Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = amodiaquine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 573 KiB  
Article
Assessing the Acceptability and Feasibility of Five Cycles of Seasonal Malaria Chemoprevention in Côte d’Ivoire
by Orphée Kangah, Issaka Zongo, Alassane Haro and William Yavo
Trop. Med. Infect. Dis. 2025, 10(1), 10; https://doi.org/10.3390/tropicalmed10010010 - 30 Dec 2024
Viewed by 1010
Abstract
Seasonal malaria chemoprevention (SMC) is a strategy recommended by the World Health Organization for children aged 3–59 months in the Sahel and sub-Sahel regions where malaria transmission is seasonal. In Côte d’Ivoire, malaria remains a high priority and accounts for the majority of [...] Read more.
Seasonal malaria chemoprevention (SMC) is a strategy recommended by the World Health Organization for children aged 3–59 months in the Sahel and sub-Sahel regions where malaria transmission is seasonal. In Côte d’Ivoire, malaria remains a high priority and accounts for the majority of consultations and deaths in children under five. The recent revision of the criteria for the introduction of seasonal malaria chemoprevention has made the north of Côte d’Ivoire, where malaria transmission is seasonal, eligible for the SMC. We conducted a pilot study in this part of the country to assess the acceptability and feasibility of five cycles of SMC in 1701 children. Seasonal malaria chemoprevention with sulfadoxine–pyrimethamine + amodiaquine (SP + AQ) was administered monthly to eligible children over five months. A qualitative approach and quantitative surveys were used to assess the strategy acceptability and feasibility in the study area. Overall, there was a positive perception, attitude, and adherence towards the seasonal malaria chemoprevention in this study area. Full article
(This article belongs to the Section Vector-Borne Diseases)
Show Figures

Figure 1

13 pages, 2766 KiB  
Article
Low-Cost and Portable Biosensor Based on Monitoring Impedance Changes in Aptamer-Functionalized Nanoporous Anodized Aluminum Oxide Membrane
by Nianyu Jiang and Pranav Shrotriya
Micromachines 2025, 16(1), 35; https://doi.org/10.3390/mi16010035 - 29 Dec 2024
Viewed by 1245
Abstract
We report a low-cost, portable biosensor composed of an aptamer-functionalized nanoporous anodic aluminum oxide (NAAO) membrane and a commercial microcontroller chip-based impedance reader suitable for electrochemical impedance spectroscopy (EIS)-based sensing. The biosensor consists of two chambers separated by an aptamer-functionalized NAAO membrane, and [...] Read more.
We report a low-cost, portable biosensor composed of an aptamer-functionalized nanoporous anodic aluminum oxide (NAAO) membrane and a commercial microcontroller chip-based impedance reader suitable for electrochemical impedance spectroscopy (EIS)-based sensing. The biosensor consists of two chambers separated by an aptamer-functionalized NAAO membrane, and the impedance reader is utilized to monitor transmembrane impedance changes. The biosensor is utilized to detect amodiaquine molecules using an amodiaquine-binding aptamer (OR7)-functionalized membrane. The aptamer-functionalized membrane is exposed to different concentrations of amodiaquine molecules to characterize the sensitivity of the sensor response. The specificity of the sensor response is characterized by exposure to varying concentrations of chloroquine, which is similar in structure to amodiaquine but does not bind to the OR7 aptamer. A commercial potentiostat is also used to measure the sensor response for amodiaquine and chloroquine. The sensing response measured using both the portable impedance reader and the commercial potentiostat showed a similar dynamic response and detection threshold. The specific and sensitive sensing results for amodiaquine demonstrate the efficacy of the low-cost and portable biosensor. Full article
(This article belongs to the Special Issue Biosensors for Diagnostic and Detection Applications, 2nd Edition)
Show Figures

