Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (194)

Search Parameters:
Keywords = amorphous membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2908 KiB  
Article
High-Surface-Area ZIF-67 Nanoflowers: Synthesis and Application Toward Enhanced CH4/N2 Separation in Mixed Matrix Membranes
by Dongze Li
Coatings 2025, 15(9), 987; https://doi.org/10.3390/coatings15090987 (registering DOI) - 23 Aug 2025
Abstract
Under elevated loading conditions, the aggregation of fillers emerges as a pivotal factor driving the degradation of separation performance in mixed matrix membranes. The two-dimensional (2D) modification of fillers, aimed at enhancing interfacial contact with polymers, has been recognized as an effective strategy [...] Read more.
Under elevated loading conditions, the aggregation of fillers emerges as a pivotal factor driving the degradation of separation performance in mixed matrix membranes. The two-dimensional (2D) modification of fillers, aimed at enhancing interfacial contact with polymers, has been recognized as an effective strategy to improve interphase compatibility and increase filler loading capacity. However, it is worth noting that the BET surface area of 2D fillers is typically relatively low. In this study, a two-step approach was developed. First, a “diffusion-mediated” process was combined with a solvent optimization strategy based on first-principles (DFT) calculations, achieving a 20-fold suppression in ZIF-67 nucleation-crystallization rate. This enabled the successful synthesis of a 2D amorphous nanoflower structure. Subsequently, the processing parameters were fine-tuned to enhance the specific surface area of ZIF-67 to 403 m2/g while preserving its 2D structural integrity. Ultimately, the as-prepared 2D ZIF-67 was incorporated into a hydrogenated styrene-butadiene block copolymer (SEBS) matrix to fabricate a mixed matrix membrane. Remarkably, at a filler loading of 20 wt%, the CH4 permeability coefficient increased significantly from 11.7 barrer to 35.3 barrer, while the CH4/N2 selectivity was maintained at 3.21, indicating minimal interfacial defects and demonstrating the feasibility and effectiveness of the proposed methodology. Full article
Show Figures

Figure 1

28 pages, 2349 KiB  
Article
Effective and Stable Senomorphic Apigenin Delivery System Obtained by Supercritical Carbon Dioxide Processing
by Anna Stasiłowicz-Krzemień, Natalia Rosiak, Giuseppe Francesco Racaniello, Nunzio Denora and Judyta Cielecka-Piontek
Int. J. Mol. Sci. 2025, 26(17), 8126; https://doi.org/10.3390/ijms26178126 - 22 Aug 2025
Abstract
Apigenin (AP) is a natural flavonoid with senomorphic potential and neuroprotective action; however, poor aqueous solubility (<1 μg/mL) limits its bioavailability and therapeutic use. Therefore, the aim of this study was to obtain an amorphous dispersion of AP and evaluate its biological properties. [...] Read more.
Apigenin (AP) is a natural flavonoid with senomorphic potential and neuroprotective action; however, poor aqueous solubility (<1 μg/mL) limits its bioavailability and therapeutic use. Therefore, the aim of this study was to obtain an amorphous dispersion of AP and evaluate its biological properties. Screening of AP solubilization capabilities under supercritical carbon dioxide processing conditions showed that the system with Soluplus (SOL) achieved the greatest improvement in AP dissolution (6455.4 ± 27.2 μg/mL). Using optimized process parameters (50 °C, 6500 PSI), the AP solubility increased to 8050.2 ± 35.1 μg/mL. X-ray powder diffraction (XRPD) confirmed amorphization, aligning with improved dissolution of AP in both acidic and neutral pH media. As a result, using the PAMPA model, an improvement in AP penetration through membranes simulating gastrointestinal and blood–brain barriers was demonstrated. The significant stability of the obtained amorphous AP dispersion (12 months at room conditions) was associated with stabilizing AP–solubilizer intermolecular interactions, mainly expressed as the shifts in the bands of AP in the range of 1018–1269 cm−1 observed in ATR-FT-IR spectra. Chromatographic analysis confirmed the lack of AP decomposition immediately after the preparation of the amorphous dispersion, as well as after 12 months. As expected, the improvement of AP solubility is correlated with better biological activity assessed in selected in vitro tests such as antioxidant properties (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and cupric ion reducing antioxidant capacity (CUPRAC) assays) and anticholinesterase inhibition capabilities (AChE and BChE assays). The effect of the studies on improving AP solubility under supercritical carbon dioxide processing conditions is obtaining a stable amorphous AP dispersion (up to 12 months). Regardless of the pH of the media, an improvement in AP dissolution and penetration, conditioned by the passive diffusion process, through biological membranes was noted. Moreover, a more efficient antioxidant and neuroprotective effect of AP in the developed amorphous dispersion can also be suggested. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

