Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (214)

Search Parameters:
Keywords = amphipathic peptide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2281 KiB  
Article
Amphipathic Alpha-Helical Peptides AH1 and AH3 Facilitate Immunogenicity of Enhanced Green Fluorescence Protein in Rainbow Trout (Oncorhynchus mykiss)
by Kuan Chieh Peng and Ten-Tsao Wong
J. Mar. Sci. Eng. 2025, 13(8), 1497; https://doi.org/10.3390/jmse13081497 - 4 Aug 2025
Viewed by 63
Abstract
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically [...] Read more.
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically produced in large quantities without growing many pathogens, as in inactivated or attenuated vaccine production. However, recombinant subunit vaccines are often weak or deficient in immunogenicity, resulting in inadequate defenses against infections. Technologies that can increase the immunogenicity of recombinant subunit vaccines are in desperate need. Enhanced green fluorescence protein (EGFP) has a low antigenicity and is susceptible to folding changes and losing fluorescence after fusing with other proteins. Using these valuable features of EGFP, we comprehend two amphipathic alpha-helical peptides, AH1 and AH3, derived from Hepatitis C virus and Influenza A virus, respectively, that can induce high immune responses of their fused EGFP in fish without affecting their folding. AH3-EGFP has the most elevated cell binding, significantly 62% and 36% higher than EGFP and AH1-EGFP, respectively. Immunizations with AH1-EGFP or AH3-EGFP significantly induced higher anti-EGFP antibody levels 300–500-fold higher than EGFP immunization after the boost injection in rainbow trout. Our results suggest that AH1 and AH3 effectively increase the immunogenicity of EGFP without influencing its structure. Further validation of their value in other recombinant proteins is necessary to demonstrate their broader utility in enhancing the immunogenicity of subunit vaccines. We also suggest that EGFP and its variants are promising candidates for initially screening proper immunogenicity-enhancing peptides or proteins to advance recombinant subunit vaccine development. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

25 pages, 3867 KiB  
Article
Amino Acid Substitutions in Bacteriocin Lactolisterin BU Reveal Functional Domains Involved in Biological Activity Against Staphylococcus aureus
by Lazar Gardijan, Milka Malešević, Miroslav Dinić, Aleksandar Pavić, Nikola Plačkić, Goran Jovanović and Milan Kojić
Molecules 2025, 30(15), 3134; https://doi.org/10.3390/molecules30153134 - 26 Jul 2025
Viewed by 546
Abstract
The emergence of multidrug-resistant pathogens has driven the development of novel antimicrobial peptides (AMPs) as therapeutic alternatives. Lactolisterin LBU (LBU) is a bacteriocin with promising activity against Gram-positive bacteria, including Staphylococcus aureus. In this study, we designed and evaluated a panel of [...] Read more.
The emergence of multidrug-resistant pathogens has driven the development of novel antimicrobial peptides (AMPs) as therapeutic alternatives. Lactolisterin LBU (LBU) is a bacteriocin with promising activity against Gram-positive bacteria, including Staphylococcus aureus. In this study, we designed and evaluated a panel of amino acid variants of LBU to investigate domain–activity relationships and improve activity. Peptides were commercially synthesized, and their effect was evaluated for minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), hemolytic activity, cytotoxicity, in vivo toxicity, and virulence modulation. AlphaFold3 structural prediction of LBU revealed a four-helix topology with amphipathic and hydrophobic segments. Helical wheel projections identified helices I and IV as amphipathic, suggesting their potential involvement in membrane interaction and activity. Glycine-to-alanine substitutions at helix I markedly increased antimicrobial activity but altered toxicity profiles. In contrast, changes at helix junctions and kinks reduced antimicrobial activity. We also showed differential regulation of virulence genes upon sub-MIC treatment. Overall, rational substitution enabled identification of residues critical for activity and toxicity, providing insights into therapeutic tuning of lactolisterin-based peptides. Full article
(This article belongs to the Special Issue Chemical Design and Synthesis of Antimicrobial Drugs)
Show Figures

