Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,534)

Search Parameters:
Keywords = amino acid availability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1384 KiB  
Article
Metabolomics Network Analysis of Various Genotypes Associated with Schizophrenia Gene Variant
by Hema Sekhar Reddy Rajula, Cristina Piras, Karolina Krystyna Kopeć, Antonio Noto, Martina Spada, Katia Lilliu, Mirko Manchia, Michele Mussap, Luigi Atzori and Vassilios Fanos
Metabolites 2025, 15(8), 551; https://doi.org/10.3390/metabo15080551 - 15 Aug 2025
Viewed by 25
Abstract
Background: This study investigates metabolic perturbations in serum samples associated with different genotypes (AA, AC, and CC) of the schizophrenia susceptibility gene NOS1AP-rs12742393. Methods: Publicly available datasets acquired using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC–QTOFMS) were analyzed by employing network and enrichment [...] Read more.
Background: This study investigates metabolic perturbations in serum samples associated with different genotypes (AA, AC, and CC) of the schizophrenia susceptibility gene NOS1AP-rs12742393. Methods: Publicly available datasets acquired using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC–QTOFMS) were analyzed by employing network and enrichment approaches. Results: Key metabolites, including tryptophan, 2-aminobutyric acid, palmitic acid, and 5-hydroxytryptophan, were strongly linked to metabolic networks in genotypes AA-AC and AA. Enrichment analysis was conducted to identify metabolite sets differentially distributed across these genotypes, with a particular focus on genotype AA. Conclusions: The findings suggest that NOS1AP-rs12742393 contributes to complex metabolic alterations involving amino acids, organic compounds, fatty acids, and cholic acids. Moreover, serum metabolome analysis demonstrates sufficient sensitivity and specificity to provide insights into NOS1AP-rs12742393 genotype-associated metabolic profiles, supporting a network-based approach to understanding schizophrenia susceptibility. Full article
Show Figures

Figure 1

13 pages, 1672 KiB  
Article
In Vitro Assessment of the Bioaccessibility and Hypoglycemic Properties of Essential Amino Acids Blend: Implication for Diabetes Management
by Lorenza d’Adduzio, Melissa Fanzaga, Maria Silvia Musco, Marta Sindaco, Paolo D’Incecco, Giovanna Boschin, Carlotta Bollati and Carmen Lammi
Nutrients 2025, 17(16), 2606; https://doi.org/10.3390/nu17162606 - 11 Aug 2025
Viewed by 244
Abstract
Background/Objectives: Essential amino acid (EAA) supplementation is often employed in sportive and clinical nutrition due to EAAs’ role in muscle mass maintenance and growth. EAAs are also involved in insulin and glucagone regulation in diabetes management, but only few reports investigate their possible [...] Read more.
Background/Objectives: Essential amino acid (EAA) supplementation is often employed in sportive and clinical nutrition due to EAAs’ role in muscle mass maintenance and growth. EAAs are also involved in insulin and glucagone regulation in diabetes management, but only few reports investigate their possible implication as dipeptidyl peptidase-IV (DPP-IV) inhibitors and their effect on the stability and secretion of enteroendocrine hormones. A blend of EAAs (called GAF) available as a food supplement, in a specific qualitative and quantitative ratio, was investigated to address its in vitro bioaccessibility, its hypoglycemic properties in vitro and in situ on cellular models, and its safety on intestinal Caco-2 cells. Methods: GAF was subjected to the INFOGEST static digestion protocol, producing the iGAF sample. iGAf DPP-IV inhibitory properties were investigated both in vitro and in situ on Caco-2 cells. Then, STC-1 enteroendocrine cells were employed alone and in co-culture with Caco-2 cells to evaluate iGAF’s impact on glucagon-like peptide 1 (GLP-1) hormone secretion. Results: The study demonstrates that the present EAAs blend is stable and bioaccessible after simulated gastrointestinal digestion, and it is safe at the intestinal cellular level. It inhibits DPP-IV enzyme both in vitro and in situ and promotes GLP-1 secretion by enteroendocrine cells. Conclusions: The sample demonstrated safety at the intestinal level and showed hypoglycemic properties by acting on a dual synergic mechanism that involves DPP-IV enzyme inhibition and GLP-1 hormone stimulation. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