21 pages, 1757 KiB  
Article
Description of Gas Transport in Polymers: Integrated Thermodynamic and Transport Modeling of Refrigerant Gases in Polymeric Membranes
by Matteo Minelli, Marco Giacinti Baschetti and Virginia Signorini
Polymers 2025, 17(16), 2169; https://doi.org/10.3390/polym17162169 - 8 Aug 2025
Viewed by 362
Abstract
Hydrofluorocarbons (HFC) are today widely used as refrigerants, solvents, or aerosols for fire protection. Due to their non-negligible environmental impact, there exists an increasing interest towards their effective separation and recovery, which still remains a major challenge. This work presents a comprehensive thermodynamic [...] Read more.
Hydrofluorocarbons (HFC) are today widely used as refrigerants, solvents, or aerosols for fire protection. Due to their non-negligible environmental impact, there exists an increasing interest towards their effective separation and recovery, which still remains a major challenge. This work presents a comprehensive thermodynamic and transport modeling approach able to describe HFC sorption and transport in different amorphous polymers, including glassy, rubbery, and copolymers, as well as in supported Ionic Liquid membranes (SILMs). In particular, the literature solubility data for refrigerants such as R-32, R-125, R-134a, and R-152a is analyzed by means of the Sanchez–Lacombe Equation of State (SL-EoS), and its non-equilibrium extension (NELF), to predict gas uptake in complex polymeric materials. The Standard Transport Model (STM) is then employed to describe permeability behaviors, incorporating concentration-dependent diffusion using a mobility coefficient and thermodynamic factor. Results demonstrate that fluorinated gases exhibit strong affinity to fluorinated and high free-volume polymers, and that solubility is primarily governed by gas condensability, molecular size, and polymer structure. The combined EoS–STM approach accurately predicts both solubility and permeability across different pressures in all polymers, including SILM. The thorough study of HFC transport in polymer membranes provided both systematic insights and predictive capabilities to guide the design of next-generation materials for refrigerant recovery and low-GWP separation processes. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

24 pages, 3976 KiB  
Article
SGLT2 Inhibitors and Curcumin Co-loaded Liposomal Formulations as Synergistic Delivery Systems for Heart Failure Therapy
by Bianca-Ștefania Profire, Florentina Geanina Lupașcu, Alexandru Sava, Ioana-Andreea Turin-Moleavin, Dana Bejan, Cristian Stătescu, Victorița Șorodoc, Radu-Andy Sascău, Laurențiu Șorodoc, Mariana Pinteala and Lenuța Profire
Pharmaceutics 2025, 17(8), 969; https://doi.org/10.3390/pharmaceutics17080969 - 26 Jul 2025
Viewed by 557
Abstract
Background/Objectives: As novel synergistic strategy for heart failure (HF), this study explores the formulation and characterization of liposomal systems co-loaded with SGLT2 inhibitors (dapagliflozin—DAPA and empagliflozin—EMPA) and curcumin (Cur). Methods: To enhance liposomal membrane stability and achieve sustained, controlled drug release, [...] Read more.
Background/Objectives: As novel synergistic strategy for heart failure (HF), this study explores the formulation and characterization of liposomal systems co-loaded with SGLT2 inhibitors (dapagliflozin—DAPA and empagliflozin—EMPA) and curcumin (Cur). Methods: To enhance liposomal membrane stability and achieve sustained, controlled drug release, oleanolic acid (OA) was incorporated into the lipid bilayer, while the liposomal surface was coated with polyvinylpyrrolidone (PVP). Results: The resulting liposomes exhibited favorable physico-chemical properties (particle size ~170 nm, low PDI, negative zeta potential), high encapsulation efficiencies (up to 97%), and spherical morphology as confirmed by STEM. XRD and DSC analyses indicated successful API incorporation and amorphization within the lipid matrix, while PVP coating provided slight improvements in thermal stability. Trehalose proved to be an effective cryoprotectant, preserving liposome integrity after freeze-drying. In vitro release studies demonstrated sustained and delayed drug release, especially in PVP-coated and OA-containing formulations. Conclusions: All these findings highlight the promise of PVP-coated, OA-stabilized liposomal formulations co-loaded with SGLT2 inhibitors and Cur as biocompatible, multifunctional platforms for targeted HF therapy. Full article
Show Figures