Figure 1

39 pages, 3407 KiB  
Review
Current Status of the Application of Antimicrobial Peptides and Their Conjugated Derivatives
by Marcel·lí del Olmo and Cecilia Andreu
Molecules 2025, 30(15), 3070; https://doi.org/10.3390/molecules30153070 - 22 Jul 2025
Viewed by 337
Abstract
A significant issue in healthcare is the growing prevalence of antibiotic-resistant strains. Therefore, it is necessary to develop strategies for discovering new antibacterial compounds, either by identifying natural products or by designing semisynthetic or synthetic compounds with this property. In this context, a [...] Read more.
A significant issue in healthcare is the growing prevalence of antibiotic-resistant strains. Therefore, it is necessary to develop strategies for discovering new antibacterial compounds, either by identifying natural products or by designing semisynthetic or synthetic compounds with this property. In this context, a great deal of research has recently been carried out on antimicrobial peptides (AMPs), which are natural, amphipathic, low-molecular-weight molecules that act by altering the cell surface and/or interfering with cellular activities essential for life. Progress is also being made in developing strategies to enhance the activity of these compounds through their association with other molecules. In addition to identifying AMPs, it is essential to ensure that they maintain their integrity after passing through the digestive tract and exhibit adequate activity against their targets. Significant advances are being made in relation to analyzing various types of conjugates and carrier systems, such as nanoparticles, vesicles, hydrogels, and carbon nanotubes, among others. In this work, we review the current knowledge of different types of AMPs, their mechanisms of action, and strategies to improve performance. Full article
(This article belongs to the Special Issue Research Progress of New Antimicrobial Drugs)
Show Figures

Graphical abstract

18 pages, 4205 KiB  
Article
A Type Ia Crustin from the Pacific White Shrimp Litopenaeus vannamei Exhibits Antimicrobial and Chemotactic Activities
by Xiuyan Gao, Yuan Liu, Xiaoyang Huang, Zhanyuan Yang, Mingzhe Sun and Fuhua Li
Biomolecules 2025, 15(7), 1015; https://doi.org/10.3390/biom15071015 - 14 Jul 2025
Viewed by 270
Abstract
Crustins are a family of cysteine-rich antimicrobial peptides (AMPs), predominantly found in crustaceans, and play important roles in innate immunity. However, among the many reported crustins, few studies have explored their immunomodulatory functions. In this study, we investigated the immune function of a [...] Read more.
Crustins are a family of cysteine-rich antimicrobial peptides (AMPs), predominantly found in crustaceans, and play important roles in innate immunity. However, among the many reported crustins, few studies have explored their immunomodulatory functions. In this study, we investigated the immune function of a type I crustin (LvCrustinIa-2) in Litopenaeus vannamei, with particular emphasis on comparing the roles of its different domains. LvCrustinIa-2 possesses cationic patchy surface and amphipathic structure, and its expression was significantly induced in hemocytes after pathogen challenge. Both the recombinant LvCrustinIa-2 (rLvCrustinIa-2) and its whey acidic protein (WAP) domain (rLvCrustinIa-2-WAP) exhibited significant inhibitory activities against the tested Gram-positive bacteria. They also showed binding affinity not only for Gram-positive bacteria but also for Gram-negative bacteria. Furthermore, rLvCrustinIa-2 induced membrane leakage and structure damage in the target bacteria. Notably, chemotaxis assays revealed that rLvCrustinIa-2 and the synthetic cysteine-rich region (LvCrustinIa-2-CR) significantly enhanced the chemotactic activity of shrimp hemocytes in vitro. Knockdown of LvCrustinIa-2 triggered significant transcriptional activation of genes involved in calcium transport, inflammation, redox regulation, and NF-κB pathway. Taken together, these findings elucidate the distinct roles of the cysteine-rich region and WAP domain in type Ia crustin and provide the first evidence of a crustacean AMP with chemotactic and immunomodulatory activities. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

