Kinetics of Lactic Acid, Acetic Acid and Ethanol Production During Submerged Cultivation of a Forest Litter-Based Biofertilizer
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Analytical Methods
2.2.1. pH Measurement
2.2.2. Quantification of Sugars Consumed and Acids and Ethanol Produced
2.3. Sugar Conversion Yields
2.4. Mathematical Model
2.5. Result Analysis
3. Results and Discussion
3.1. Biochemical Composition of Substrates
3.2. Typical Time Course of Sugar Consumption and Acid Production During an Activation Run
3.3. pH Evolution
3.4. Impact of FFL Storage Time and Temperature on Sucrose Consumption
3.5. Impact of FFL Storage Time and Temperature on LA Production
3.6. Impact of FFL Storage Time and Temperature on AA Production
3.7. Impact of FFL Storage Time and Temperature on Ethanol Production
3.8. Conversion Yields: Indicators of Metabolic Diversity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| FFL | Fermented forest litter |
| aFFL | Activated fermented forest litter |
| LAB | Lactic acid bacteria |
| LA | Lactic acid |
| AA | Acetic acid |
| γ | AA/LA ratio |
| EtOH | Ethanol |
| m1, m2, k | Fitting parameters of the Gompertz model |
| Vmax | Maximum productivity for each run |
| topt | Time of maximum productivity |
| S | Sucrose |
| Y | Conversion yield of sucrose into product |
References
- FAO. Soils for Nutrition: State of the Art; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Afzal, A.; Asad, S.A. Microbial applications for sustainable agriculture. In Innovations in Sustainable Agriculture; Farooq, M., Pisante, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 43–77. [Google Scholar] [CrossRef]
- Glockow, T.; Kaster, A.K.; Rabe, K.S.; Niemeyer, C.M. Sustainable agriculture: Leveraging microorganisms for a circular economy. Appl. Microbiol. Biotechnol. 2024, 108, 452. [Google Scholar] [CrossRef]
- Suthar, H.; Hingurao, K.; Vaghashiya, J.; Parmar, J. Fermentation: A process for biofertilizer production. In Microorganisms for Green Revolution, Microoganisms for Sustainability 6; Panpatte, D.G., Jhala, Y.K., Vyas, R.V., Shelat, H.N., Eds.; Springer Nature: Singapore, 2017; pp. 229–252. [Google Scholar] [CrossRef]
- El Sheikha, A.F.; Ray, R.C. Bioprocessing of horticultural wastes by solid-state fermentation into value-added/innovative bioproducts: A review. Food Rev. Int. 2022, 39, 3009–3065. [Google Scholar] [CrossRef]
- Areeshi, M.Y. Recent advances on organic biofertilizer production from anaerobic fermentation of food waste: Overview. Int. J. Food Microbiol. 2022, 374, 109719. [Google Scholar] [CrossRef] [PubMed]
- Terre & Humanisme. Manuel de la Litière Forestière Fermentée; Editions du Rouergue: Arles, France, 2021; p. 128. ISBN 978-2-8126-2180-2. [Google Scholar]
- Christen, P.; Lerch, T.; Criquet, S.; Abecassis, V.; Fernandes, P. Un biostimulant agricole à base de litière forestière fermentée. In Explorer L’environnement—Des Solutions Pour Innover; Fouilland, E., Gourmelon, F., Eds.; CNRS-Editions Pub.: Paris, France, 2023; pp. 19–22. [Google Scholar]
- Marois, J.; Lerch, T.Z.; Dunant, U.; Farnet da Silva, A.M.; Christen, P. Chemical and microbial characterization of fermented forest litters used as biofertilizers. Microorganisms 2023, 11, 306. [Google Scholar] [CrossRef]
- Miché, L.; Dries, A.; Ben Ammar, I.; Davidson, S.; Cagnacci, L.; Combet-Blanc, Y.; Abecassis, V.; Penton Fernandez, G.; Christen, P. Changes in chemical properties and microbial communities’ composition of a forest litter–based biofertilizer produced through aerated solid-state culture under different oxygen conditions. Environ. Sci. Pollut. Res. 2024, 32, 16725–16739. [Google Scholar] [CrossRef]