Graphical abstract

16 pages, 6063 KiB  
Article
Synergistic Effect of MWCNT and CB on the Piezoresistive Properties of Laser Ablation Composites Strain Sensors
by Shikang Yin, Richao Tan, Sitian Wang, Yuan Yuan, Kaiyan Huang, Ziying Wang, Shijie Zhang, Sadaf Bashir Khan, Weifeng Yuan and Ning Hu
Nanomaterials 2025, 15(13), 997; https://doi.org/10.3390/nano15130997 - 26 Jun 2025
Viewed by 420
Abstract
A flexible and highly sensitive piezoresistive strain sensor was fabricated through the application of CO2 laser ablation on a composite film composed of multi-walled carbon nanotubes, carbon black, and polydimethylsiloxane (MWCNT/CB/PDMS). The results of scanning electron microscopy (SEM) surface analysis shows that [...] Read more.
A flexible and highly sensitive piezoresistive strain sensor was fabricated through the application of CO2 laser ablation on a composite film composed of multi-walled carbon nanotubes, carbon black, and polydimethylsiloxane (MWCNT/CB/PDMS). The results of scanning electron microscopy (SEM) surface analysis shows that the “bush-like” conductive structure on the PDMS-based composite material membrane post-laser ablation is formed. Transmission electron microscopy (TEM) images and X-ray diffraction (XRD) spectra of the ablation products indicated the formation of an amorphous carbon layer on the surface of carbon nanomaterials due to laser ablation. Experimental findings revealed that the sensitivity (GF) value of the sensor based on CNT0.6CB1.0-P3.0 is up to 584.7 at 5% strain, which is approximately 14% higher than the sensitivity 513 of the sensor previously prepared by the author using CO2 laser ablation of MWCNT/PDMS composite films. The addition of a very small volume fraction of CB particles significantly enhances the piezoresistive sensitivity of the sensor samples. Combined with the qualitative analysis of microscopic morphology characterization, CB and MWCNT synergistically promote the deposition of amorphous carbon. This phenomenon increases the probability of tunnel effect occurrence in the strain response region of the sensor, which indirectly confirms the synergistic enhancement effect of the combined action of CB and MWCNT on the piezoresistive sensitivity of the sensor. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

