Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,617)

Search Parameters:
Keywords = anaerobe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 2028 KB  
Review
From Perception to Adaptation: A Comparative Study of Plant Regulatory Networks in Response to Heat and Waterlogging Stress
by Javed Iqbal, Sikandar Amanullah, Chengyue Li, Xiaohui Qin, Pengbo Yu, Xuanyang Chen and Dongliang Qiu
Plants 2026, 15(2), 328; https://doi.org/10.3390/plants15020328 (registering DOI) - 21 Jan 2026
Abstract
Heat and waterlogging are critical abiotic stresses that threaten crop productivity, especially as climate change intensifies their frequency and severity. While both stresses independently disrupt essential physiological functions such as photosynthesis, respiration, and nutrient uptake, their underlying mechanisms and adaptive strategies exhibit key [...] Read more.
Heat and waterlogging are critical abiotic stresses that threaten crop productivity, especially as climate change intensifies their frequency and severity. While both stresses independently disrupt essential physiological functions such as photosynthesis, respiration, and nutrient uptake, their underlying mechanisms and adaptive strategies exhibit key differences. This review presents a systematic comparison of plant responses to heat and waterlogging stress, focusing on both their shared and distinct impacts on plant physiology, biochemistry, and molecular regulation. We synthesize recent insights from omics technologies, including transcriptomic and metabolomics, to explore regulatory pathways, hormonal crosstalk (e.g., ABA–ethylene interactions), and metabolic shifts (e.g., fermentation vs. chaperone induction) that drive stress tolerance. This comparative analysis similarly demonstrates that effective plant resilience to climate extremes depends on the coordinated optimization of shared stress management hubs, such as antioxidant defense systems and hormonal crosstalk, together with the deployment of stress-specific adaptive strategies, including molecular chaperone induction under heat stress and anaerobic metabolic reprogramming under waterlogging. By integrating convergent and divergent regulatory pathways, this framework provides a mechanistic and conceptual guide for breeding and engineering crops with durable tolerance to multiple, increasingly co-occurring abiotic stresses. Full article
(This article belongs to the Special Issue Biochemical Responses of Horticultural Crops to Abiotic Stresses)
20 pages, 1702 KB  
Article
Artificial Neural Network Elucidates the Role of Transport Proteins in Rhodopseudomonas palustris CGA009 During Lignin Breakdown Product Catabolism
by Niaz Bahar Chowdhury, Mark Kathol, Nabia Shahreen and Rajib Saha
Metabolites 2026, 16(1), 86; https://doi.org/10.3390/metabo16010086 - 21 Jan 2026
Abstract
Background: Rhodopseudomonas palustris is a metabolically versatile bacterium with significant biotechnological potential, including the ability to catabolize lignin and its heterogeneous breakdown products. Understanding the molecular determinants of growth on lignin-derived compounds is essential for advancing lignin valorization strategies under both aerobic [...] Read more.
Background: Rhodopseudomonas palustris is a metabolically versatile bacterium with significant biotechnological potential, including the ability to catabolize lignin and its heterogeneous breakdown products. Understanding the molecular determinants of growth on lignin-derived compounds is essential for advancing lignin valorization strategies under both aerobic and anaerobic conditions. Methods: R. palustris was cultivated on multiple lignin breakdown products (LBPs), including p-coumaryl alcohol, coniferyl alcohol, sinapyl alcohol, p-coumarate, sodium ferulate, and kraft lignin. Condition-specific transcriptomics and proteomics datasets were generated and used as input features to train machine-learning models, with experimentally measured growth rates as the prediction target. Artificial Neural Networks (ANNs), Random Forest (RF), and Support Vector Machine (SVM) models were evaluated and compared. Permutation feature importance analysis was applied to identify genes and proteins most influential for growth. Results: Among the tested models, ANNs achieved the highest predictive performance, with accuracies of 94% for transcriptomics-based models and 96% for proteomics-based models. Feature importance analysis identified the top twenty growth-associated genes and proteins for each omics layer. Integrating transcriptomic and proteomic results revealed eight key transport proteins that consistently influenced growth across LBP conditions. Re-training ANN models using only these eight transport proteins maintained high predictive accuracy, achieving 86% for proteomics and 76% for transcriptomics. Conclusions: This study demonstrates the effectiveness of ANN-based models for predicting growth-associated genes and proteins in R. palustris. The identification of a small set of key transport proteins provides mechanistic insight into lignin catabolism and highlights promising targets for metabolic engineering aimed at improving lignin utilization. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