Figure 1

17 pages, 5993 KiB  
Article
Derivatives of Amodiaquine as Potent Human Cholinesterases Inhibitors: Implication for Treatment of Alzheimer’s Disease
by Ana Matošević, Dejan M. Opsenica, Marija Bartolić, Nikola Maraković, Andriana Stoilković, Katarina Komatović, Antonio Zandona, Suzana Žunec and Anita Bosak
Molecules 2024, 29(22), 5357; https://doi.org/10.3390/molecules29225357 - 14 Nov 2024
Viewed by 1129
Abstract
As some previously reported studies have proven that amodiaquine, in addition to its primary antimalarial activity, also has potential for new applications such as the inhibition of cholinesterases, in our study we focused on the evaluation of the influence of different substituents in [...] Read more.
As some previously reported studies have proven that amodiaquine, in addition to its primary antimalarial activity, also has potential for new applications such as the inhibition of cholinesterases, in our study we focused on the evaluation of the influence of different substituents in the aminoquinoline part of the amodiaquine structure on the inhibition of human acetylcholinesterase and butyrylcholinesterase to investigate the possibility for their use as drugs for the treatment of AD. We synthesized a series of amodiaquine derivatives bearing H-, F-, CF3-, NO2-, CN-, CO2H- or CH3O- groups on the aminoquinoline ring, and determined that all of the tested derivatives were very potent inhibitors of both cholinesterases, with inhibition constants (Ki) in the nM and low μM range and with prominent selectivity (up to 300 times) for the inhibition of acetylcholinesterase. All compounds displayed an ability to chelate biometal ions Fe2+, Zn2+ and Cu2+ and an antioxidant power comparable to that of standard antioxidants. Most of the compounds were estimated to be able to cross the blood–brain barrier by passive transport and were nontoxic toward cells that represent the models of individual organs. Considering all these beneficial features, our study has singled out compound 5, the most potent AChE inhibitor with a CH3O- on C(7) position, followed by 6 and 14, compounds without substituent or hydroxyl groups in the C(17) position, respectively, as the most promising compounds from the series which could be considered as potential multi-target drugs for the treatment of AD. Full article
Show Figures

Figure 1

16 pages, 972 KiB  
Article
Setting Up an NGS Sequencing Platform and Monitoring Molecular Markers of Anti-Malarial Drug Resistance in Djibouti
by Nasserdine Papa Mze, Houssein Yonis Arreh, Rahma Abdi Moussa, Mahdi Bachir Elmi, Mohamed Ahmed Waiss, Mohamed Migane Abdi, Hassan Ibrahim Robleh, Samatar Kayad Guelleh, Abdoul-ilah Ahmed Abdi, Hervé Bogreau, Leonardo K. Basco and Bouh Abdi Khaireh
Biology 2024, 13(11), 905; https://doi.org/10.3390/biology13110905 - 6 Nov 2024
Viewed by 1929
Abstract
Djibouti is confronted with malaria resurgence, with malaria having been occurring in epidemic proportions since a decade ago. The current epidemiology of drug-resistant Plasmodium falciparum is not well known. Molecular markers were analyzed by targeted sequencing in 79 P. falciparum clinical isolates collected [...] Read more.
Djibouti is confronted with malaria resurgence, with malaria having been occurring in epidemic proportions since a decade ago. The current epidemiology of drug-resistant Plasmodium falciparum is not well known. Molecular markers were analyzed by targeted sequencing in 79 P. falciparum clinical isolates collected in Djibouti city in 2023 using the Miseq Illumina platform newly installed in the country. The objective of the study was to analyze the key codons in these molecular markers associated with antimalarial drug resistance. The prevalence of the mutant Pfcrt CVIET haplotype (92%) associated with chloroquine resistance and mutant Pfdhps-Pfdhfr haplotypes (7.4% SGEA and 53.5% IRN, respectively) associated with sulfadoxine-pyrimethamine resistance was high. By contrast, Pfmdr1 haplotypes associated with amodiaquine (YYY) or lumefantrine (NFD) resistance were not observed in any of the isolates. Although the “Asian-type” PfK13 mutations associated with artemisinin resistance were not observed, the “African-type” PfK13 substitution, R622I, was found in a single isolate (1.4%) for the first time in Djibouti. Our genotyping data suggest that most Djiboutian P. falciparum isolates are resistant to chloroquine and sulfadoxine-pyrimethamine but are sensitive to amodiaquine, lumefantrine, and artemisinin. Nonetheless, the presence of an isolate with the R622I PfK13 substitution is a warning signal that calls for a regular surveillance of molecular markers of antimalarial drug resistance. Full article
Show Figures