20 pages, 4810 KiB  
Article
Chitosan-Based Hydrogels Containing Nystatin and Propolis as a Novel Tool for Candida auris Skin Decolonization
by Andra-Cristina Bostănaru-Iliescu, Andra-Cristina Enache, Ionuț Iulian Lungu, Corneliu Cojocaru, Robert Capotă, Paula Cucu, Maria Liliana Iliescu, Valeria Harabagiu, Mihai Mareș and Alina Stefanache
Gels 2025, 11(7), 498; https://doi.org/10.3390/gels11070498 - 26 Jun 2025
Viewed by 524
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen with a high affinity for skin colonization and significant potential for nosocomial transmission. This study aimed to develop and evaluate chitosan-based hydrogels loaded with nystatin and propolis as a topical antifungal strategy for skin decolonization [...] Read more.
Candida auris is an emerging multidrug-resistant fungal pathogen with a high affinity for skin colonization and significant potential for nosocomial transmission. This study aimed to develop and evaluate chitosan-based hydrogels loaded with nystatin and propolis as a topical antifungal strategy for skin decolonization of C. auris. The formulations were selected based on our previous results and optimized for cutaneous application. The internal structure of the hydrogels was investigated by polarized light microscopy, confirming the amorphous nature of propolis and the partial dispersion of nystatin. The antifungal activity was assessed against ten fluconazole-resistant C. auris strains. The CS-NYS-PRO1 formulation demonstrated the highest antifungal performance in the agar test, also reducing viable cell counts to undetectable levels within 6 h. Time–kill assays and SEM imaging confirmed the rapid fungicidal effect and revealed severe membrane disruption and cytoplasmic leakage. Molecular docking analyses indicated the strong binding of nystatin to both sterol 14α-demethylase (CYP51) and dihydrofolate reductase (DHFR) from C. auris, suggesting complementary membrane and intracellular mechanisms of action. These findings support the use of such hydrogels as a local, non-invasive, and biocompatible strategy for managing C. auris colonization, with promising implications for clinical use in infection control and the prevention of skin-mediated transmission in healthcare settings. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

12 pages, 1556 KiB  
Article
Antibacterial Nanocomposite Ceramic Coating for Liquid Filtration Application
by Angelica Luceri, Michela Toppan, Alessandro Calogero, Antonio Rinaldi and Cristina Balagna
Nanomaterials 2025, 15(12), 911; https://doi.org/10.3390/nano15120911 - 12 Jun 2025
Viewed by 635
Abstract
Water contamination due to microbial proliferation remains a critical global challenge, especially with increasing urbanization, industrial activities, and the use of agrochemicals, and it requires the development of innovative methods for their purification that are not harmful to the environment and humans. In [...] Read more.
Water contamination due to microbial proliferation remains a critical global challenge, especially with increasing urbanization, industrial activities, and the use of agrochemicals, and it requires the development of innovative methods for their purification that are not harmful to the environment and humans. In this study, innovative antibacterial nanocomposite coatings, composed of zirconia and silver nanocluster, were developed and deposited via eco-friendly co-sputtering physical vapor deposition (PVD) method onto electrospun polymeric membranes (PCL and PAN-PCL) for water filtration applications. Structural and morphological analyses, including XRD and UV-Vis spectroscopy, confirmed the deposition of a composite coating, consisting of an amorphous zirconia matrix embedding silver nanoclusters, homogeneously distributed on one side of the polymeric fibers. Wettability evaluations showed an increase in hydrophobicity after coating, particularly affecting the filtration performance of the PCL membranes. Antibacterial tests revealed strong inhibition against Staphylococcus epidermidis (Gram-positive) and partial efficacy against Escherichia coli (Gram-negative). Filtration tests of contaminated solutions revealed a 99% reduction in Bacillus subtilis, significant inhibition of Listeria monocytogenes, and limited effect on E. coli, with no bacterial proliferation observed on the coated membranes. These results underscore the effectiveness of ZrO2/Ag nanocomposites in enhancing microbial control and suggest a promising, scalable strategy for sustainable and safe water purification systems. Full article
(This article belongs to the Special Issue Ceramic Matrix Nanocomposites)
Show Figures