23 pages, 11745 KiB  
Article
Tracing the Evolutionary Expansion of a Hyperdiverse Antimicrobial Peptide Gene Family in Mytilus spp.: The MyticalinDB Resource
by Dona Kireta, Pietro Decarli, Damiano Riommi, Nicolò Gualandi, Samuele Greco, Alberto Pallavicini and Marco Gerdol
Genes 2025, 16(7), 816; https://doi.org/10.3390/genes16070816 - 12 Jul 2025
Viewed by 323
Abstract
Background: The overwhelming majority of the antimicrobial peptides (AMPs) studied in mussels (Mytilus spp.) so far are specifically expressed by hemocytes and display compact disulfide-stabilized structures. However, gill-specific myticalins play a role in mucosal immunity and are one of the very [...] Read more.
Background: The overwhelming majority of the antimicrobial peptides (AMPs) studied in mussels (Mytilus spp.) so far are specifically expressed by hemocytes and display compact disulfide-stabilized structures. However, gill-specific myticalins play a role in mucosal immunity and are one of the very few examples of known molluscan AMPs lacking cysteine residues. Methods: We investigate the molecular evolution of myticalins, compiling a collection of sequences obtained by carefully annotating 169 genome assemblies of different Mytilus species. We determine the gene presence/absence patterns and gene expression profiles for the five myticalin subfamilies, including the newly reported myticalin E. Results: All sequences are deposited in MyticalinDB, a novel database that includes a total of 100 unique mature myticalin peptides encoded by 215 protein precursors, greatly enriching the compendium of these molecules from previous reports. Among the five subfamilies, myticalin A and C are the most widespread and highly expressed across all Mytilus species. Interestingly, structural prediction reveals a previously unreported strong amphipathic nature for some myticalins, which may be highly relevant for their biological activity. Conclusions: The results reported in this work support the role of myticalins in gill-associated mucosal immunity and highlight the importance of inter-individual molecular diversity in establishing an efficient response to microbial infections. The newly established MyticalinDB provides a valuable resource for investigating the evolution and extraordinary molecular diversity of this AMP family. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

21 pages, 26512 KiB  
Article
Insights into Membrane Damage by α-Helical and β-Sheet Peptides
by Warin Rangubpit, Hannah E. Distaffen, Bradley L. Nilsson and Cristiano L. Dias
Biomolecules 2025, 15(7), 973; https://doi.org/10.3390/biom15070973 - 7 Jul 2025
Viewed by 511
Abstract
Peptide-induced disruption of lipid membranes is central to both amyloid diseases and the activity of antimicrobial peptides. Here, we combine all-atom molecular dynamics simulations with biophysical experiments to investigate how four amphipathic peptides interact with lipid bilayers. All peptides adsorb on the membrane [...] Read more.
Peptide-induced disruption of lipid membranes is central to both amyloid diseases and the activity of antimicrobial peptides. Here, we combine all-atom molecular dynamics simulations with biophysical experiments to investigate how four amphipathic peptides interact with lipid bilayers. All peptides adsorb on the membrane surface. Peptide M01 [Ac-(FKFE)2-NH2] self-assembles into β-sheet nanofibrils that span both leaflets of the membrane, creating water-permeable channels. The other three peptides adopt α-helical structures at the water–lipid interface. Peptide M02 [Ac-FFKKFFEE-NH2], a sequence isomer of M01, does not form β-sheet aggregates and is too short to span the bilayer, resulting in no observable water permeation across the membrane. Peptides M03 and M04 are α-helical isomers long enough to span the bilayer, with a polar face that allows the penetration of water deep inside the membrane. For the M03 peptide [Ac-(FFKKFFEE)2-NH2], insertion into the bilayer starts with the nonpolar N-terminal amino acids penetrating the hydrophobic core of the bilayer, while electrostatic interactions hold negative residues at the C-terminus on the membrane surface. The M04 peptide, [Ac-FFKKFFEEFKKFFEEF-NH2], is made by relocating a single nonpolar residue from the central region of M03 to the C-terminus. This nonpolar residue becomes unfavorably exposed to the solvent upon insertion of the N-terminal region of the peptide into the membrane. Consequently, higher concentrations of M04 peptides are required to induce water permeation compared to M03. Overall, our comparative analysis reveals how subtle rearrangements of polar and nonpolar residues modulate peptide-induced water permeation. This provides mechanistic insights relevant to amyloid pathology and antimicrobial peptide design. Full article
(This article belongs to the Special Issue New Insights into Protein Aggregation in Condensed and Amyloid States)
Show Figures