Figure 1

19 pages, 11467 KiB  
Article
Drug Repositioning via Graph Neural Networks: Identifying Novel JAK2 Inhibitors from FDA-Approved Drugs through Molecular Docking and Biological Validation
by Muhammad Yasir, Jinyoung Park, Eun-Taek Han, Won Sun Park, Jin-Hee Han and Wanjoo Chun
Molecules 2024, 29(6), 1363; https://doi.org/10.3390/molecules29061363 - 19 Mar 2024
Cited by 11 | Viewed by 3045
Abstract
The increasing utilization of artificial intelligence algorithms in drug development has proven to be highly efficient and effective. One area where deep learning-based approaches have made significant contributions is in drug repositioning, enabling the identification of new therapeutic applications for existing drugs. In [...] Read more.
The increasing utilization of artificial intelligence algorithms in drug development has proven to be highly efficient and effective. One area where deep learning-based approaches have made significant contributions is in drug repositioning, enabling the identification of new therapeutic applications for existing drugs. In the present study, a trained deep-learning model was employed to screen a library of FDA-approved drugs to discover novel inhibitors targeting JAK2. To accomplish this, reference datasets containing active and decoy compounds specific to JAK2 were obtained from the DUD-E database. RDKit, a cheminformatic toolkit, was utilized to extract molecular features from the compounds. The DeepChem framework’s GraphConvMol, based on graph convolutional network models, was applied to build a predictive model using the DUD-E datasets. Subsequently, the trained deep-learning model was used to predict the JAK2 inhibitory potential of FDA-approved drugs. Based on these predictions, ribociclib, topiroxostat, amodiaquine, and gefitinib were identified as potential JAK2 inhibitors. Notably, several known JAK2 inhibitors demonstrated high potential according to the prediction results, validating the reliability of our prediction model. To further validate these findings and confirm their JAK2 inhibitory activity, molecular docking experiments were conducted using tofacitinib—an FDA-approved drug for JAK2 inhibition. Experimental validation successfully confirmed our computational analysis results by demonstrating that these novel drugs exhibited comparable inhibitory activity against JAK2 compared to tofacitinib. In conclusion, our study highlights how deep learning models can significantly enhance virtual screening efforts in drug discovery by efficiently identifying potential candidates for specific targets such as JAK2. These newly discovered drugs hold promises as novel JAK2 inhibitors deserving further exploration and investigation. Full article
(This article belongs to the Special Issue Application of Natural or Synthetic Products in Computer-Aided Drugs)
Show Figures

Figure 1

13 pages, 1432 KiB  
Article
Meta-Analysis of Data from Four Clinical Trials in the Ivory Coast Assessing the Efficacy of Two Artemisinin-Based Combination Therapies (Artesunate-Amodiaquine and Artemether-Lumefantrine) between 2009 and 2016
by Akoua Valérie Bédia-Tanoh, Kondo Fulgence Kassi, Offianan André Touré, Serge Brice Assi, Akpa Paterne Gnagne, Koffi Daho Adoubryn, Emmanuel Bissagnene, Abibatou Konaté, Jean Sebastien Miezan, Kpongbo Etienne Angora, Henriette Vanga-Bosson, Pulchérie Christiane Kiki-Barro, Vincent Djohan, William Yavo and Eby Ignace Hervé Menan
Trop. Med. Infect. Dis. 2024, 9(1), 10; https://doi.org/10.3390/tropicalmed9010010 - 29 Dec 2023
Cited by 1 | Viewed by 2379
Abstract
The combinations of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) are used as first-line treatments for uncomplicated malaria in the Ivory Coast. Different studies document the efficacy of two artemisinin-based combination therapies (ACTs) (AL and ASAQ) in the Ivory Coast. However, there is no meta-analysis [...] Read more.
The combinations of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) are used as first-line treatments for uncomplicated malaria in the Ivory Coast. Different studies document the efficacy of two artemisinin-based combination therapies (ACTs) (AL and ASAQ) in the Ivory Coast. However, there is no meta-analysis examining the data set of these studies. The purpose of this work was to determine the prevalence of malaria treatment failure cases in randomized control trials with two artemisinin-based combination therapies (AL versus ASAQ) in the Ivory Coast between 2009 to 2016. This study is a meta-analysis of data from the results of four previous multicenter, open-label, randomized clinical trial studies evaluating the clinical and parasitological efficacy of artemether-lumefantrine and artesunate-amodiaquine conducted between 2009 and 2016 following World Health Organization (WHO) protocol at sentinel sites in the Ivory Coast. These drug efficacy data collected between 2009 and 2016 were analyzed. During these studies, to distinguish between recrudescence and new infection, molecular genotyping of genes encoding merozoite surface protein 1 and 2 was carried out using nested polymerase chain reaction (PCR). A total of 1575 patients enrolled in the four studies, including 768 in the AL arm and 762 in the ASAQ arm, which were fully followed either for 28 days or 42 days according to WHO protocol. The adequate clinical and parasitological response (ACPR) was higher than 95% in the two groups (intention to treat (ITT): AL = 96.59% and ASAQ = 96.81; Per Protocol (PP): AL = 99.48% and ASAQ = 99.61%) after PCR correction at day 28. Aggregate data analysis (2009–2016) showed that at day 28, the proportions of patients with recurrent infection was higher in the AL group (ITT: 3.79%, PP: 3.9%) than in the ASAQ group (ITT: 2.17%, PP: 2.23%). After PCR correction, most treatment failures were classified as new infections (AL group (ITT: 0.13%, PP: 0.13%); ASAQ group (ITT: 0.39%, PP: 0.39%). The recrudescent infections rate was high, at 0.39% compared to 0.13% for ASAQ and AL, respectively, for both ITT and PP, no significant difference. However, the Kaplan–Meier curve of cumulative treatment success showed a significant difference between the two groups after PCR from 2012–2013 (p = 0.032). Overall, ASAQ and AL have been shown to be effective drugs for the treatment of uncomplicated P. falciparum malaria in the study areas, 14 years after deployment of these drugs. Full article
Show Figures

