A Scintillation Hodoscope for Measuring the Flux of Cosmic Ray Muons at the Tien Shan High Mountain Station
by Alexander Shepetov, Aliya Baktoraz, Orazaly Kalikulov, Svetlana Mamina, Yerzhan Mukhamejanov, Kanat Mukashev, Vladimir Ryabov, Nurzhan Saduyev, Turlan Sadykov, Saken Shinbulatov, Tairzhan Skokbayev, Ivan Sopko, Shynbolat Utey, Ludmila Vildanova, Nurzhan Yerezhep and Valery Zhukov
Particles 2025, 8(3), 73; https://doi.org/10.3390/particles8030073 - 4 Aug 2025
Abstract
For further investigation of the properties of the muon component in the core regions of extensive air showers (EASs), a new underground hodoscopic set-up with a total sensitive area of 22 m2 was built at the Tien Shan High Mountain Cosmic Ray [...] Read more.
For further investigation of the properties of the muon component in the core regions of extensive air showers (EASs), a new underground hodoscopic set-up with a total sensitive area of 22 m2 was built at the Tien Shan High Mountain Cosmic Ray Station. The hodoscope is based on a set of large-sized scintillation charged particle detectors with an output signal of analog type. The installation ensures a (5–8) GeV energy threshold of muon registration and a ∼104 dynamic range for the measurement of the density of muon flux. A program facility was designed that uses modern machine learning techniques for automated search for the typical scintillation pulse pattern in an oscillogram of a noisy analog signal at the output of the hodoscope detector. The program provides a ∼99% detection probability of useful signals, with a relative share of false positives below 1%, and has a sufficient operation speed for real-time analysis of incoming data. Complete verification of the hardware and software tools was performed under realistic operation conditions, and the results obtained demonstrate the correctness of the proposed method and its practical applicability to the investigation of the muon flux in EASs. In the course of the installation testing, a preliminary physical result was obtained concerning the rise of the multiplicity of muon particles around an EAS core in dependence on the primary EAS energy. Full article
(This article belongs to the Section Experimental Physics and Instrumentation)
Show Figures

Figure 1

20 pages, 8673 KiB  
Article
Potential of Lactoferrin Against the Radiation-Induced Brain Injury
by Marina Yu. Kopaeva, Anton B. Cherepov, Irina B. Alchinova, Daria A. Shaposhnikova, Anna V. Rybakova and Alexandr P. Trashkov
Cells 2025, 14(15), 1198; https://doi.org/10.3390/cells14151198 - 4 Aug 2025
Abstract
The purpose of this work was to study the effects of lactoferrin (Lf) on acute (days 3 and 15) and early-delayed (day 30) changes in the dentate gyrus of mouse hippocampus caused by whole-body gamma-irradiation. Male C57BL/6 mice received Lf (4 mg per [...] Read more.
The purpose of this work was to study the effects of lactoferrin (Lf) on acute (days 3 and 15) and early-delayed (day 30) changes in the dentate gyrus of mouse hippocampus caused by whole-body gamma-irradiation. Male C57BL/6 mice received Lf (4 mg per mouse, i.p. injection) immediately after whole-body gamma-irradiation at a dose of 7.5 Gy from a 60Co source. The effect of Lf on mouse behavior was evaluated using “Open field” and “Elevated plus-maze” tests. The proportion of cells with DNA replication was determined by 5-ethynyl-2′-deoxyuridine incorporation (thymidine analog) and detected by a click reaction with azide Alexa Fluor 568. Lf treatment increased animal survival during the experiment (30 days), compensated for radiation-induced body weight loss, and prevented suppression of motor and exploratory activities. A pronounced anti-radiation effect of Lf on mouse brain cells has been demonstrated. A single injection of the protein allowed preserving 2-fold more proliferating cells and immature neurons in the dentate gyrus of the hippocampus of irradiated animals during the acute period of post-radiation injury development. Full article
Show Figures