Graphical abstract

13 pages, 1817 KiB  
Article
Modified Polyethylene Oxide Solid-State Electrolytes with Poly(vinylidene fluoride-hexafluoropropylene)
by Jinwei Yan, Wen Huang, Tangqi Hu, Hai Huang, Chengwei Zhu, Zhijie Chen, Xiaohong Fan, Qihui Wu and Yi Li
Molecules 2025, 30(11), 2422; https://doi.org/10.3390/molecules30112422 - 31 May 2025
Cited by 1 | Viewed by 651
Abstract
Lithium-ion batteries are restricted in development due to safety issues such as poor chemical stability and flammability of organic liquid electrolytes. Replacing liquid electrolytes with solid ones is crucial for improving battery safety and performance. This study aims to enhance the performance of [...] Read more.
Lithium-ion batteries are restricted in development due to safety issues such as poor chemical stability and flammability of organic liquid electrolytes. Replacing liquid electrolytes with solid ones is crucial for improving battery safety and performance. This study aims to enhance the performance of polyethylene oxide (PEO)-based polymer via blending with poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)). The experimental results showed that the addition of P(VDF-HFP) disrupted the crystalline regions of PEO by increasing the amorphous domains, thus improving lithium-ion migration capability. The electrolyte membrane with 30 wt% P(VDF-HFP) and 70 wt% PEO exhibited the highest ionic conductivity, widest electrochemical window, and enhanced thermal stability, as well as a high lithium-ion transference number (0.45). The cells assembled with this membrane electrolyte demonstrated an excellent rate of performance and cycling stability, retaining specific capacities of 122.39 mAh g−1 after 200 cycles at 0.5C, and 112.77 mAh g−1 after 200 cycles at 1C and 25 °C. The full cell assembled with LiFePO4 as the positive electrode exhibits excellent rate performance and good cycling stability, indicating that prepared solid electrolytes have great potential applications in lithium batteries. Full article
Show Figures

Figure 1

14 pages, 4427 KiB  
Case Report
Horizontal Guided Bone Regeneration Using Titanium-Reinforced Dense PTFE Membrane and Synthetic Nanocrystalline Hydroxyapatite: A Case Study Reporting Clinical and Histological Outcomes with 5-Year Follow-Up
by Fabrizio Belleggia, Luca Signorini, Mirko Martelli and Marco Gargari
Int. J. Transl. Med. 2025, 5(2), 19; https://doi.org/10.3390/ijtm5020019 - 31 May 2025
Viewed by 815
Abstract
Background/Objectives: Guided bone regeneration (GBR) is a regenerative technique used to treat maxillary osseous defects to enable implant placement for prosthetic rehabilitation. It is generally performed with the use of barrier membranes and bone substitute materials of human or animal origin. Here, [...] Read more.
Background/Objectives: Guided bone regeneration (GBR) is a regenerative technique used to treat maxillary osseous defects to enable implant placement for prosthetic rehabilitation. It is generally performed with the use of barrier membranes and bone substitute materials of human or animal origin. Here, we report the clinical and histological outcomes of a horizontal GBR, treated using only synthetic biomaterials. Methods: A graft of nanocrystalline hydroxyapatite (NH) embedded in a silica gel matrix was used to fill a horizontal bone defect. The graft was covered with a titanium-reinforced dense polytetrafluoroethylene (TR-dPTFE) membrane, and primary closure was completed and maintained for 10 months. Then, the site was re-opened for membrane removal and implant insertion. During implant bed preparation, a bone biopsy was obtained for histological evaluation. A metal–ceramic crown was fitted, and the 5-year follow-up after prosthetic loading showed clinical and radiographically healthy tissues. Results: Histological examination revealed good integration of the biomaterial into the surrounding tissues, which were composed of lamellar bone trabeculae and connective tissue. New bone formation occurred not only around the NH granules but even inside the porous amorphous particles. Conclusions: The combination of NH and the TR-dPTFE membrane produced good clinical and histological results, which remained stable for 5 years. Full article
Show Figures

