Structure and Function of Antimicrobial Peptides

A special issue of Antibiotics (ISSN 2079-6382). This special issue belongs to the section "Antimicrobial Peptides".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 564

Special Issue Editors


E-Mail Website
Guest Editor
Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos (UNIDA), Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, Mexico
Interests: antimicrobial peptides; peptide flexibility; peptide/lipid interactions; cyclic lipopeptides

E-Mail Website
Guest Editor
Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40292, USA
Interests: regulation of innate immunity; antimicrobial peptides; antifungal peptides; defensins; cathelicidins; novel antiviral compounds
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In the constant search for therapeutic alternatives to control the emergence of resistance in microbial pathogens, we often return to nature. We have been assembling an arsenal of bioactive compounds with antimicrobial potential since their discovery in animal sources, such as the skin secretions of amphibians, the venom of some arthropods and reptiles, and the exudates of multiple bacteria. Today, more than 22,000 natural and modified peptides are available in the DBAASP database. This biological toolkit has great therapeutic potential.

These peptides interact with lipid membranes, stabilizing aqueous pores or carrying out micellization processes as biodetergents. However, many molecular details regarding their bioactivity remain poorly elucidated, and the possible mechanisms behind their synergistic action with other antimicrobial agents are still poorly explored. Thus, to achieve a better understanding of these peptides and to take advantage of their pharmacological potential, it is necessary to take advantage of several biophysical and computational tools for their study. In addition, lipidomic studies are of great importance, since they will allow us to have a better idea of the role played by lipid composition in the structural reconfiguration undergone by these peptides during their interaction with the lipid membrane.

Dr. Daniel Balleza
Prof. Dr. Gill Diamond
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antimicrobial peptides
  • natural peptides
  • lipidomics
  • synergistic action
  • bioactivity mechanisms
  • structure reconfiguration

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

22 pages, 2773 KiB  
Review
The Role of Flexibility in the Bioactivity of Short α-Helical Antimicrobial Peptides
by Daniel Balleza
Antibiotics 2025, 14(5), 422; https://doi.org/10.3390/antibiotics14050422 - 22 Apr 2025
Viewed by 283
Abstract
The formation of aqueous pores through the interaction of amphipathic peptides is a process facilitated by the conformational dynamics typical of these biomolecules. Prior to their insertion with the membrane, these peptides go through several conformational states until they finally reach a stable [...] Read more.
The formation of aqueous pores through the interaction of amphipathic peptides is a process facilitated by the conformational dynamics typical of these biomolecules. Prior to their insertion with the membrane, these peptides go through several conformational states until they finally reach a stable α-helical structure. The conformational dynamics of these pore-forming peptides, α-PFP, is, thus, encoded in their amino acid sequence, which also predetermines their intrinsic flexibility. However, although the role of flexibility is widely recognized as fundamental in their bioactivity, it is still unclear whether this parameter is indeed decisive, as there are reports favoring the view of highly disruptive flexible peptides and others where relative rigidity also predetermines high rates of permeability across membranes. In this review we discuss in depth all those aspects linked to the conformational dynamics of these small biomolecules and which depend on the composition, sequence and dynamic performance both in aqueous phase and in close interaction with phospholipids. In addition, evidence is provided for the contribution of the known carboxyamidation in some well-studied α-PFPs, which are preferentially associated with sequences intrinsically more rigid than those not amidated and generally more flexible than the former. Taken together, this information is of great relevance for the optimization of new antibiotic peptides. Full article
(This article belongs to the Special Issue Structure and Function of Antimicrobial Peptides)
Show Figures

Graphical abstract

Back to TopTop