Figure 1

23 pages, 3026 KiB  
Article
Favorable Preclinical Pharmacological Profile of a Novel Antimalarial Pyrrolizidinylmethyl Derivative of 4-amino-7-chloroquinoline with Potent In Vitro and In Vivo Activities
by Nicoletta Basilico, Silvia Parapini, Sarah D’Alessandro, Paola Misiano, Sergio Romeo, Giulio Dondio, Vanessa Yardley, Livia Vivas, Shereen Nasser, Laurent Rénia, Bruce M. Russell, Rossarin Suwanarusk, François Nosten, Anna Sparatore and Donatella Taramelli
Biomolecules 2023, 13(5), 836; https://doi.org/10.3390/biom13050836 - 14 May 2023
Cited by 4 | Viewed by 3062
Abstract
The 4-aminoquinoline drugs, such as chloroquine (CQ), amodiaquine or piperaquine, are still commonly used for malaria treatment, either alone (CQ) or in combination with artemisinin derivatives. We previously described the excellent in vitro activity of a novel pyrrolizidinylmethyl derivative of 4-amino-7-chloroquinoline, named MG3, [...] Read more.
The 4-aminoquinoline drugs, such as chloroquine (CQ), amodiaquine or piperaquine, are still commonly used for malaria treatment, either alone (CQ) or in combination with artemisinin derivatives. We previously described the excellent in vitro activity of a novel pyrrolizidinylmethyl derivative of 4-amino-7-chloroquinoline, named MG3, against P. falciparum drug-resistant parasites. Here, we report the optimized and safer synthesis of MG3, now suitable for a scale-up, and its additional in vitro and in vivo characterization. MG3 is active against a panel of P. vivax and P. falciparum field isolates, either alone or in combination with artemisinin derivatives. In vivo MG3 is orally active in the P. berghei, P. chabaudi, and P. yoelii models of rodent malaria with efficacy comparable, or better, than that of CQ and of other quinolines under development. The in vivo and in vitro ADME-Tox studies indicate that MG3 possesses a very good pre-clinical developability profile associated with an excellent oral bioavailability, and low toxicity in non-formal preclinical studies on rats, dogs, and non-human primates (NHP). In conclusion, the pharmacological profile of MG3 is in line with those obtained with CQ or the other quinolines in use and seems to possess all the requirements for a developmental candidate. Full article
Show Figures

Figure 1

18 pages, 3774 KiB  
Article
Development and Characterization of Folic Acid-Conjugated Amodiaquine-Loaded Nanoparticles–Efficacy in Cancer Treatment
by Vineela Parvathaneni, Snehal K. Shukla and Vivek Gupta
Pharmaceutics 2023, 15(3), 1001; https://doi.org/10.3390/pharmaceutics15031001 - 20 Mar 2023
Cited by 22 | Viewed by 4302
Abstract
The objective of this study was to construct amodiaquine-loaded, folic acid-conjugated polymeric nanoparticles (FA-AQ NPs) to treat cancer that could be scaled to commercial production. In this study, folic acid (FA) was conjugated with a PLGA polymer followed by the formulation of drug-loaded [...] Read more.
The objective of this study was to construct amodiaquine-loaded, folic acid-conjugated polymeric nanoparticles (FA-AQ NPs) to treat cancer that could be scaled to commercial production. In this study, folic acid (FA) was conjugated with a PLGA polymer followed by the formulation of drug-loaded NPs. The results of the conjugation efficiency confirmed the conjugation of FA with PLGA. The developed folic acid-conjugated nanoparticles demonstrated uniform particle size distributions and had visible spherical shapes under transmission electron microscopy. The cellular uptake results suggested that FA modification could enhance the cellular internalization of nanoparticulate systems in non-small cell lung cancer, cervical, and breast cancer cell types. Furthermore, cytotoxicity studies showed the superior efficacy of FA-AQ NPs in different cancer cells such as MDAMB-231 and HeLA. FA-AQ NPs had better anti-tumor abilities demonstrated via 3D spheroid cell culture studies. Therefore, FA-AQ NPs could be a promising drug delivery system for cancer therapy. Full article
(This article belongs to the Special Issue Development of Novel Tumor-Targeting Nanoparticles)
Show Figures