Figure 1

34 pages, 5331 KiB  
Review
Modelling and Simulation of Surface Diffusion in Heterogeneous Porous Materials
by Sean P. Rigby
Surfaces 2025, 8(2), 31; https://doi.org/10.3390/surfaces8020031 - 7 May 2025
Viewed by 927
Abstract
The surface diffusion flux is known to dominate mass transport within many amorphous porous materials, used as adsorbents, heterogeneous catalysts, and membranes, employed in many chemical processes. However, while the impact of surface coverage has been widely studied and reviewed, relatively little attention [...] Read more.
The surface diffusion flux is known to dominate mass transport within many amorphous porous materials, used as adsorbents, heterogeneous catalysts, and membranes, employed in many chemical processes. However, while the impact of surface coverage has been widely studied and reviewed, relatively little attention has been paid to the impact of surface geometric and energetic heterogeneity on the surface diffusion rate, which would inform intelligent materials selection. It was, thence, the aim of this work to survey studies of the impact of surface structure on surface diffusion. Since the so-called “maximally realistic” modelling approach is found to be infeasible, due to limitations on the degree of structural characterisation possible for complex disordered surfaces, and the level of detail and length scales it is possible to represent with current computing power, a range of alternative approaches have been adopted. It has been seen that the Galilean idealisation of atomistic models has rendered them sufficiently tractable in order to study the impact of certain surface features, such as traps or ruts, on surface diffusion. Theoretical justifications have been used to develop minimalist models of amorphous surfaces, and mass transport thereon, that do selectively include the key surface parameters, and have, therefore, been successfully empirically validated for a range of different surfaces and adsorbate types. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Figure 1

13 pages, 8592 KiB  
Article
Magnetron-Sputtered Amorphous Carbon Films for Aluminium Proton-Exchange-Membrane Fuel Cell Bipolar Plates
by Parnia Navabpour, Kun Zhang, Giuseppe Sanzone, Susan Field and Hailin Sun
Physchem 2025, 5(2), 18; https://doi.org/10.3390/physchem5020018 - 4 May 2025
Viewed by 2934
Abstract
Aluminium is an attractive material for proton-exchange-membrane fuel cell bipolar plates as it has a much lower density than steel and is easier to form than both steel and graphite. This work focused on the development of amorphous carbon films deposited using closed-field [...] Read more.
Aluminium is an attractive material for proton-exchange-membrane fuel cell bipolar plates as it has a much lower density than steel and is easier to form than both steel and graphite. This work focused on the development of amorphous carbon films deposited using closed-field unbalanced magnetron sputtering (CFUBMS) in order to improve the corrosion resistance of aluminium bipolar plates and to enhance fuel cell performance and durability. Chromium and tungsten adhesion layers were used for the coatings. It was possible to achieve good electrical conductivity and high electrochemical corrosion resistance up to 70 °C on polished Aluminium alloy 6082 by tuning the deposition parameters. Coatings with a tungsten adhesion layer showed better corrosion resistance than those with a chromium adhesion layer. In situ, accelerated stress testing of single cells was performed using uncoated and coated Al6082 bipolar plates. Both coatings resulted in improved fuel cell performance compared to uncoated aluminium when used on the cathode side of the fuel cell. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

19 pages, 1197 KiB  
Article
Application of Theoretical Solubility Calculations and Thermal and Spectroscopic Measurements to Guide the Processing of Triamcinolone Acetonide by Hot-Melt Extrusion
by Pedro A. Granados, Idejan P. Gross, Patrícia Medeiros-Souza, Livia L. Sá-Barreto, Guilherme M. Gelfuso, Tais Gratieri and Marcilio Cunha-Filho
Pharmaceutics 2025, 17(5), 586; https://doi.org/10.3390/pharmaceutics17050586 - 29 Apr 2025
Viewed by 649
Abstract
Background/Objectives: Triamcinolone acetonide (TA), a poorly water-soluble corticosteroid, presents formulation challenges due to limited membrane permeability. This study aimed to identify suitable drug–polymer–plasticizer systems for TA using combined theoretical and experimental methods. Methods: Using Hansen solubility parameters, seven hot-melt extrusion (HME)-grade [...] Read more.
Background/Objectives: Triamcinolone acetonide (TA), a poorly water-soluble corticosteroid, presents formulation challenges due to limited membrane permeability. This study aimed to identify suitable drug–polymer–plasticizer systems for TA using combined theoretical and experimental methods. Methods: Using Hansen solubility parameters, seven hot-melt extrusion (HME)-grade polymers and four plasticizers were initially screened for miscibility with TA. Based on Δδt values, four polymers—Eudragit® L100 (EUD), Parteck® MXP (PVA), Plasdone® S-630 (PVPVA), and Aquasolve™ AS-MG (HPMCAS)—along with triethyl citrate (TEC), were selected for experimental evaluation. Differential scanning calorimetry, thermogravimetric analysis, and Fourier transform infrared spectroscopy assessed thermal behavior, miscibility, and chemical compatibility. Results: Amorphous TA content was highest with EUD (81.1%), followed by PVA (67.5%), PVPVA (45.6%), and HPMCAS (8.5%). Thermal incompatibility and TEC evaporation were observed in PVA, PVPVA, and HPMCAS systems. FTIR suggested TEC should be avoided in melt-based formulations with PVA and PVPVA due to PVA degradation and partial TA oxidation. No significant interactions were detected in HPMCAS samples heated to 220 °C, aligning with theoretical predictions. In contrast, the EUD–TEC system showed limited chemical reactivity and maintained TA’s structural integrity. Infrared bands at 1758 and 1802 cm−1 indicated minor anhydride formation above 160 °C with partial TEC evaporation. Conclusions: EUD/TEC were identified as a promising combination for the HME processing of TA. This work supports the rational formulation of stable amorphous systems for thermolabile drugs with poor solubility. Full article
(This article belongs to the Special Issue Pharmaceutical Solids: Advanced Manufacturing and Characterization)
Show Figures