- Gutierrez, A.; Rébufa, C.; Farnet da Silva, A.M.; Davidson, S.; Foli, L.; Combet-Blanc, Y.; Martinez, M.; Christen, P. Biochemical and microbial characterization of a forest litter-based bio-fertilizer produced in batch culture by fermentation under different initial oxygen concentrations. World J. Microbiol. Biotechnol. 2024, 40, 353. [Google Scholar] [CrossRef]
- Zoumman, A.M.A.; Fernandes, P.; Gueye, M.; Chaintreuil, C.; Cournac, L.; Kane, A.; Assigbetse, K. Exploring microbial diversity in forest litter-based fermented bioproducts and their effects on tomato (Solanum lycopersicum L.) growth in Senegal. Int. J. Plant Biol. 2025, 16, 55. [Google Scholar] [CrossRef]
- Abedi, E.; Bagher Hashemi, S.M. Lactic Acid Production—Producing Microorganisms and Substrates Sources-State of Art. Heliyon 2020, 6, e04974. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Liu, S. Advanced Fermentation Techniques for Lactic Acid Production from Agricultural Waste. Fermentation 2023, 9, 765. [Google Scholar] [CrossRef]
- Wan-Mohtar, W.A.A.Q.I.; Khalid, N.I.; Rahim, M.H.A.; Luthfi, A.A.I.; Zaini, N.S.M.; Din, N.A.S.; Mohd Zaini, N.A. Underutilized Malaysian Agro-Industrial Wastes as Sustainable Carbon Sources for Lactic Acid Production. Fermentation 2023, 9, 905. [Google Scholar] [CrossRef]
- Lech, M. Optimisation of protein-free waste whey supplementation used for the industrial microbial production of lactic acid. Biochem. Eng. J. 2020, 157, 107531. [Google Scholar] [CrossRef]
- Mukherjee, R.; Raj, N.; Sivaprakasam, S. Harnessing valorization potential of whey permeate for D-lactic acid production using lactic acid bacteria. Biomass Conv. Bioref. 2023, 13, 15639–15658. [Google Scholar] [CrossRef]
- Raman, J.; Kim, J.S.; Choi, K.R.; Eun, H.; Yang, D.; Ko, Y.J.; Kim, S.J. Application of lactic acid bacteria in sustainable agriculture: Advantages and limitations. Int. J. Mol. Sci. 2022, 23, 7784. [Google Scholar] [CrossRef] [PubMed]
- Daranas, N.; Rosello, G.; Cabrefiga, J.; Donati, I.; Francés, J.; Badosa, E.; Spinelli, F.; Montesinos, E.; Bonaterra, A. Biological control of bacterial plant diseases with Lactobacillus plantarum strains selected for their broad-spectrum activity. Ann. Appl. Biol. 2019, 174, 92–105. [Google Scholar] [CrossRef]
- Ferreira Campos, M.I.; de Souza Barbosa, P.P.; Junqueira Camargo, L.; da Silva Pinto, L.; Mataribu, B.; Serraõ, C.; Marques-Santos, L.F.; Lopes, J.H.; Cajhu de Oliveira, J.M.; de Almeida Gadelha, C.A.; et al. Characterization of goat whey proteins and their bioactivity and toxicity assay. Food Biosci. 2022, 46, 101591. [Google Scholar] [CrossRef]
- Rodriguez-Morgado, B.; Caballero Jimenez, P.; Terrada Moral, M.; Parrado Rubio, J. Effect of L-lactic acid from whey wastes on enzyme activities and bacterial diversity of soil. Biol. Fertil. Soils 2017, 53, 389. [Google Scholar] [CrossRef]
- Adler-Nissen, J.; Demain, A.L. Aeration-controlled formation of acetic acid in heterolactic fermentations. J. Ind. Microbiol. 1994, 13, 335–343. [Google Scholar] [CrossRef]
- Lunelli, B.H.; Andrade, R.R.; Atala, D.I.P.; Wolf Maciel, M.R.; Maugeri Filho, F.; Maciel Filho, R. Production of lactic acid from sucrose: Strain selection, fermentation, and kinetic modelling. Appl. Biochem. Biotechnol. 2010, 161, 227–237. [Google Scholar] [CrossRef]
- Sikder, J.; Chakraborthy, S.; Sharma, V.; Drioli, E. Kinetic of lactic acid production from sugarcane juice using Lactobacillus plantarum NCIM 2912. Asia Pac. J. Chem. Eng. 2014, 9, 374–381. [Google Scholar] [CrossRef]