24 pages, 2819 KB  
Article
Long-Term Organic Fertilization Enhances Soil Fertility and Reshapes Microbial Community Structure with Decreasing Effects Across Soil Depth
by Suyao Li, Yulin Li, Xu Yan, Zhengyang Gu, Dong Xue, Kaihua Wang, Yuting Yang, Min Lv, Yujie Han, Jinbiao Li, Yanyan Lv and Anyong Hu
Microorganisms 2026, 14(1), 250; https://doi.org/10.3390/microorganisms14010250 - 21 Jan 2026
Abstract
Sustaining agricultural productivity and soil health under intensive cultivation requires a comprehensive understanding of fertilization effects, particularly on deeper soil layers, which has received limited attention compared to surface soils. This study investigated how different fertilization regimes (inorganic, organic, and combined organic–inorganic fertilizers) [...] Read more.
Sustaining agricultural productivity and soil health under intensive cultivation requires a comprehensive understanding of fertilization effects, particularly on deeper soil layers, which has received limited attention compared to surface soils. This study investigated how different fertilization regimes (inorganic, organic, and combined organic–inorganic fertilizers) influence soil physicochemical properties, microbial diversity, community structure, and functional gene abundances at three soil depths (0–20 cm, 20–40 cm, and 40–60 cm) in a 40-year fertilization experiment. Organic fertilization significantly improved topsoil fertility indicators such as soil organic matter (56.6–109.2%), total nitrogen (66.7–122.0%), total phosphorus (198.6–413.2%), and available phosphorus (984.8–1622.1%) and potassium (35.3–438.1%). Compared with the unfertilized control and nitrogen-only treatment, rice yield increased by 97.1–130.5% under NPK and sole organic fertilization, and further increased by 184.1–255.9% under combined organic–inorganic fertilization. However, fertilization effects diminished with soil depth due to limited nutrient mobility. Microbial diversity significantly decreased with depth and was minimally influenced by fertilization treatments. Microbial community structure varied notably among fertilization treatments at the surface layer, mainly driven by soil nutrients, whereas soil depth had a dominant effect on microbial community structure and compositions. Co-occurrence networks showed the highest complexity in surface soil microbial communities, which declined with soil depth, reflecting potential synergistic and mutualistic relationships in topsoil and the adaptation of microbial communities to nutrient-limited conditions in subsoil. Microbial functional gene analyses highlighted clear depth-dependent distributions, with surface layers enriched in decomposition-related genes, while deeper layers favored anaerobic processes. Overall, long-term fertilization exerted strong depth-dependent effects on soil fertility, microbial community structure, and functional potential in paddy soils. Full article
Show Figures

Figure 1

20 pages, 1644 KB  
Article
Food Waste to Biogas: Continuous Operation of a Low-Cost Laboratory-Scale Anaerobic Digestion System Under Real-World Operating Constraints
by Caela Kleynhans, Hendrik G. Brink, Nils Haneklaus and Willie Nicol
Clean Technol. 2026, 8(1), 15; https://doi.org/10.3390/cleantechnol8010015 - 20 Jan 2026
Abstract
This study evaluated low-cost food waste anaerobic digestion (FWAD) designed for African urban informal settlements, where electricity and process control are limited. Eight small-scale reactors were operated under varying mixing, pH control, and temperature conditions to assess the feasibility of stable operation with [...] Read more.
This study evaluated low-cost food waste anaerobic digestion (FWAD) designed for African urban informal settlements, where electricity and process control are limited. Eight small-scale reactors were operated under varying mixing, pH control, and temperature conditions to assess the feasibility of stable operation with minimal input. Results showed no significant difference in methane yield between continuously mixed and minimally mixed (48-hourly) systems, nor between reactors with continuous pH dosing and those adjusted every 48 h (ANOVA p > 0.05 for all comparisons). The highest mean methane yield, 0.267 L CH4 g VS−1, was achieved by the minimally mixed reactor with 48-hourly pH control at 30 °C, while the controlled reactor at 37 °C produced a comparable 0.247 L CH4 g VS−1. Total methane production was similar at both temperatures, although gas generation was faster during the first 24 h at 37 °C. Compared to gas recovery achieved by extended batch operation following semi-continuous feeding, 58–73% of total methane was produced within the 48-h cycle, suggesting conversion could increase by 30–40% with extended liquid retention. Microbial analyses showed compositional differences but consistent performance, indicating functional redundancy within the microbial consortia. These results confirm the capacity of FWAD for stable, efficient biogas production without continuous energy input. Full article
(This article belongs to the Collection Bioenergy Technologies)
Show Figures