16 pages, 1592 KiB  
Article
Differential Responses of Rice Genotypes to Nitrogen Supply: Impacts on Nitrogen Metabolism and Chlorophyll Fluorescence Kinetics
by Zexin Qi, Wenzheng Sun, Chun Luo, Qiang Zhang, Feisal Mohamed Osman, Chenglong Guan, Ye Wang, Mengru Zhang, Xiaotong Zhang, Jiale Ding, Yuankai Zhang, Fenglou Ling, Xiaolong Liu, Zhian Zhang and Chen Xu
Plants 2025, 14(16), 2467; https://doi.org/10.3390/plants14162467 - 8 Aug 2025
Viewed by 301
Abstract
Nitrogen (N) availability significantly influences plant metabolism and productivity. The aim of this study was to assess the effects of low N stress and subsequent N supplementation on key enzymes of nitrogen metabolism, nitrogen metabolism-related substances, and chlorophyll a fluorescence kinetic parameters in [...] Read more.
Nitrogen (N) availability significantly influences plant metabolism and productivity. The aim of this study was to assess the effects of low N stress and subsequent N supplementation on key enzymes of nitrogen metabolism, nitrogen metabolism-related substances, and chlorophyll a fluorescence kinetic parameters in rice genotypes with different nitrogen utilization efficiencies. We used the Jijing 88 (low-N tolerant) and Xinong 999 (low-N sensitive) as test materials. During the seedling, tillering, and booting stages, the 1/2N and 1/4N treatments were restored to the 1N treatment level. Nine treatments were used in this experiment: CK (1N), A1 (1/2N), A2 (1/2N restored to 1N during the seedling stage), A3 (1/2N restored to 1N during the tillering stage), A4 (1/2N restored to 1N during the booting stage), B1 (1/4N), B2 (1/4N restored to 1N during the seedling stage), B3 (1/4N restored to 1N during the tillering stage), and B4 (1/4N restored to 1N during the booting stage). Key physiological responses, nitrogen compounds, enzymes activities, and chlorophyll a fluorescence kinetics were analyzed. Under low nitrogen conditions, the growth and nitrogen assimilation of rice were inhibited. Compared to XN 999, JJ 88 maintains higher levels of dry matter, nitrate reductase activity (NR), glutamine synthetase activity (GS), glutamate oxaloacetate transaminase activity (GOT), glutamate pyruvate transaminase activity (GPT), as well as nitrate (NO3) and ammonium (NH4+) nitrogen contents. After N supplementation during the early growth stage, both JJ 88 and XN 999 exhibit recovery capabilities. However, in the late growth stage, JJ 88 demonstrates superior recovery capabilities. In addition to enhancing nitrogen metabolism levels, there is also an increase in the content of osmotic regulation substances such as soluble sugars, free amino acids, and proline, along with responses in chlorophyll fluorescence kinetic parameters. This was primarily manifested in the enhancement of performance index (PIABS, PItotal), and quantum yield (φEO, φRO, ψEO), which maintain photosynthetic performance and electron transport efficiency. The research findings indicated that reducing N supply during the early growth stage and restoring N levels in the later stage are beneficial for the recovery of low-nitrogen-tolerant rice varieties. Therefore, in the context of sustainable agricultural production, the breeding of low-nitrogen-tolerant rice varieties and the optimization of N fertilizer management are crucial. Full article
(This article belongs to the Special Issue Advances in Nitrogen Nutrition in Plants)
Show Figures