Figure 1

16 pages, 2477 KiB  
Article
High-Throughput Metabolic Soft-Spot Identification in Liver Microsomes by LC/UV/MS: Application of a Single Variable Incubation Time Approach
by Yanlin Zhu, Guiying Chen, Kerong Zhang, Chang Chen, Weiqing Chen, Mingshe Zhu and Hongliang Jiang
Molecules 2022, 27(22), 8058; https://doi.org/10.3390/molecules27228058 - 20 Nov 2022
Cited by 1 | Viewed by 3549
Abstract
CYP-mediated fast metabolism may lead to poor bioavailability, fast drug clearance and significant drug interaction. Thus, metabolic stability screening in human liver microsomes (HLM) followed by metabolic soft-spot identification (MSSID) is routinely conducted in drug discovery. Liver microsomal incubations of testing compounds with [...] Read more.
CYP-mediated fast metabolism may lead to poor bioavailability, fast drug clearance and significant drug interaction. Thus, metabolic stability screening in human liver microsomes (HLM) followed by metabolic soft-spot identification (MSSID) is routinely conducted in drug discovery. Liver microsomal incubations of testing compounds with fixed single or multiple incubation time(s) and quantitative and qualitative analysis of metabolites using high-resolution mass spectrometry are routinely employed in MSSID assays. The major objective of this study was to develop and validate a simple, effective, and high-throughput assay for determining metabolic soft-spots of testing compounds in liver microsomes using a single variable incubation time and LC/UV/MS. Model compounds (verapamil, dextromethorphan, buspirone, mirtazapine, saquinavir, midazolam, amodiaquine) were incubated at 3 or 5 µM with HLM for a single variable incubation time between 1 and 60 min based on predetermined metabolic stability data. As a result, disappearances of the parents were around 20–40%, and only one or a few primary metabolites were generated as major metabolite(s) without notable formation of secondary metabolites. The unique metabolite profiles generated from the optimal incubation conditions enabled LC/UV to perform direct quantitative estimation for identifying major metabolites. Consequently, structural characterization by LC/MS focused on one or a few major primary metabolite(s) rather than many metabolites including secondary metabolites. Furthermore, generic data-dependent acquisition methods were utilized to enable Q-TOF and Qtrap to continuously record full MS and MS/MS spectral data of major metabolites for post-acquisition data-mining and interpretation. Results from analyzing metabolic soft-spots of the seven model compounds demonstrated that the novel MSSID assay can substantially simplify metabolic soft-spot identification and is well suited for high-throughput analysis in lead optimization. Full article
(This article belongs to the Special Issue Advances in Pharmacokinetics and Bioanalysis of Novel Drugs)
Show Figures

Graphical abstract

34 pages, 2902 KiB  
Article
Discovery of Compounds That Selectively Repress the Amyloidogenic Processing of the Amyloid Precursor Protein: Design, Synthesis and Pharmacological Evaluation of Diphenylpyrazoles
by Christophe Mesangeau, Pascal Carato, Nicolas Renault, Mathilde Coevoet, Paul-Emmanuel Larchanché, Amélie Barczyk, Luc Buée, Nicolas Sergeant and Patricia Melnyk
Int. J. Mol. Sci. 2022, 23(21), 13111; https://doi.org/10.3390/ijms232113111 - 28 Oct 2022
Viewed by 2401
Abstract
The rationale to define the biological and molecular parameters derived from structure–activity relationships (SAR) is mandatory for the lead selection of small drug compounds. Several series of small molecules have been synthesized based on a computer-assisted pharmacophore design derived from two series of [...] Read more.
The rationale to define the biological and molecular parameters derived from structure–activity relationships (SAR) is mandatory for the lead selection of small drug compounds. Several series of small molecules have been synthesized based on a computer-assisted pharmacophore design derived from two series of compounds whose scaffold originates from chloroquine or amodiaquine. All compounds share similar biological activities. In vivo, Alzheimer’s disease-related pathological lesions are reduced, consisting of amyloid deposition and neurofibrillary degeneration, which restore and reduce cognitive-associated impairments and neuroinflammation, respectively. Screening election was performed using a cell-based assay to measure the repression of Aβ1–x peptide production, the increased stability of APP metabolites, and modulation of the ratio of autophagy markers. These screening parameters enabled us to select compounds as potent non-competitive β-secretase modulators, associated with various levels of lysosomotropic or autophagy modulatory activities. Structure–activity relationship analyses enabled us to define that (1) selectively reducing the production of Aβ1–x, and (2) little Aβx–40/42 modification together with (3) a decreased ratio of p62/(LC3-I/LC3-II) enabled the selection of non-competitive β-secretase modulators. Increased stability of CTFα and AICD precluded the selection of compounds with lysosomotropic activity whereas cell toxicity was associated with the sole p62 enhanced expression shown to be driven by the loss of nitrogen moieties. These SAR parameters are herein proposed with thresholds that enable the selection of potent anti-Alzheimer drugs for which further investigation is necessary to determine the basic mechanism underlying their mode of action. Full article
(This article belongs to the Special Issue Advances in Alzheimer’s Disease Drug Research and Development)
Show Figures