Figure 1

25 pages, 2631 KB  
Review
Machine Learning and Hybrid Approaches in the Energy Valorization of Contaminated Sludge: Global Trends and Perspectives
by Segundo Jonathan Rojas-Flores, Rafael Liza, Renny Nazario-Naveda, Félix Díaz, Daniel Delfin-Narciso, Moisés Gallozzo Cardenas and Anibal Alviz-Meza
Processes 2026, 14(2), 363; https://doi.org/10.3390/pr14020363 - 20 Jan 2026
Abstract
While the technological foundation for sludge valorization (anaerobic digestion and pyrolysis) is mature, a significant disconnect exists between traditional research and the advanced application of artificial intelligence. This study identifies that Machine Learning (ML) remains in a peripheral position, representing an untapped frontier [...] Read more.
While the technological foundation for sludge valorization (anaerobic digestion and pyrolysis) is mature, a significant disconnect exists between traditional research and the advanced application of artificial intelligence. This study identifies that Machine Learning (ML) remains in a peripheral position, representing an untapped frontier for achieving predictive and circular systems. The methodology involved a quantitative bibliometric analysis of 190 Scopus-indexed documents (2005–2025). We analyzed indicators of scientific production, collaboration, and thematic evolution using Bibliometrix and VOSviewer 1.6.20. The results reveal a rapidly growing research field, predominantly led by Chinese institutions. The temporal analysis projects a productivity peak around 2033. Core topics include established technologies like anaerobic digestion and pyrolysis. However, network and keyword analyses reveal an emerging trend toward hydrothermal processes and, crucially, the early incorporation of ML. However, ML still occupies a peripheral position within the main scientific discourse, highlighting a gap between traditional research and the advanced application of artificial intelligence. The study systematizes existing knowledge and demonstrates that, although the technological foundation is mature, the deep integration of ML represents the future frontier for achieving sludge valorization systems that are more predictive, efficient, and aligned with the principles of the circular economy. Full article
Show Figures

Figure 1

18 pages, 1682 KB  
Article
Consequential Life Cycle Assessment of Integrated Anaerobic Digestion–Pyrolysis–HTC Systems for Bioenergy and Biofertiliser from Cattle Slurry and Grass Silage
by Maneesh Kumar Mediboyina, Nishtha Talwar and Fionnuala Murphy
Sustainability 2026, 18(2), 1040; https://doi.org/10.3390/su18021040 - 20 Jan 2026
Abstract
This study evaluates the environmental outcomes of integrating anaerobic digestion (AD) with pyrolysis (Py) and hydrothermal carbonization (HTC) to treat cattle slurry and grass silage in an Irish agricultural context. A consequential life cycle assessment (CLCA) was carried out for six scenarios based [...] Read more.
This study evaluates the environmental outcomes of integrating anaerobic digestion (AD) with pyrolysis (Py) and hydrothermal carbonization (HTC) to treat cattle slurry and grass silage in an Irish agricultural context. A consequential life cycle assessment (CLCA) was carried out for six scenarios based on 1 t of feedstock (0.4:0.6 cattle slurry/grass silage on a VS basis): two standalone AD systems (producing bioelectricity and biomethane) and four integrated AD–Py/HTC systems with different product utilisation pathways. Across all impact categories, the integrated systems performed better than standalone AD. This improvement is mainly due to the surplus bioenergy (electricity, biomethane, hydrocarbon fuel, hydrochar) that replaces marginal fossil energy (hard coal, natural gas and heavy fuel oil), together with the displacement of mineral NPK fertilisers by digestate-derived biochar and HTC process water. Among the configurations, the AD–HTC bioelectricity scenario (S4) achieved the best overall performance, driven by higher hydrochar yields, a favourable heating value, and a lower pretreatment energy demand compared with Py-based options. Across the integrated scenarios, climate change, freshwater eutrophication, and fossil depletion impacts were reduced by up to 84%, 86%, and 99%, respectively, relative to the fossil-based reference system, while avoiding digestate and fertiliser application reduced terrestrial acidification by up to 74%. Overall, the results show that the cascading utilisation of digestate via AD–Py/HTC can simultaneously enhance bioenergy production and nutrient recycling, providing a robust pathway for low-emission management of agricultural residues. These findings are directly relevant to Ireland’s renewable energy and circular economy targets and are transferable to other livestock-intensive regions seeking to valorise slurry and grass-based residues as low-carbon energy and biofertiliser resources. Full article
(This article belongs to the Special Issue Sustainable Waste Utilisation and Biomass Energy Production)
Show Figures