Figure 1

15 pages, 5419 KiB  
Article
Exploring the Antimicrobial and Immunomodulatory Potential of Gecko-Derived Cathelicidin Gj-CATH5
by Shasha Cai, Ningyang Gao, Junhan Wang and Jing Li
Biomolecules 2025, 15(7), 908; https://doi.org/10.3390/biom15070908 - 20 Jun 2025
Viewed by 456
Abstract
Regulating the innate immune response against infections, particularly drug-resistant bacteria, is a key focus in anti-infection therapy. Cathelicidins, found in vertebrates, are crucial for pathogen resistance. Few studies have explored gecko cathelicidins’ anti-infection properties. Recently, five new cathelicidins (Gj-CATH1-5) were identified in Gekko [...] Read more.
Regulating the innate immune response against infections, particularly drug-resistant bacteria, is a key focus in anti-infection therapy. Cathelicidins, found in vertebrates, are crucial for pathogen resistance. Few studies have explored gecko cathelicidins’ anti-infection properties. Recently, five new cathelicidins (Gj-CATH1-5) were identified in Gekko japonicus. The peptide Gj-CATH5, from G. japonicus, shows promise against Pseudomonas aeruginosa through various mechanisms. This study examined Gj-CATH5’s protective effects using in vitro and in vivo models, finding that it significantly reduced bacterial load in a mouse infection model when administered before or shortly after infection. Flow cytometry and the plate counting method showed that Gj-CATH5 boosts neutrophil and macrophage activity, enhancing chemotaxis, phagocytosis, and bactericidal functions. Gj-CATH5 increases ROS production, MPO activity, and NET formation, aiding pathogen clearance. Its amphipathic α-helical structure supports broad-spectrum bactericidal activity (MBC: 4–8 μg/mL) against Gram-negative and antibiotic-resistant bacteria. Gj-CATH5 is minimally cytotoxic (<8% hemolysis at 200 μg/mL) and preserves cell viability at therapeutic levels. These results highlight Gj-CATH5’s dual role in pathogen elimination and immune modulation, offering a promising approach to combat multidrug-resistant infections while reducing inflammation. This study enhances the understanding of reptilian cathelicidins and lays the groundwork for peptide-based immune therapies against difficult bacterial infections. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

11 pages, 1227 KiB  
Communication
Improving the Catalytic Activity and Thermostability of FAST-PETase with a Multifunctional Short Peptide
by Jun Yang, Binyang Deng, Pingan Liao, Siyu Lin, Liqi Zheng, Xing Yang, Fei Wang, Chao Zhai and Lixin Ma
Biomolecules 2025, 15(6), 888; https://doi.org/10.3390/biom15060888 - 18 Jun 2025
Viewed by 569
Abstract
Previous reports indicated that self-assembling amphipathic peptide S1v1 (AEAEAHAH)2 significantly enhances the soluble expression, thermostability, and activity of the target proteins when fused to them. In order to obtain high-efficiency enzymes for the large-scale degradation of polyethylene terephthalate (PET), this multifunctional peptide [...] Read more.
Previous reports indicated that self-assembling amphipathic peptide S1v1 (AEAEAHAH)2 significantly enhances the soluble expression, thermostability, and activity of the target proteins when fused to them. In order to obtain high-efficiency enzymes for the large-scale degradation of polyethylene terephthalate (PET), this multifunctional peptide was fused to the N- and C-terminus of FAST-PETase, a variant of Ideonella sakaiensis PETase (IsPETase), with a PT-linker (TTVTTPQTS) harbored between the target protein and the multifunctional peptide. Consistent with previous reports, S1v1 increased the solubility of FAST-PETase slightly. Moreover, it increased the activity of FAST-PETase dramatically. The amount of terephthalic acid (TPA) and mono(2-hydroxyethyl) terephthalic acid (MHET) released from PET substrate after 24 h of digestion at 50°C by fusion enzymes bearing N- and C-terminal S1v1 tag was approximately 2.9- and 4.6-fold that of FAST-PETase, respectively. Furthermore, the optimal temperature and thermostability of the fusion proteins increased in comparison with FAST-PETase. The present study provides a novel strategy to improve the depolymerization efficiency of FAST-PETase. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