Figure 1

13 pages, 4135 KiB  
Article
Uncooled Microbolometers Based on Nitrogen-Doped Hydrogenated Amorphous Silicon-Germanium (a-SiGe:H,N)
by Oscar Velandia, Alfonso Torres, Alfredo Morales, Luis Hernández, Alberto Luna, Karim Monfil, Javier Flores, Gustavo M. Minquiz, Ricardo Jiménez and Mario Moreno
Inorganics 2025, 13(4), 126; https://doi.org/10.3390/inorganics13040126 - 20 Apr 2025
Viewed by 880
Abstract
An uncooled microbolometer is a thermal sensor consisting of a membrane suspended from the substrate to provide thermal insulation. Typically, the membrane is composed of a stack of three films integrated by a supporting film, an IR sensing film, and an IR absorbing [...] Read more.
An uncooled microbolometer is a thermal sensor consisting of a membrane suspended from the substrate to provide thermal insulation. Typically, the membrane is composed of a stack of three films integrated by a supporting film, an IR sensing film, and an IR absorbing film. However, the above increases the thickness of the device and affects its mechanical stability and thermal mass, thereby reducing its performance. One solution is to use a single film as a membrane with both IR sensing and IR absorbing properties. In this regard, this work presents the fabrication and evaluation of uncooled microbolometers using nitrogen-doped hydrogenated amorphous silicon-germanium (a-SiGe:H,N) as a single IR-absorber/IR sensing membrane. The films were deposited via low frequency Plasma Enhanced Chemical Vapor Deposition (PECVD) at 200 °C. Three microbolometer configurations were fabricated using a-SiGe:H,N films deposited from a SiH4, GeH4, N2, and H2 gas mixture with different SiH4 and GeH4 flow rates and, consequently, with different properties, such as temperature coefficient of resistance (TCR) and conductivity at room temperature. The microbolometer that exhibited the best performance achieved a voltage responsivity of 7.26 × 105 V/W and a NETD of 22.35 mK at 140 Hz, which is comparable to state-of-the-art uncooled infrared (IR) sensors. These results confirm that the optimization of the deposition parameters of the a-SiGe:H,N films significantly affects the microbolometers final performance, enabling an optimal balance between thermal sensitivity (TCR) and conductivity. Full article
(This article belongs to the Special Issue Recent Research and Application of Amorphous Materials)
Show Figures