Figure 1

19 pages, 1269 KB  
Article
Spatial and Vertical Stratification of Groundwater Microbial Communities Reveals Proteobacterial Dominance and Redox-Driven Ecological Transitions
by Rahaf S. Aljuaid, Sahar A. Alshareef, Basma T. Jamal, Ftoon H. Dhafeer, Alaa A. Alnahari and Ruba A. Ashy
Microorganisms 2026, 14(1), 232; https://doi.org/10.3390/microorganisms14010232 - 19 Jan 2026
Viewed by 29
Abstract
Groundwater microbial communities exhibit pronounced vertical and spatial structuring driven by physicochemical gradients. Here, we investigated microbial assemblages across surface and subsurface layers of three groundwater wells distributed along a 1.26 km transect in the Wadi Awja aquifer system (Jeddah, Saudi Arabia) using [...] Read more.
Groundwater microbial communities exhibit pronounced vertical and spatial structuring driven by physicochemical gradients. Here, we investigated microbial assemblages across surface and subsurface layers of three groundwater wells distributed along a 1.26 km transect in the Wadi Awja aquifer system (Jeddah, Saudi Arabia) using high-throughput 16S rRNA gene amplicon sequencing. Across all samples, Pseudomonadota (Proteobacteria) dominated community composition, accounting for ~50–65% of surface assemblages and increasing to ~90% in deeper strata, indicating strong vertical selection. This depth-associated enrichment coincided with reduced community evenness and the prevalence of metabolically versatile, facultatively anaerobic taxa. Although Actinomycetota, Bacteroidota, and Planctomycetota contributed substantially to overall diversity, their relative abundances declined with depth, reinforcing the dominance of Proteobacteria under suboxic conditions. Notably, members of Enterobacteriaceae, particularly Escherichia spp., were consistently enriched in deeper layers, coinciding with simplified community structures. Collectively, these results demonstrate that groundwater microbial communities undergo sharp redox-associated ecological transitions over short spatial scales, emphasizing the role of localized hydrogeochemical heterogeneity in shaping subsurface microbial assemblages. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