Figure 1

21 pages, 5275 KiB  
Article
Exploring Amodiaquine’s Repurposing Potential in Breast Cancer Treatment—Assessment of In-Vitro Efficacy & Mechanism of Action
by Vineela Parvathaneni, Rameswari Chilamakuri, Nishant S. Kulkarni, Nabeela F. Baig, Saurabh Agarwal and Vivek Gupta
Int. J. Mol. Sci. 2022, 23(19), 11455; https://doi.org/10.3390/ijms231911455 - 28 Sep 2022
Cited by 8 | Viewed by 3238
Abstract
Due to the heterogeneity of breast cancer, current available treatment options are moderately effective at best. Hence, it is highly recommended to comprehend different subtypes, understand pathogenic mechanisms involved, and develop treatment modalities. The repurposing of an old FDA approved anti-malarial drug, amodiaquine [...] Read more.
Due to the heterogeneity of breast cancer, current available treatment options are moderately effective at best. Hence, it is highly recommended to comprehend different subtypes, understand pathogenic mechanisms involved, and develop treatment modalities. The repurposing of an old FDA approved anti-malarial drug, amodiaquine (AQ) presents an outstanding opportunity to explore its efficacy in treating majority of breast cancer subtypes. Cytotoxicity, scratch assay, vasculogenic mimicry study, and clonogenic assay were employed to determine AQ’s ability to inhibit cell viability, cell migration, vascular formation, and colony growth. 3D Spheroid cell culture studies were performed to identify tumor growth inhibition potential of AQ in MCF-7 and MDAMB-231 cell lines. Apoptosis assays, cell cycle analysis, RT-qPCR assays, and Western blot studies were performed to determine AQ’s ability to induce apoptosis, cell cycle changes, gene expression changes, and induction of autophagy marker proteins. The results from in-vitro studies confirmed the potential of AQ as an anti-cancer drug. In different breast cancer cell lines tested, AQ significantly induces cytotoxicity, inhibit colony formation, inhibit cell migration, reduces 3D spheroid volume, induces apoptosis, blocks cell cycle progression, inhibit expression of cancer related genes, and induces LC3BII protein to inhibit autophagy. Our results demonstrate that amodiaquine is a promising drug to repurpose for breast cancer treatment, which needs numerous efforts from further studies. Full article
(This article belongs to the Special Issue Drug Repurposing for Cancer Therapies)
Show Figures

Figure 1

13 pages, 1523 KiB  
Article
Methylene Blue-Based Combination Therapy with Amodiaquine Prevents Severe Malaria in an Experimental Rodent Model
by Jérôme Dormoi, Rémy Amalvict, Mathieu Gendrot and Bruno Pradines
Pharmaceutics 2022, 14(10), 2031; https://doi.org/10.3390/pharmaceutics14102031 - 24 Sep 2022
Cited by 4 | Viewed by 2176
Abstract
Untreated malaria can progress rapidly to severe forms (<24 h). Moreover, resistance to antimalarial drugs is a threat to global efforts to protect people from malaria. Given this, it is clear that new chemotherapy must be developed. We contribute new data about using [...] Read more.
Untreated malaria can progress rapidly to severe forms (<24 h). Moreover, resistance to antimalarial drugs is a threat to global efforts to protect people from malaria. Given this, it is clear that new chemotherapy must be developed. We contribute new data about using methylene blue (MB) to cure malaria and cerebral malaria in a combined therapy with common antimalarial drugs, including mefloquine (MQ) and amodiaquine (AQ). A C57BL6/J mouse model was used in an experimental cerebral malaria model. Mice were infected with Plasmodium berghei ANKA on Day 0 (D0) and the treatment started on D3 (nearly 1% parasitaemia) with AQ, MQ or MB alone or in combination with AQ or MQ. AQ, MQ and MB alone were unable to prevent cerebral malaria as part of a late chemotherapy. MB-based combination therapies were efficient even if treatment began at a late stage. We found a significant difference in survival rate (p < 0.0001) between MBAQ and the untreated group, but also with the AQ (p = 0.0024) and MB groups (p < 0.0001). All the infected mice treated with MB in combination with AQ were protected from cerebral malaria. Partial protection was demonstrated with MB associated with MQ. In this group, a significant difference was found between MBMQ and the untreated group (p < 0.0001), MQ (p = 0.0079) and MB (p = 0.0039). MB associated with AQ would be a good candidate for preventing cerebral malaria. Full article
Show Figures