Figure 1

20 pages, 2750 KiB  
Article
Influence of Nanoparticle Content and Cross-Linking Degree on Functional Attributes of Calcium Alginate-ZnO Nanocomposite Wound Dressings
by Sergio Henrique Toledo e Silva, Andrea Cristiane Krause Bierhalz and Ângela Maria Moraes
Membranes 2025, 15(4), 108; https://doi.org/10.3390/membranes15040108 - 1 Apr 2025
Viewed by 800
Abstract
Alginate-ZnO nanoparticles (ZnOnano) composite wound dressing membranes were prepared with two different ZnOnano concentrations (0.03 and 0.20 g ZnO/g sodium alginate) and cross-linked with two different calcium treatments (low and high Ca++concentration) to evaluate the influence of nanoparticle [...] Read more.
Alginate-ZnO nanoparticles (ZnOnano) composite wound dressing membranes were prepared with two different ZnOnano concentrations (0.03 and 0.20 g ZnO/g sodium alginate) and cross-linked with two different calcium treatments (low and high Ca++concentration) to evaluate the influence of nanoparticle content and cross-linking degree on membrane attributes. ZnOnano addition did not significantly alter the mechanical properties, water vapor permeability, swelling degree in water and the alginate amorphous nature of the nanocomposite membranes. The increase in cross-linking degree, on the other hand, altered the microstructure of the membranes, increased the tensile strength and reduced the water vapor permeability of the nanocomposite membranes. The presence of ZnOnano in alginate membranes granted them antibacterial activity in vitro against Pseudomonas aeruginosa and Staphylococcus aureus and substantially increased the absorption capacity in phosphate buffer and fetal bovine serum solutions, validating their potential use as wound dressings. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

19 pages, 2724 KiB  
Article
Carbon Molecular Sieve Membranes from Acenaphthenequinone–Biphenyl Polymer; Synthesis, Characterization, and Effect on Gas Separation and Transport Properties
by Jesús Ortiz-Espinoza, Olivia Hernández-Cruz, Mikhail Zolotukhin, F. Alberto Ruiz-Treviño, María Isabel Loría-Bastarrachea and Manuel Aguilar-Vega
Polymers 2025, 17(4), 541; https://doi.org/10.3390/polym17040541 - 19 Feb 2025
Cited by 1 | Viewed by 856
Abstract
A rigid, high temperature-resistant aromatic polymer, poly(1,1′-biphenyl)-6,8a-dihydroacenaphthylene-1(2H)-one (BDA) comprising acenaphthenequinone and biphenyl was successfully synthesized by superacid catalyzed polymerization. BDA has a high decomposition temperature (Td = 520 °C) that renders it a viable candidate for carbon molecular sieve membranes (CMSM) formation. [...] Read more.
A rigid, high temperature-resistant aromatic polymer, poly(1,1′-biphenyl)-6,8a-dihydroacenaphthylene-1(2H)-one (BDA) comprising acenaphthenequinone and biphenyl was successfully synthesized by superacid catalyzed polymerization. BDA has a high decomposition temperature (Td = 520 °C) that renders it a viable candidate for carbon molecular sieve membranes (CMSM) formation. BDA precursor pyrolysis at 600 °C (BDA-P600) leads to a carbon turbostratic structure formation with graphene-like amorphous strands in a matrix with micropores and ultramicropores, resulting in a carbon structure with higher diffusion and higher selectivity than dense BDA. When the BDA pyrolysis temperature is raised to 700 °C (BDA-P700), the average stacking number of carbon layers N increases, along with an increase in the crystallite thickness stacking Lc, and layer plane size La, leading to a more compact structure. Pure gas permeability coefficients P are between 3 and 5 times larger for BDA-P600 compared to the BDA precursors. On the other hand, there is a P decrease between 10 and 50% for O2 and CO2 between CMSM BDA-P600 and BDA-P700, while the large kinetic diameter gases N2 and CH4 show a large decrease in permeability of 44 and 67%, respectively. It was found that the BDA-P700 WAXD results show the emergence of a new peak at 2θ = 43.6° (2.1 Å), which effectively hinders the diffusion of gases such O2, N2, and CH4. This behavior has been attributed to the formation of new micropores that become increasingly compact at higher pyrolysis temperatures. As a result, the CMSM derived from BDA precursors pyrolyzed at 700 °C (BDA-P700) show exceptional O2/N2 gas separation performance, significantly surpassing baseline trade-off limits. Full article
Show Figures

Figure 1

Back to TopTop