Figure 1

28 pages, 2127 KiB  
Article
Description of Silvibacterium acidisoli sp. nov. and Edaphobacter albus sp. nov. and a Proposal for Taxonomic Rearrangements Within the Family Acidobacteriaceae Based on Comparative Genome Analysis
by Lihong Qiu and Lixiang Cao
Taxonomy 2025, 5(3), 40; https://doi.org/10.3390/taxonomy5030040 - 8 Aug 2025
Viewed by 262
Abstract
Acidobacteriota are difficult to cultivate but pervasively and copiously distributed across nearly all ecosystems, especially soils, such as agricultural, peat, arctic tundra and metal-contaminated soils. Most of the currently available isolates are affiliated with the family Acidobacteriaceae. However, the current taxonomic structure [...] Read more.
Acidobacteriota are difficult to cultivate but pervasively and copiously distributed across nearly all ecosystems, especially soils, such as agricultural, peat, arctic tundra and metal-contaminated soils. Most of the currently available isolates are affiliated with the family Acidobacteriaceae. However, the current taxonomic structure of Acidobacteriaceae was established based mainly on 16S rRNA gene phylogeny, and several described genera appear to be polyphyletic or taxonomically unresolved. To resolve these issues, genome sequence analyses (18 genomes sequenced in this study and 49 genomes obtained from the NCBI database) along with phenotypic data analysis were used in this study. Phylogenomic analysis and the overall genome relatedness indices (OGRIs)—average nucleotide identity (ANI), average amino acid identity (AAI), percentage of conserved proteins (POCP)—were performed on 67 Acidobacteriota genomes. As a result, proposals for 13 novel combinations are made. Firstly, to resolve the polyphyly of the genus Granulicella, it is suggested that G. aggregans TPB6028T, G. arctica MP5ACTX2T, G. pectinivorans DSM 21001T, G. rosea TPO1014T, G. sapmiensis S6CTX5AT, G. sibirica AF10T and G. tundricola MP5ACTX9T be reclassified to Edaphobacter genus. Secondly, Bryocella elongata is a deep phylogenetic branching pattern of Granulicella elongata comb. nov. Thirdly, due to their deeply phylogenetic branching and low ANI and AAI values, two novel genera, Alloterriglobus gen. nov. and Rhizacidiphilus gen. nov., are proposed, respectively, which encompass Alloterriglobus saanensis comb. nov., Rhizacidiphilus albidus comb. nov. and Rhizacidiphilus tenax comb. nov. Fourthly, Alloacidobacterium dinghuense 4Y35T is placed into genus Pseudacidobacterium. Lastly, based on the phenotypic and genomic data, merging the Terracidiphilus into Occallatibacter genus is proposed. In addition, we describe two novel isolates from forest soil designated ZG23-2T and 4G125T, which are phylogenetically located within this family. Full article
Show Figures

Figure 1

16 pages, 387 KiB  
Article
Effects of Increasing Dietary Inclusion of White Lupin on Growth Performance, Meat Quality, and Fatty Acid Profile on Growing-Fattening Pigs
by Georgeta Ciurescu, Mihaela Dumitru, Nicoleta Aurelia Lefter and Dan-Traian Râmbu
Agriculture 2025, 15(15), 1709; https://doi.org/10.3390/agriculture15151709 - 7 Aug 2025
Viewed by 238
Abstract
This study investigated the possibility of partial replacement of genetically modified soybean meal (SBM) with raw white lupin (WL) seeds in growing pigs’ diets and determined its impact on performance [body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI)], [...] Read more.
This study investigated the possibility of partial replacement of genetically modified soybean meal (SBM) with raw white lupin (WL) seeds in growing pigs’ diets and determined its impact on performance [body weight (BW), average daily gain (ADG), and average daily feed intake (ADFI)], meat quality, and fatty acid profile (FA). A total of 54 male crossbred pigs [(Topigs Large White × Norsvin Landrace) × Duroc], aged 12 weeks, with an initial average BW of 30.30 ± 0.77 kg, were divided into three dietary groups of 18 piglets each. The control group (CON) was fed a standardized SBM-based complete feed. In the experimental groups (WL1 and WL2) the SBM was replaced with increasing levels of WL seeds [WL1-5.0% and WL2-10.0% (grower period, 30–60 kg BW), and WL1-7.0% and WL2-14.0% (finisher period, 61–110 kg BW)]. All diets were formulated to be isocaloric and isonitrogenous with similar content of total lysine and sulphur amino acids, calcium, and available phosphorus. At the end of 83 days’ fattening trial, the animals were slaughtered. Longissimus dorsi muscle (LD) was sampled for analyses of the physicochemical traits. The results show that increasing the dietary raw WL concentration decreased final BW (p = 0.039), ADG (p < 0.0001), and ADFI (p = 0.004) throughout the experimental period, especially in the second phase of feeding. Dietary treatments did not affect the pigs’ blood biochemical constituents. Concerning LD muscle characteristics, the redness color (a*) and collagen content was higher (p < 0.0001) in the WL1/WL2 vs. CON group. Beneficial decrease in the values of some textural attributes (hardness, gumminess, chewiness, and resilience) of LD in the WL1/WL2 vs. CON group was registered. The use of WL had a significant effect on the content of FAs, especially for eicosapentaenoic (p = 0.014) and n-3 PUFA (p = 0.045), which were higher than those fed the CON diet. In conclusion, WL could be used as a replacement of SBM in growing–finishing pigs’ diets, with significant improvements in the meat fatty acid profile and technological properties. Full article
Show Figures