Figure 1

13 pages, 411 KiB  
Article
Factors Influencing Second and Third Dose Observance during Seasonal Malaria Chemoprevention (SMC): A Quantitative Study in Burkina Faso, Mali and Niger
by Anyirékun Fabrice Somé, Issaka Zongo, Issaka Sagara, Alkassoum Ibrahim, Césaire Damien Ahanhanzo, Edoh Eddie Agbanouvi-agassi, Dona Alain Sayi, Lea Pare Toe, Zachari Kabré, Frédéric Nikiéma, Thomas Bazié, Sylvin Ouédraogo, Issiaka Sombié, Alassane Dicko, Eric Adehossi, Jean-Bosco Ouédraogo and Kounbobr Roch Dabiré
Trop. Med. Infect. Dis. 2022, 7(9), 214; https://doi.org/10.3390/tropicalmed7090214 - 29 Aug 2022
Cited by 6 | Viewed by 2900
Abstract
This study aims to evaluate the factors influencing the adherence to the 2nd and 3rd doses of Amodiaquine (AQ) during seasonal malaria chemoprevention (SMC) in Burkina Faso, Mali, and Niger. Overall, 3132 people were interviewed during surveys between 2019 and 2020 in 15 [...] Read more.
This study aims to evaluate the factors influencing the adherence to the 2nd and 3rd doses of Amodiaquine (AQ) during seasonal malaria chemoprevention (SMC) in Burkina Faso, Mali, and Niger. Overall, 3132 people were interviewed during surveys between 2019 and 2020 in 15 health districts. In Burkina Faso, Mali, and Niger, the proportions of non-adherence were 4.15%, 5.60%, and 13.30%, respectively, for the 2nd dose and 3.98%, 5.60% and 14.39% for the 3rd dose. The main cause of non-adherence to the 2nd and 3rd doses was other illnesses in 28.5% and 29.78%, respectively, in Burkina Faso, 5.35% and 5.35% in Mali and 1.6% and 0.75% in Niger. It was followed by vomiting in 12.24% and 10.63% for Burkina and 2.45% and 3.78% in Niger. The last cause was refusal in 6.12% and 4.25% in Burkina, 33.9% and 15.25% in Mali and 0.8% and 1.51% in Niger. Non-adherence of doses related to parents was primarily due to their absence in 28.5% and 27.65% in Burkina, 16.07% and 16.07% in Mali and 7.37% and 6.06% in Niger. Traveling was the second cause related to parents in 12.24% and 12.76% in Burkina, 19.64% and 19.64% in Mali and 0.81% and 0.75% in Niger. Non-adherence related to community distributors was mainly due to missing the doses in 4.08% and 4.25% in Burkina, 23.21% and 23.21% in Mali, 77.04% and 76.51% in Niger. Our study reported very small proportions of non-adherence to 2nd and 3rd doses of SMC and identified the main causes of non-adherence. These findings will provide helpful information for policymakers and public health authorities to improve adherence to SMC Full article
(This article belongs to the Special Issue Malaria Chemoprevention Strategies)
Show Figures