46 pages, 1076 KB  
Review
Bio-Based Fertilizers from Waste: Nutrient Recovery, Soil Health, and Circular Economy Impacts
by Moses Akintayo Aborisade, Huazhan Long, Hongwei Rong, Akash Kumar, Baihui Cui, Olaide Ayodele Oladeji, Oluwaseun Princess Okimiji, Belay Tafa Oba and Dabin Guo
Toxics 2026, 14(1), 90; https://doi.org/10.3390/toxics14010090 - 19 Jan 2026
Viewed by 41
Abstract
Bio-based fertilisers (BBFs) derived from waste streams represent a transformative approach to sustainable agriculture, addressing the dual challenges of waste management and food security. This comprehensive review examines recent advances in BBF production technologies, nutrient recovery mechanisms, soil health impacts, and the benefits [...] Read more.
Bio-based fertilisers (BBFs) derived from waste streams represent a transformative approach to sustainable agriculture, addressing the dual challenges of waste management and food security. This comprehensive review examines recent advances in BBF production technologies, nutrient recovery mechanisms, soil health impacts, and the benefits of a circular economy. This review, based on an analysis of peer-reviewed studies, demonstrates that BBFs consistently improve the physical, chemical, and biological properties of soil while reducing environmental impacts by 15–45% compared to synthetic alternatives. Advanced biological treatment technologies, including anaerobic digestion, vermicomposting, and biochar production, achieve nutrient recovery efficiencies of 60–95% in diverse waste streams. Market analysis reveals a rapidly expanding sector projected to grow from $2.53 billion (2024) to $6.3 billion by 2032, driven by regulatory support and circular economy policies. Critical research gaps remain in standardisation, long-term performance evaluation, and integration with precision agriculture systems. Future developments should focus on AI-driven optimisation, climate-adaptive formulations, and nanobioconjugate technologies. Full article
(This article belongs to the Special Issue Study on Biological Treatment Technology for Waste Management)
24 pages, 3043 KB  
Article
Rate-Based Modeling and Sensitivity Analysis of Potassium Carbonate Systems for Carbon Dioxide Capture from Industrial Flue Gases
by Giannis Pachakis, Sofia Mai, Elli Maria Barampouti and Dimitris Malamis
Clean Technol. 2026, 8(1), 14; https://doi.org/10.3390/cleantechnol8010014 - 19 Jan 2026
Viewed by 35
Abstract
The increasing atmospheric concentration of carbon dioxide (CO2) poses a critical threat to global climate stability, highlighting the need for efficient carbon capture technologies. While amine-based solvents such as monoethanolamine (MEA) are widely used for industrial CO2 capture, they are [...] Read more.
The increasing atmospheric concentration of carbon dioxide (CO2) poses a critical threat to global climate stability, highlighting the need for efficient carbon capture technologies. While amine-based solvents such as monoethanolamine (MEA) are widely used for industrial CO2 capture, they are subject to limitations such as high energy requirements for regeneration, solvent degradation, and environmental concerns. This study investigates potassium carbonate/bicarbonate system as an alternative solution for CO2 absorption. The absorption mechanism and reaction kinetics of potassium carbonate in the presence of bicarbonates were reviewed. A rate-based model was developed in Aspen Plus, using literature kinetics, to simulate CO2 absorption using 20 wt% potassium carbonate (K2CO3) solution with 10% carbonate-to-bicarbonate conversion under different industrial conditions. Three flue gas compositions were evaluated: cement industry, biomass combustion, and anaerobic digestion, each at 3000 m3/h flow rate. The simulation was conducted to determine minimum column height and solvent loading requirements with a target output of 90% CO2 removal from the gas streams. Results demonstrated that potassium carbonate systems successfully achieved the target removal efficiency across all scenarios. Column heights ranged from 18 to 25 m, with molar K2CO3/CO2 ratios between 1.41 and 4.00. The biomass combustion scenario proved most favorable due to lower CO2 concentration and effective heat integration. While requiring higher column heights (18–25 m) compared to MEA systems (6–12 m) and greater solvent mass flow rates, potassium carbonate demonstrated technical feasibility for CO2 capture. The findings of this study provide a foundation for technoeconomic evaluation of potassium carbonate systems versus amine-based technologies for industrial carbon capture applications. Full article
Show Figures

Figure 1

21 pages, 7411 KB  
Article
Potential of Conversion of Cassava Processing Residues by Yeasts to Produce Value-Added Bioproducts
by Andreia Massamby, Johanna Blomqvist, Su-lin L. Leong, Yashaswini Nagaraj, Bettina Müller, Volkmar Passoth, Lucas Tivana, Custódia Macuamule and Mats Sandgren
Fermentation 2026, 12(1), 56; https://doi.org/10.3390/fermentation12010056 - 19 Jan 2026
Viewed by 148
Abstract
Cassava is a major starch crop in Africa, generating substantial amounts of solid (peels and fibres) and liquid (process press water) residues that remain underutilised, particularly in smallholder and semi-industrial processing units. In Mozambique, where cassava is a staple and processed primarily by [...] Read more.
Cassava is a major starch crop in Africa, generating substantial amounts of solid (peels and fibres) and liquid (process press water) residues that remain underutilised, particularly in smallholder and semi-industrial processing units. In Mozambique, where cassava is a staple and processed primarily by local farmer associations, these residues—readily available and low-cost feedstocks—have significant potential for value-added applications. This study evaluated the potential of enzymatically hydrolysed cassava residues—peel and fibre hydrolysates—as substrates for independent yeast fermentations targeting microbial lipid and ethanol production. Rhodotorula toruloides CBS 14 efficiently converted sugars from both hydrolysates, producing up to 17.14 g L−1 of cell dry weight (CDW) and 35% intracellular lipid content from the peel hydrolysate, and 16.5 g L−1 CDW with 50% lipids from the fibre hydrolysate. Supplementation with ammonium sulphate accelerated sugar utilisation and reduced fermentation time but did not significantly increase the biomass or lipid yields. Saccharomyces cerevisiae J672 fermented the available sugars anaerobically, achieving ethanol yields of 0.45 ± 0.03 g g−1 glucose from peels and 0.37 ± 0.06 g g−1 glucose from fibres. These findings highlight the regional relevance of valorising cassava processing residues in Mozambique and demonstrate a dual-product valorisation strategy, whereby the same feedstocks are converted into either microbial lipids or ethanol through independent fermentations. This approach supports the sustainable, low-cost utilisation of agro-industrial residues, contributing to circular bioeconomy principles and enhancing the environmental and economic value of local cassava value chains. Full article
Show Figures