16 pages, 17861 KiB  
Article
The α-Helical Amphipathic Peptide Alleviates Colistin-Induced Nephrotoxicity by Maintaining Mitochondrial Function in Both In Vitro and In Vivo Infection Models
by Min Soo Kook, Heeseung Kim, Yoonhwa Choi, Seong Man Bae, Jaehoon Yu and Yang Soo Kim
Antibiotics 2025, 14(5), 445; https://doi.org/10.3390/antibiotics14050445 - 28 Apr 2025
Viewed by 578
Abstract
Background/Objective: Colistin is the primary treatment for carbapenem-resistant Gram-negative bacteria (CR-GNB) infections, but its use is limited by nephrotoxicity, which reduces its effectiveness. There is an urgent need for nephroprotective agents to address this toxicity. This study investigated the potential of CMP3029, [...] Read more.
Background/Objective: Colistin is the primary treatment for carbapenem-resistant Gram-negative bacteria (CR-GNB) infections, but its use is limited by nephrotoxicity, which reduces its effectiveness. There is an urgent need for nephroprotective agents to address this toxicity. This study investigated the potential of CMP3029, an α-helical peptide, to protect against colistin-induced nephrotoxicity. Methods: In vitro, CMP3029 was applied to HK-2 cells before colistin exposure, and cell viability and reactive oxygen species (ROS) levels were measured. In infected mice, CMP3029 was administered before colistin treatment, and urinary kidney injury molecule-1 (KIM-1), cystatin C levels, neutrophil gelatinase-associated lipocalin (NGAL), and renal damage were assessed. Results: CMP3029 preserved cell viability and significantly reduced mitochondrial ROS in HK-2 cells exposed to colistin. CMP3029 lowered urinary biomarkers and mitigated tubular injury in mice, demonstrating significant nephroprotective effects. Conclusions: These findings suggest that CMP3029 mitigates colistin-induced nephrotoxicity. Given the increasing threat of CR-GNB infections, CMP3029 could be a crucial clinical solution for improving patient outcomes in treating colistin-associated nephrotoxicity. Full article
Show Figures

Figure 1

22 pages, 2773 KiB  
Review
The Role of Flexibility in the Bioactivity of Short α-Helical Antimicrobial Peptides
by Daniel Balleza
Antibiotics 2025, 14(5), 422; https://doi.org/10.3390/antibiotics14050422 - 22 Apr 2025
Viewed by 776
Abstract
The formation of aqueous pores through the interaction of amphipathic peptides is a process facilitated by the conformational dynamics typical of these biomolecules. Prior to their insertion with the membrane, these peptides go through several conformational states until they finally reach a stable [...] Read more.
The formation of aqueous pores through the interaction of amphipathic peptides is a process facilitated by the conformational dynamics typical of these biomolecules. Prior to their insertion with the membrane, these peptides go through several conformational states until they finally reach a stable α-helical structure. The conformational dynamics of these pore-forming peptides, α-PFP, is, thus, encoded in their amino acid sequence, which also predetermines their intrinsic flexibility. However, although the role of flexibility is widely recognized as fundamental in their bioactivity, it is still unclear whether this parameter is indeed decisive, as there are reports favoring the view of highly disruptive flexible peptides and others where relative rigidity also predetermines high rates of permeability across membranes. In this review we discuss in depth all those aspects linked to the conformational dynamics of these small biomolecules and which depend on the composition, sequence and dynamic performance both in aqueous phase and in close interaction with phospholipids. In addition, evidence is provided for the contribution of the known carboxyamidation in some well-studied α-PFPs, which are preferentially associated with sequences intrinsically more rigid than those not amidated and generally more flexible than the former. Taken together, this information is of great relevance for the optimization of new antibiotic peptides. Full article
(This article belongs to the Special Issue Structure and Function of Antimicrobial Peptides)
Show Figures