Figure 1

18 pages, 1239 KiB  
Article
A Digitally Controlled Adaptive Current Interface for Accurate Measurement of Resistive Sensors in Embedded Sensing Systems
by Jirapong Jittakort and Apinan Aurasopon
J. Sens. Actuator Netw. 2025, 14(4), 82; https://doi.org/10.3390/jsan14040082 - 4 Aug 2025
Abstract
This paper presents a microcontroller-based technique for accurately measuring resistive sensors over a wide dynamic range using an adaptive constant current source. Unlike conventional voltage dividers or fixed-current methods—often limited by reduced resolution and saturation when sensor resistance varies across several decades—the proposed [...] Read more.
This paper presents a microcontroller-based technique for accurately measuring resistive sensors over a wide dynamic range using an adaptive constant current source. Unlike conventional voltage dividers or fixed-current methods—often limited by reduced resolution and saturation when sensor resistance varies across several decades—the proposed system dynamically adjusts the excitation current to maintain optimal Analog-to-Digital Converter (ADC) input conditions. The measurement circuit employs a fixed reference resistor and an inverting amplifier configuration, where the excitation current is generated by one or more pulse-width modulated (PWM) signals filtered through low-pass RC networks. A microcontroller selects the appropriate PWM channel to ensure that the output voltage remains within the ADC’s linear range. To support multiple sensors, an analog switch enables sequential measurements using the same dual-PWM current source. The full experimental implementation uses four op-amps to support modularity, buffering, and dual-range operation. Experimental results show accurate measurement of resistances from 1 kΩ to 100 kΩ, with maximum relative errors of 0.15% in the 1–10 kΩ range and 0.33% in the 10–100 kΩ range. The method provides a low-cost, scalable, and digitally controlled solution suitable for embedded resistive sensing applications without the need for high-resolution ADCs or programmable gain amplifiers. Full article
(This article belongs to the Section Actuators, Sensors and Devices)
Show Figures

Figure 1

23 pages, 5387 KiB  
Article
Tabernanthalog, a Non-Hallucinogenic Psychedelic, Alleviates Cancer-Induced Cognitive Deficits via Serotonergic Pathways
by Masahide Arinaga, Jun Yamada, Shoichiro Maeda, Ayumi Okamura, Yuto Oshima, Liye Zhang, Yiying Han, Kyoko M. Iinuma and Shozo Jinno
Int. J. Mol. Sci. 2025, 26(15), 7519; https://doi.org/10.3390/ijms26157519 - 4 Aug 2025
Abstract
Cancer-related cognitive impairment (CRCI)—encompassing anxiety, depression, and memory deficits—significantly diminishes the quality of life in patients with cancer, yet remains underrecognized in clinical practice. In this study, we investigated the therapeutic potential of tabernanthalog (TBG), a non-hallucinogenic analog of psychedelic compounds, as a [...] Read more.
Cancer-related cognitive impairment (CRCI)—encompassing anxiety, depression, and memory deficits—significantly diminishes the quality of life in patients with cancer, yet remains underrecognized in clinical practice. In this study, we investigated the therapeutic potential of tabernanthalog (TBG), a non-hallucinogenic analog of psychedelic compounds, as a novel intervention for CRCI using a Lewis lung carcinoma (3LL) mouse model. Behavioral assessments revealed heightened anxiety-like behavior and memory impairment following 3LL cell transplantation. Biochemical analysis revealed reduced tryptophan levels in both blood and hippocampal tissue, accompanied by the downregulation of serotonergic receptor genes and upregulation of pro-inflammatory cytokine genes in the hippocampus of tumor-bearing mice. Additionally, microglial density and morphological activation were markedly elevated. TBG treatment reversed these behavioral deficits, improving both anxiety-related behavior and memory performance. These effects were associated with the normalization of microglial density and morphology, as well as the restoration of serotonergic receptor and cytokine gene expression. In vitro, TBG partially suppressed neuroinflammatory gene expression in BV-2 microglial cells exposed to conditioned medium from 3LL cells. Collectively, these findings suggest that TBG alleviates CRCI-like symptoms by modulating neuroinflammation and microglial activation. This study highlights TBG as a promising therapeutic candidate for improving cognitive and emotional functioning in patients with cancer. Full article
(This article belongs to the Special Issue Physiological Functions and Pathological Effects of Microglia)
Show Figures

Figure 1

Back to TopTop