Figure 1

18 pages, 1950 KB  
Review
Molecular and Cellular Mechanisms of Cardioplegic Protection in Surgical Myocardial Revascularization
by Dejan M. Lazović, Milica Karadžić Kočica, Dragan Ivanišević, Vojkan Aleksić, Mladen J. Kočica, Danko Grujić, Jovana M. Mihajlović, Dragan Cvetković and Stefan A. Juričić
Cells 2026, 15(2), 173; https://doi.org/10.3390/cells15020173 - 18 Jan 2026
Viewed by 101
Abstract
Coronary artery bypass grafting (CABG) remains the gold standard for patients with advanced multivessel coronary artery disease. Optimal myocardial protection versus ischemia during reversible and controlled cardiac arrest is a cornerstone of successful outcomes. Myocardial ischemia represents a state of reduced coronary perfusion [...] Read more.
Coronary artery bypass grafting (CABG) remains the gold standard for patients with advanced multivessel coronary artery disease. Optimal myocardial protection versus ischemia during reversible and controlled cardiac arrest is a cornerstone of successful outcomes. Myocardial ischemia represents a state of reduced coronary perfusion with oxygenated blood, insufficient to meet the metabolic demands of the myocardium. Conventional cardioplegic solutions offer controlled and reversible cardiac arrest while actively modulating the molecular and cellular mechanisms that mediate ischemia–reperfusion injury. Cardioplegia dramatically elongates the reversible period of ischemic injury and restricts cardiomyocyte death by shutting down electromechanical activity, lowering metabolic demand, stabilizing ionic homeostasis, protecting mitochondrial integrity, and slowing oxidative stress and inflammatory signaling. During ischemia, cardiomyocytes shift from aerobic to anaerobic metabolism, resulting in adenosine triphosphate (ATP) depletion, loss of ionic homeostasis and calcium overload that activate proteases, phospholipases and membrane damage. Reperfusion restores oxygen supply and prevents irreversible necrosis but paradoxically initiates additional injury in marginally viable myocardium. The reoxygenation phase induces excessive production of reactive oxygen species (ROS), endothelial dysfunction and a strong inflammatory response mediated by neutrophils, platelets and cytokines. Mitochondrial dysfunction and opening of the mitochondrial permeability transition pore (mPTP) further amplify oxidative stress and inflammation, and trigger apoptosis and necroptosis. Understanding these intertwined cellular and molecular mechanisms remains essential for identifying novel therapeutic targets aimed at reducing reperfusion injury and improving myocardial recovery after ischemic events, particularly in coronary surgery. Full article
Show Figures