Graphical abstract

22 pages, 2201 KiB  
Article
Enhancing Antimicrobial Peptides from Frog Skin: A Rational Approach
by Silvana Aguilar, Daniel Moreira, Ana Laura Pereira Lourenço, Natalia Wilke, Matías A. Crosio, Andreanne Vasconcelos, Eder Alves Barbosa, Elizabete C. I. Bispo, Felipe Saldanha-Araujo, Marcelo H. S. Ramada, Franco M. Escobar, Cristina V. Torres, José R. S. A. Leite and Mariela M. Marani
Biomolecules 2025, 15(3), 449; https://doi.org/10.3390/biom15030449 - 20 Mar 2025
Cited by 1 | Viewed by 1259
Abstract
Antimicrobial resistance is a global health threat, which has been worsened by the slow development of new antibiotics. The rational design of natural-derived antimicrobial peptides (AMPs) offers a promising alternative for enhancing the efficacy of AMPs and accelerating drug discovery. This paper describes [...] Read more.
Antimicrobial resistance is a global health threat, which has been worsened by the slow development of new antibiotics. The rational design of natural-derived antimicrobial peptides (AMPs) offers a promising alternative for enhancing the efficacy of AMPs and accelerating drug discovery. This paper describes the rational design of improved peptide derivatives starting from hylin-Pul3, a peptide previously isolated from the frog Boana pulchella, by optimizing its hydrophobicity, cationicity, and amphipathicity. In silico screening identified six promising candidates: dHP3-31, dHP3-50, dHP3-50.137, dHP3-50.190, dHP3-84, and dHP3-84.39. These derivatives exhibited enhanced activity against Gram-negative bacteria, emphasizing the role of cationicity and the strategic arginine incorporation. Hemolytic assays revealed the derivatives’ improved selectivity, particularly for the derivatives with “imperfect amphipathicity”. In fibroblast assays, dHP3-84 was well-tolerated, while dHP3-84.39 promoted cell proliferation. Antioxidant assays (ABTS assays) highlighted the Trp-containing derivatives’ (dHP3-50.137, dHP3-31) significant activity. The lipid membrane interaction studies showed that hylin-Pul3 disrupts membranes directly, while dHP3-84.39, dHP3-50, and dHP3-50.137 promote vesicle aggregation. Conversely, dHP3-84 did not induce membrane disruption or aggregation, suggesting an intracellular mode of action. Machine learning models were effective in predicting bioactivity, as these predicted AMPs showed enhanced selectivity and potency. Among them, dHP3-84 demonstrated broad-spectrum potential. These findings highlight the value of rational design, in silico screening, and structure–activity studies in optimizing AMPs for therapeutic applications. Full article
Show Figures

Figure 1

15 pages, 2082 KiB  
Article
Development of Novel Peptides That Target the Ninjurin 1 and 2 Pathways to Inhibit Cell Growth and Survival via p53
by Jin Zhang, Xiangmudong Kong and Xinbin Chen
Cells 2025, 14(6), 401; https://doi.org/10.3390/cells14060401 - 9 Mar 2025
Viewed by 1270
Abstract
Ninjurin 1 and 2 (NINJ1, NINJ2) belong to the homophilic cell adhesion family and play significant roles in cellular communication and tissue development. While both NINJ1 and NINJ2 are found to be over-expressed in several types of cancers, it remains unclear whether they [...] Read more.
Ninjurin 1 and 2 (NINJ1, NINJ2) belong to the homophilic cell adhesion family and play significant roles in cellular communication and tissue development. While both NINJ1 and NINJ2 are found to be over-expressed in several types of cancers, it remains unclear whether they can be targeted for cancer treatment. In this study, we aimed to develop NINJ1/2 peptides derived from the N-terminal extracellular domain that can elicit growth suppression and thus possess therapeutic potentials. We found that peptide NINJ1-A, which is derived from the N-terminal adhesion motif of NINJ1, was able to inhibit cell growth in a NINJ1- or p53-dependent manner. Similarly, peptide NINJ2-A, which is derived from the N-terminal adhesion motif of NINJ2, was able to inhibit cell growth in a NINJ2- or p53-dependent manner. We also found that NINJ1 and NINJ2 physically interact via their respective N-terminal domains. Interestingly, NINJ1-B and NINJ2-B peptides, which were derived from the N-terminal amphipathic helix domains of NINJ1 and NINJ2, respectively, were able to disrupt NINJ1-NINJ2 interaction and inhibit cell growth in a NINJ1/NINJ2-dependent manner. Notably, NINJ1-B and NINJ2-B peptides demonstrated greater potency in growth suppression than NINJ1-A and NINJ2-A peptides, respectively. Mechanistically, we found that NINJ1-B and NINJ2-B peptides were able to induce p53 expression and suppress cell growth in a p53-dependent manner. Together, our findings provide valuable insights into the development of NINJ1/NINJ2 peptides as potential cancer therapeutics, particularly for cancers harboring wild-type p53. Full article
Show Figures