Figure 1

9 pages, 283 KiB  
Article
Prevalence of Mutations in the Pfdhfr, Pfdhps, and Pfmdr1 Genes of Malarial Parasites Isolated from Symptomatic Patients in Dogondoutchi, Niger
by Ibrahima Issa, Mahaman Moustapha Lamine, Veronique Hubert, Amadou Ilagouma, Eric Adehossi, Aboubacar Mahamadou, Neil F. Lobo, Demba Sarr, Lisa M. Shollenberger, Houze Sandrine, Ronan Jambou and Ibrahim Maman Laminou
Trop. Med. Infect. Dis. 2022, 7(8), 155; https://doi.org/10.3390/tropicalmed7080155 - 29 Jul 2022
Cited by 10 | Viewed by 2735
Abstract
The effectiveness of artemisinin-based combination therapies (ACTs) depends not only on that of artemisinin but also on that of partner molecules. This study aims to evaluate the prevalence of mutations in the Pfdhfr, Pfdhps, and Pfmdr1 genes from isolates collected during a [...] Read more.
The effectiveness of artemisinin-based combination therapies (ACTs) depends not only on that of artemisinin but also on that of partner molecules. This study aims to evaluate the prevalence of mutations in the Pfdhfr, Pfdhps, and Pfmdr1 genes from isolates collected during a clinical study. Plasmodium genomic DNA samples extracted from symptomatic malaria patients from Dogondoutchi, Niger, were sequenced by the Sanger method to determine mutations in the Pfdhfr (codons 51, 59, 108, and 164), Pfdhps (codons 436, 437, 540, 581, and 613), and Pfmdr1 (codons 86, 184, 1034, and 1246) genes. One hundred fifty-five (155) pre-treatment samples were sequenced for the Pfdhfr, Pfdhps, and Pfmdr1 genes. A high prevalence of mutations in the Pfdhfr gene was observed at the level of the N51I (84.97%), C59R (92.62%), and S108N (97.39%) codons. The key K540E mutation in the Pfdhps gene was not observed. Only one isolate was found to harbor a mutation at codon I431V. The most common mutation on the Pfmdr1 gene was Y184F in 71.43% of the mutations found, followed by N86Y in 10.20%. The triple-mutant haplotype N51I/C59R/S108N (IRN) was detected in 97% of the samples. Single-mutant (ICS and NCN) and double-mutant (IRS, NRN, and ICN) haplotypes were prevalent at 97% and 95%, respectively. Double-mutant haplotypes of the Pfdhps (581 and 613) and Pfmdr (86 and 184) were found in 3% and 25.45% of the isolates studied, respectively. The study focused on the molecular analysis of the sequencing of the Pfdhfr, Pfdhps, and Pfmdr1 genes. Although a high prevalence of mutations in the Pfdhfr gene have been observed, there is a lack of sulfadoxine pyrimethamine resistance. There is a high prevalence of mutation in the Pfmdr184 codon associated with resistance to amodiaquine. These data will be used by Niger’s National Malaria Control Program to better monitor the resistance of Plasmodium to partner molecules in artemisinin-based combination therapies. Full article
19 pages, 359 KiB  
Review
Drugs for Intermittent Preventive Treatment of Malaria in Pregnancy: Current Knowledge and Way Forward
by Antia Figueroa-Romero, Clara Pons-Duran and Raquel Gonzalez
Trop. Med. Infect. Dis. 2022, 7(8), 152; https://doi.org/10.3390/tropicalmed7080152 - 28 Jul 2022
Cited by 17 | Viewed by 6526
Abstract
Malaria infection during pregnancy is an important driver of maternal and neonatal health in endemic countries. Intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) is recommended for malaria prevention at each scheduled antenatal care visit, starting at the second trimester, in areas [...] Read more.
Malaria infection during pregnancy is an important driver of maternal and neonatal health in endemic countries. Intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) is recommended for malaria prevention at each scheduled antenatal care visit, starting at the second trimester, in areas of high and moderate transmission. However, the increased resistance to SP in some endemic areas challenges its effectiveness. Furthermore, SP is contraindicated in the first trimester of pregnancy and in HIV-infected women on co-trimoxazole prophylaxis due to potential drug–drug interactions. Thus, in recent last decades, several studies evaluated alternative drugs that could be used for IPTp. A comprehensive literature review was conducted to summarize the evidence on the efficacy and safety of antimalarial drugs being evaluated for IPTp. Chloroquine, amodiaquine, mefloquine and azithromycin as IPTp have proven to be worse tolerated than SP. Mefloquine was found to increase the risk of mother-to-child transmission of HIV. Dihydroartemisin-piperaquine currently constitutes the most promising IPTp drug alternative; it reduced the prevalence of malaria infection, and placental and clinical malaria in studies among HIV-uninfected women, and it is currently being tested in HIV-infected women. Research on effective antimalarial drugs that can be safely administered for prevention to pregnant women should be prioritized. Malaria prevention in the first trimester of gestation and tailored interventions for HIV-infected women remain key research gaps to be addressed. Full article
(This article belongs to the Special Issue Malaria Chemoprevention Strategies)
Back to TopTop