- Popova-Krumova, P.; Donova, S.; Atanasova, N.; Yankov, D. Lactic acid production by Lactiplantibacillus plantarum AC 11S-Kinetics and modeling. Microorganisms 2004, 12, 739. [Google Scholar] [CrossRef]
- Fu, W.; Mathews, A.P. Lactic acid production from lactose by Lactobacillus plantarum: Kinetic model and effects of pH, substrate, and oxygen. Biochem. Eng. J. 1999, 3, 163–170. [Google Scholar] [CrossRef]
- Sharma, V.; Mishra, H.N. Unstructured kinetic modeling of growth and lactic acid production by Lactobacillus plantarum NCDC 414 during fermentation of vegetable juices. LWT–Food Sci. Technol. 2014, 59, 1123–1128. [Google Scholar] [CrossRef]
- Ghimire, A.; Sah, A.K.; Poudel, R. Kinetics and modelling of growth and lactic acid production in Gundruk, a Himalayan fermented vegetable dish. Food Sci. Nutr. 2020, 8, 5591–5600. [Google Scholar] [CrossRef] [PubMed]
- Viesser, J.A.; de Melo Pereira, G.V.; de Carvalho Neto, D.P.; Rogez, H.; Goes-Neto, A.; Azevedo, V.; Brenig, B.; Aburjaile, F.; Soccol, C.R. Co-culturing fructophilic lactic acid bacteria and yeast enhanced sugar metabolism and aroma formation during cocoa beans fermentation. Int. J. Food Microbiol. 2021, 329, 109015. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Junqueira, A.C.; de Melo Pereira, G.V.; Viesser, J.A.; de Carvalho Neto, D.P.; Peters Querne, L.B.; Soccol, C.R. Isolation and selection of fructose-consuming lactic bacteria associated with coffee bean fermentation. Food Biotechnol. 2022, 36, 58–75. [Google Scholar] [CrossRef]
- Endo, A.; Maeno, S.; Tanizawa, Y.; Kneifel, W.; Arita, M.; Dicks, L.; Salminen, S. Fructophilic lactic acid bacteria, a unique group a fructose-fermenting microbes. Appl. Environ. Microbiol. 2018, 84, e01290-18. [Google Scholar] [CrossRef]
- Schutz, M.; Gafner, J. Lower fructose uptake capacity of genetically characterized strains of Saccharomyces bayanus compared to strains of Saccharomyces cerevisiae—A likely cause of reduced alcoholic fermentation activity. Am. J. Enol. Viti. 1995, 46, 175–180. [Google Scholar] [CrossRef]
- Berthels, N.J.; Cordero Otero, R.R.; Bauer, F.F.; Thevelein, J.M.; Pretorius, I.S. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res. 2004, 4, 683–689. [Google Scholar] [CrossRef]
- Berthels, N.J.; Cordero Otero, R.R.; Bauer, F.F.; Pretorius, I.S.; Thevelein, J.M. Correlation between glucose/fructose discrepancy and hexokinase kinetic properties in different Saccharomyces cerevisiae wine yeast strains. Appl. Microbiol. Biotechnol. 2008, 77, 1083–1091. [Google Scholar] [CrossRef]
- Giraud, E.; Lelong, B.; Raimbault, M. Influence of pH and initial lactate concentration on the growth of Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 1991, 36, 96–99. [Google Scholar] [CrossRef]
- Cheryan, M. Acetic acid production. In Encyclopedia of Microbiology, 3rd ed.; Schaechter, M., Ed.; Academic Press: Oxford, UK, 2009; pp. 145–149. [Google Scholar]
- Ciani, M.; Ferraro, L. Role of oxygen on acetic acid production by Brettanomyces/Dekkera in winemaking. J. Sci. Food Agric. 1997, 75, 489–495. [Google Scholar] [CrossRef]
- Paraggio, M.; Fiore, C. Screening of Saccharomyces cerevisiae wine strains for the production of acetic acid. World J. Microbiol. Biotechnol. 2004, 20, 743–747. [Google Scholar] [CrossRef]
- Grassi, A.; Cristani, C.; Palla, M.; Di Giorgi, R.; Giovanetti, M. Storage time and temperature affect microbial dynamics of yeasts and acetic acid bacteria in a kombucha beverage. Int. J. Food. Microbiol. 2022, 382, 109934. [Google Scholar] [CrossRef]