Figure 1

16 pages, 2387 KiB  
Article
In Vitro and In Vivo Evaluation of the De Novo Designed Antimicrobial Peptide P6.2 Against a KPC-Producing P. aeruginosa Clinical Isolate
by Melina M. B. Martinez, Merlina Corleto, Melanie Weschenfeller, Santiago Urrea Montes, Camila N. Salomón, Natalia Gonzalez, Matías Garavaglia, Diego Faccone and Paulo C. Maffía
Biomolecules 2025, 15(3), 339; https://doi.org/10.3390/biom15030339 - 27 Feb 2025
Cited by 1 | Viewed by 861
Abstract
The antimicrobial peptide P6.2 was previously de novo designed as an alpha helix cationic amphipathic molecule. In previous work, we have shown that this peptide displayed significant antimicrobial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria. [...] Read more.
The antimicrobial peptide P6.2 was previously de novo designed as an alpha helix cationic amphipathic molecule. In previous work, we have shown that this peptide displayed significant antimicrobial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria. However, while P6.2 lacked biofilm-inhibiting properties against the P. aeruginosa strain PA01, it displayed anti-inflammatory effects in a murine acute lung infection model challenged with this pathogen. In this work, the peptide P6.2 antimicrobial activity and its possible synergy with meropenem were evaluated both in vitro and in vivo using a Galleria mellonella infection model against a carbapenem-resistant KPC-producing clinical isolate of P. aeruginosa. Firstly, the cytotoxic effect of the peptide on A549 and RAW264.7 cell lines was assayed, showing no cytotoxicity at 64 µg/mL and below. Then, the MIC (minimal inhibitory concentration) and bactericidal effect against the carbapenemase-producing strain P. aeruginosa M13513 strain were determined. P6.2 showed a MIC between 32 and 64 µg/mL, and a rapid bactericidal activity against this strain (less than 45 min). The peptide stability at different temperatures and in bovine serum at 37 °C was also analyzed, showing good stability and almost no degradation after 15 min of incubation at 100 °C or 24 h at 37 °C in serum, respectively. The antibiofilm activity was also evaluated, and although the peptide did not show biofilm inhibitory activity, it did demonstrate biofilm disruptive activity, together with bactericidal activity inside the pre-formed biofilm. The possible synergistic effect with the carbapenem meropenem was then analyzed in vitro by killing kinetics, revealing a synergistic interaction between P6.2 and the antibiotic against this strain. Finally, P6.2 was evaluated in vivo in the Galleria mellonella larvae infection model. Interestingly, in G. mellonella, P6.2 alone did not completely clear the infection caused by P. aeruginosa M13513. However, when combined with meropenem, P6.2 demonstrated a synergistic effect, leading to increased survival rates in infected larvae. The results presented here highlight the potential that this peptide displays when used in combination with carbapenems against a clinically relevant KPC-producing P. aeruginosa. Full article
(This article belongs to the Special Issue State of the Art and Perspectives in Antimicrobial Peptides)
Show Figures