Figure 1

16 pages, 1927 KB  
Article
Methanotrophic Poly(hydroxybutyrate) Through C1 Fermentation and Downstream Process Development: Molar Mass, Thermal and Mechanical Characterization
by Maximilian Lackner, Ľubomíra Jurečková, Daniela Chmelová, Miroslav Ondrejovič, Katarína Borská, Anna Vykydalová, Michaela Sedničková, Hamed Peidayesh, Ivan Chodák and Martin Danko
Polymers 2026, 18(2), 248; https://doi.org/10.3390/polym18020248 - 16 Jan 2026
Viewed by 161
Abstract
Today, PHB and its copolymers—potential plastic substitutes—are produced by fermenting sugar, which is not scalable to the volumes of plastic consumption. PHB from CH4 can offer a sustainable process route, with CH4 potentially produced from a variety of waste biomass streams [...] Read more.
Today, PHB and its copolymers—potential plastic substitutes—are produced by fermenting sugar, which is not scalable to the volumes of plastic consumption. PHB from CH4 can offer a sustainable process route, with CH4 potentially produced from a variety of waste biomass streams through anaerobic digestion, gasification, and methanation. The high molar mass (Mw) of PHB is a key determinant of its mechanical properties, and strain, culture conditions and downstream processing influence it. In this work, the strain Methylocystis sp. GB 25 (DSMZ 7674) was grown on natural gas as the sole carbon and energy source and air (1:1) in a loop reactor with 350 L active fermentation volume, at 35 °C and ambient pressure. After two days of continuous growth, the bacteria were limited in P and N for 1, 2, and 2.5 days to determine the optimal conditions for PHB accumulation and the highest Mw as the target. The biomass was then centrifuged and spray-dried. For downstream processing, chloroform solvent extraction and selected enzymatic treatment were deployed, yielding ~40% PHB from the biomass. The PHB obtained by solvent extraction exhibited high average weight molar masses of Mw ~1.1–1.5 × 106 g mol−1. The highest Mw was obtained after one day of limitation, whereas enzyme treatment resulted in partially degraded PHB. Cold chloroform maceration, interesting due to energy savings, did not achieve sufficient extraction efficiency because it was unable to extract high-molar-mass PHB fractions. The extracted PHB has a high molar mass, more than double that of standard commercial PHB, and was characterized by DSC, which showed a high degree of crystallinity of up to 70% with a melting temperature of close to 180 °C. Mechanical tensile properties measurements, as well as dynamic mechanical thermal analysis (DMTA), were performed. Degradation of the PHB by enzymes was also determined. Methanotrophic PHB is a promising bioplastics material. The high Mw can limit and delay polymer degradation in practical processing steps, making the material more versatile and robust. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

22 pages, 1464 KB  
Article
Optimal Recycling Ratio of Biodried Product at 12% Enhances Digestate Valorization: Synergistic Acceleration of Drying Kinetics, Nutrient Enrichment, and Energy Recovery
by Xiandong Hou, Hangxi Liao, Bingyan Wu, Nan An, Yuanyuan Zhang and Yangyang Li
Bioengineering 2026, 13(1), 109; https://doi.org/10.3390/bioengineering13010109 - 16 Jan 2026
Viewed by 220
Abstract
Rapid urbanization in China has driven annual food waste production to 130 million tons, posing severe environmental challenges for anaerobic digestate management. To resolve trade-offs among drying efficiency, resource recovery (fertilizer/fuel), and carbon neutrality by optimizing the biodried product (BDP) recycling ratio (0–15%), [...] Read more.
Rapid urbanization in China has driven annual food waste production to 130 million tons, posing severe environmental challenges for anaerobic digestate management. To resolve trade-offs among drying efficiency, resource recovery (fertilizer/fuel), and carbon neutrality by optimizing the biodried product (BDP) recycling ratio (0–15%), six BDP treatments were tested in 60 L bioreactors. Metrics included drying kinetics, product properties, and environmental–economic trade-offs. The results showed that 12% BDP achieved a peak temperature integral (514.13 °C·d), an optimal biodrying index (3.67), and shortened the cycle to 12 days. Furthermore, 12% BDP yielded total nutrients (N + P2O5 + K2O) of 4.19%, meeting the NY 525-2021 standard in China, while ≤3% BDP maximized fuel suitability with LHV > 5000 kJ·kg−1, compliant with CEN/TC 343 RDF standards. BDP recycling reduced global warming potential by 27.3% and eliminated leachate generation, mitigating groundwater contamination risks. The RDF pathway (12% BDP) achieved the highest NPV (USD 716,725), whereas organic fertilizer required farmland subsidies (28.57/ton) to offset its low market value. A 12% BDP recycling ratio optimally balances technical feasibility, environmental safety, and economic returns, offering a closed-loop solution for global food waste valorization. Full article
(This article belongs to the Special Issue Anaerobic Digestion Advances in Biomass and Waste Treatment)
Show Figures