- Abdulla, R.; Derman, E.; Balasubramaniam, S.; Gansau, J.A.; Chandel, A.K. Bioconversion of oil palm empty bunches into lactic acid via Lactobacillus acidophilus. Waste Biomass Valor. 2025, 16, 4955–4967. [Google Scholar] [CrossRef]
- Trontel, A.; Barsic, V.; Slavica, A.; Santek, B.; Novak, S. Modelling the effect of different substrates and temperature on the growth and lactic acid production by Lactobacillus amylovorus DSM 20351 in batch process. Food Technol. Biotechnol. 2010, 48, 352–361. [Google Scholar]
- Gullon, B.; Yanez, R.; Alonso, J.L.; Parajo, J.C. L-lactic acid production from apple pomace by sequential hydrolysis and fermentation. Biores. Technol. 2008, 99, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 2013, 31, 877–902. [Google Scholar] [CrossRef]
- Moreira Costa, V.; Basso, T.O.; Poleto Angeloni, L.H.; Oetterer, M.; Basso, L.C. Production of acetic acid, ethanol and optical isomers of lactic acid by Lactobacillus strains isolated from industrial ethanol fermentation. Cienc. Agrotec. 2008, 32, 503–509. [Google Scholar] [CrossRef]






| Run | 6-Month FFL (g) | 18-Month FFL (g) | 30-Month FFL (g) | Temp. (°C) |
|---|---|---|---|---|
| 1 | 25 | - | - | 29 |
| 2 | - | 25 | - | 29 |
| 3 | - | - | 25 | 29 |
| 4 | 25 | - | - | Amb. 1 |
| Substrates | 6-Month FFL | 18-Month FFL | 30-Month FFL | Molasses |
|---|---|---|---|---|
| Glucose | 0.846 ± 0.04 | 0.645 ± 0.02 | 0.734 ± 0.05 | 24.8 ± 0.63 |
| Fructose 1 | 3.72 ± 0.21 | 4.27 ± 0.18 | 4.24 ± 0.26 | 36.7 ± 0.97 |
| Sucrose 1 | - | - | - | 293.0 ± 2.59 |
| Lactic acid | 2.38 ± 0.16 | 2.83 ± 0.42 | 4.08 ± 0.38 | - |
| Acetic acid | 5.73 ± 0.44 | 6.05 ± 0.39 | 9.89 ± 0.57 | - |
| Run | LAmax (g/L) | Vmax (g/L·d) | topt (d) | R2 |
|---|---|---|---|---|
| 1 | 6.30 | 2.16 | 2.35 | 0.995 |
| 2 | 5.50 | 1.46 | 2.51 | 0.977 |
| 3 | 4.54 | 1.30 | 2.96 | 0.989 |
| 4 | nd * | 1.06 | 7.22 | 0.992 |
| Run | AAmax (g/L) | Vmax (g/L·d) | topt (d) | R2 |
|---|---|---|---|---|
| 1 | 0.83 | 0.128 | 2.66 | 0.976 |
| 2 | 0.91 | 0.205 | 2.87 | 0.973 |
| 3 | 1.19 | 0.218 | 2.54 | 0.978 |
| 4 1 | - | 0.021 1 | - | 0.928 |
| Run | YLA/S (g/g) | YAA/S (g/g) | γ (g/g) | YEtOH/S (g/g) |
|---|---|---|---|---|
| 1 | 0.88 | 0.036 | 0.040 | 0.083 |
| 2 | 0.70 | 0.042 | 0.060 | 0.084 |
| 3 | 0.56 | 0.062 | 0.110 | 0.100 |
| 4 | 0.83 | 0.015 | 0.018 | 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Nafil, S.; Miché, L.; Cagnacci, L.; Martinez, M.; Christen, P. Kinetics of Lactic Acid, Acetic Acid and Ethanol Production During Submerged Cultivation of a Forest Litter-Based Biofertilizer. Fermentation 2026, 12, 52. https://doi.org/10.3390/fermentation12010052
Nafil S, Miché L, Cagnacci L, Martinez M, Christen P. Kinetics of Lactic Acid, Acetic Acid and Ethanol Production During Submerged Cultivation of a Forest Litter-Based Biofertilizer. Fermentation. 2026; 12(1):52. https://doi.org/10.3390/fermentation12010052
Chicago/Turabian StyleNafil, Sophie, Lucie Miché, Loris Cagnacci, Martine Martinez, and Pierre Christen. 2026. "Kinetics of Lactic Acid, Acetic Acid and Ethanol Production During Submerged Cultivation of a Forest Litter-Based Biofertilizer" Fermentation 12, no. 1: 52. https://doi.org/10.3390/fermentation12010052
APA StyleNafil, S., Miché, L., Cagnacci, L., Martinez, M., & Christen, P. (2026). Kinetics of Lactic Acid, Acetic Acid and Ethanol Production During Submerged Cultivation of a Forest Litter-Based Biofertilizer. Fermentation, 12(1), 52. https://doi.org/10.3390/fermentation12010052