Figure 1

22 pages, 5706 KiB  
Article
Antibiofilm Activities of Tritrpticin Analogs Against Pathogenic Pseudomonas aeruginosa PA01 Strains
by Gopal Ramamourthy, Hiroaki Ishida and Hans J. Vogel
Molecules 2025, 30(4), 826; https://doi.org/10.3390/molecules30040826 - 11 Feb 2025
Viewed by 958
Abstract
In our previous work, we showed that short antimicrobial hexapeptides (AMPs) containing three Trp and three Arg residues had a potent antibiofilm activity against a pathogenic Gram-positive Staphylococcus aureus MRSA strain. However, the activity of these hexapeptides against a Gram-negative Pseudomonas aeruginosa PA01 [...] Read more.
In our previous work, we showed that short antimicrobial hexapeptides (AMPs) containing three Trp and three Arg residues had a potent antibiofilm activity against a pathogenic Gram-positive Staphylococcus aureus MRSA strain. However, the activity of these hexapeptides against a Gram-negative Pseudomonas aeruginosa PA01 strain was relatively poor. Herein, we tested the longer 13-residue synthetic AMP tritrpticin-NH2 (Tritrp) and several of its analogs as potential antibiofilm agents that can prevent biofilm formation (MBIC) and/or cause biofilm dissolution (MBEC) for two P. aeruginosa PA01 strains, one of which expressed the GFP protein. Tritrp, a porcine cathelicidin, is currently the only known naturally occurring cationic AMP that has three Trp in sequence (WWW), a feature that was found to be important in our previous study. Our results show that several Tritrp analogs were effective. In particular, analogs with Pro substitutions that had altered peptide backbone structures compared to the naturally occurring amphipathic two-turn structure showed more potent MBIC and MBEC antibiofilm activities. Selectivity of the peptides towards P. aeruginosa could be improved by introducing the non-proteinogenic amino acid 2,3-diaminopropionic acid, rather than Arg or Lys, as the positively charged residues. Using 1H NMR spectroscopy, we also reinvestigated the role of the two Pro residues in cis–trans isomerism of the peptide in aqueous solution. Overall, our results show that the WWW motif embedded in longer cationic AMPs has considerable potential to combat biofilm formation in pathogenic Gram-negative strains. Full article
(This article belongs to the Special Issue Chemical Design and Synthesis of Antimicrobial Drugs)
Show Figures

Graphical abstract

21 pages, 4433 KiB  
Article
Comparative Structural and Biophysical Investigation of Lycosa erythrognatha Toxin I (LyeTx I) and Its Analog LyeTx I-b
by Amanda Neves de Souza, Gabriele de Azevedo Cardoso, Lúcio Otávio Nunes, Christopher Aisenbrey, Evgeniy Salnikov, Kelton Rodrigues de Souza, Ahmad Saad, Maria Elena de Lima, Jarbas Magalhães Resende, Burkhard Bechinger and Rodrigo Moreira Verly
Antibiotics 2025, 14(1), 66; https://doi.org/10.3390/antibiotics14010066 - 10 Jan 2025
Viewed by 1281
Abstract
Background/Objectives: This study investigates the structural and biophysical properties of the wild-type antimicrobial peptide LyeTx I, isolated from the venom of the spider Lycosa erythrognatha, and its analog LyeTx I-b, designed to enhance antibacterial activity, selectivity, and membrane interactions by the acetylation [...] Read more.
Background/Objectives: This study investigates the structural and biophysical properties of the wild-type antimicrobial peptide LyeTx I, isolated from the venom of the spider Lycosa erythrognatha, and its analog LyeTx I-b, designed to enhance antibacterial activity, selectivity, and membrane interactions by the acetylation and increased amphipathicty. Methods: To understand the mechanisms behind these enhanced properties, comparative analyses of the structural, topological, biophysical, and thermodynamic aspects of the interactions between each peptide and phospholipid bilayers were evaluated. Both peptides were isotopically labeled with 2H3-Ala and 15N-Leu to facilitate structural studies via NMR spectroscopy. Results: Circular dichroism and solid-state NMR analyses revealed that, while both peptides adopt α-helical conformations in membrane mimetic environments, LyeTx I-b exhibits a more amphipathic and extended helical structure, which correlates with its enhanced membrane interaction. The thermodynamic properties of the peptide–membrane interactions were quantitatively evaluated in the presence of phospholipid bilayers using ITC and DSC, highlighting a greater propensity of LyeTx I-b to disrupt lipid vesicles. Calcein release studies reveal that both peptides cause vesicle disruption, although DLS measurements and TEM imaging indicate distinct effects on phospholipid vesicle organization. While LyeTx I-b permeabilizes anionic membrane retaining the vesicle integrity, LyeTx I promotes significant vesicle agglutination. Furthermore, DSC and calcein release assays indicate that LyeTx I-b exhibits significantly lower cytotoxicity toward eukaryotic membranes compared to LyeTx I, suggesting greater selectivity for bacterial membranes. Conclusions: Our findings provide insights into the structural and functional modifications that enhance the antimicrobial and therapeutic potential of LyeTx I-b, offering valuable guidance for the design of novel peptides targeting resistant bacterial infections and cancer. Full article
(This article belongs to the Special Issue Mechanisms of Antimicrobial Peptides on Pathogens, 2nd Edition)
Show Figures

Figure 1

Back to TopTop