Graphical abstract

14 pages, 1056 KB  
Article
Kinetics of Lactic Acid, Acetic Acid and Ethanol Production During Submerged Cultivation of a Forest Litter-Based Biofertilizer
by Sophie Nafil, Lucie Miché, Loris Cagnacci, Martine Martinez and Pierre Christen
Fermentation 2026, 12(1), 52; https://doi.org/10.3390/fermentation12010052 - 16 Jan 2026
Viewed by 127
Abstract
Fermented forest litter (FFL) is a biofertilizer obtained by anaerobic fermentation of forest litter combined with agricultural by-products. Its production involves an initial one-month solid-state fermentation of oak litter mixed with whey, molasses and wheat bran, followed by a one-week submerged fermentation-called the [...] Read more.
Fermented forest litter (FFL) is a biofertilizer obtained by anaerobic fermentation of forest litter combined with agricultural by-products. Its production involves an initial one-month solid-state fermentation of oak litter mixed with whey, molasses and wheat bran, followed by a one-week submerged fermentation-called the “activation” phase-during which the solid FFL is fermented with sugarcane molasses diluted in water. This study aimed to evaluate the effects storage duration (6, 18 and 30 months), and temperature (ambient and 29 °C) on the activation phase. For this purpose, pH, sugar consumption and metabolite production dynamics were monitored. Under all experimental conditions, the pH dropped to values close to 3.5, sucrose was rapidly hydrolyzed, and glucose was preferentially consumed over fructose. Fructose was metabolized only after glucose was depleted, suggesting the involvement of fructophilic microorganisms. The time-course evolution of lactic acid (LA) concentration was adequately fitted by the Gompertz model (R2 > 0.970). The highest LAmax concentration (6.30 g/L) and production rate (2.16 g/L·d) were obtained with FFL stored for 6 months. Acetic acid (AA) and ethanol were also detected reaching maxima values of 1.19 g/L and 0.96 g/L, respectively. Their profiles varied depending on the experimental conditions. Notably, the AA/LA ratio increased with the age of the FFL. Overall, sugar consumption and metabolite production were significantly slower at ambient temperature, than at 29 °C. These results contribute to a better understanding of the metabolic dynamics during FFL activation and highlight key parameters that should be considered to optimize future biofertilizer production processes. Full article
Show Figures

Graphical abstract

12 pages, 1426 KB  
Article
Protection Against Salmonella by Vaccination with Toxin–Antitoxin Self-Destructive Bacteria
by Nady Gruzdev, Jacob Pitcovski, Chen Katz, Nili Ruimi, Dalia Eliahu, Caroline Noach, Ella Rosenzweig, Avner Finger and Ehud Shahar
Vaccines 2026, 14(1), 89; https://doi.org/10.3390/vaccines14010089 - 15 Jan 2026
Viewed by 199
Abstract
Background: Salmonella is a major zoonotic foodborne pathogen. Conventional poultry vaccines may present limitations in terms of efficacy, safety, and practicality. Objectives: This study focuses on enhancing the immunogenicity and improving the safety of a novel oral vaccination employing inducible toxin–antitoxin [...] Read more.
Background: Salmonella is a major zoonotic foodborne pathogen. Conventional poultry vaccines may present limitations in terms of efficacy, safety, and practicality. Objectives: This study focuses on enhancing the immunogenicity and improving the safety of a novel oral vaccination employing inducible toxin–antitoxin (TA) systems, which lead to self-destruction of virulent Salmonella Enteritidis. Methods: A Hok/Sok (HS) TA system was designed to induce cell death upon absence of arabinose. Point mutations were introduced to the Hok toxin promoter to moderate toxin production. A combination of HS and CeaB/CeiB (CC) TA systems was designed to induce cell death both in low di-cation levels or anaerobic conditions. Survival of Salmonella-carrying TA systems was tested in culture and in the Raw264.7 macrophage cell line. One-day old chicks were inoculated with Salmonella carrying the TA system to evaluate bacterial persistence and induction of a protective immune response. Results: Attenuation of the Hok toxin promoter prolonged bacterial survival in vitro. Salmonella carrying the combined TA systems was eliminated completely both in vitro and in inoculated chickens, eliciting high levels of antibodies and conferring protection against challenge with wild-type Salmonella. Conclusions: These findings highlight the potential of the adaptable TA-based vaccination platform to generate safe and efficacious Salmonella vaccines for poultry, contributing to reduced transmission in the food chain. Full article
(This article belongs to the Special Issue New Approaches to Vaccine Development and Delivery)
Show Figures

Figure 1

Back to TopTop