Figure 1

11 pages, 1293 KiB  
Article
RAB24 Missense Variant in Dogs with Cerebellar Ataxia
by Cleo Schwarz, Jan Wennemuth, Julien Guevar, Francesca Dörn, Vidhya Jagannathan and Tosso Leeb
Genes 2025, 16(8), 934; https://doi.org/10.3390/genes16080934 - 4 Aug 2025
Viewed by 379
Abstract
Hereditary ataxias are a highly heterogenous group of diseases characterized by loss of coordination. In this study, we investigated a family of random-bred dogs, in which two siblings were affected by a slowly progressive ataxia. They presented with clinical signs of progressive cerebellar [...] Read more.
Hereditary ataxias are a highly heterogenous group of diseases characterized by loss of coordination. In this study, we investigated a family of random-bred dogs, in which two siblings were affected by a slowly progressive ataxia. They presented with clinical signs of progressive cerebellar ataxia, hypermetria, and absent menace response. The MRI revealed generalized brain atrophy, reduced cortical demarcation, hypoplastic corpus callosum, and cerebellar folia thinning, highly suggestive of a neurodegenerative disorder. We sequenced the genomes of the two affected dogs and their unaffected parents. Filtering for protein-changing variants that had homozygous alternate genotypes in the affected dogs, heterozygous genotypes in the parents, and homozygous reference genotypes in 1576 control genomes yielded a single missense variant in the RAB24 gene, XM_038534663.1:c.239G>T or XP_038390591.1:p.(Gly80Val). Genotypes at this variant showed the expected co-segregation with the ataxia phenotype in the investigated family. The predicted amino acid affects the conserved RabF4 motif. Glycine-80 resides at the protein surface and the introduction of a hydrophobic isopropyl side chain of the mutant valine might impede solvent accessibility. Another missense variant in RAB24, p.Glu38Pro, was previously reported to cause a clinically similar form of cerebellar ataxia in Gordon Setters and Old English Sheepdogs. Taken together, the available data suggest that RAB24:p.Gly80Val represents the causal variant in the studied dogs. To the best of our knowledge, this is only the second report of a potentially pathogenic RAB24 variant in any species and further supports that RAB24 should be considered a candidate gene in human ataxia patients with unclear molecular etiology. Full article
(This article belongs to the Special Issue Hereditary Traits and Diseases in Companion Animals)
Show Figures

Figure 1

12 pages, 562 KiB  
Review
Potential of the Use of Biostimulants in Lettuce Production
by Talys Moratti Lemos de Oliveira, Janyne Soares Braga Pires, Vinicius de Souza Oliveira, Ana Júlia Câmara Jeveaux Machado, Adriano Alves Fernandes, Lúcio de Oliveira Arantes and Sara Dousseau-Arantes
Plants 2025, 14(15), 2416; https://doi.org/10.3390/plants14152416 - 4 Aug 2025
Viewed by 368
Abstract
Lettuce (Lactuca sativa L.) is one of the main leafy vegetables in the world, being present in several countries. Due to its composition, which includes a substance with antioxidant action and beneficial effects on health, it is consumed constantly. However, due to [...] Read more.
Lettuce (Lactuca sativa L.) is one of the main leafy vegetables in the world, being present in several countries. Due to its composition, which includes a substance with antioxidant action and beneficial effects on health, it is consumed constantly. However, due to ongoing climate change that has had global effects, the crop has been suffering a reduction in productivity and quality. Thus, technologies aiming to mitigate the effects of climate extremes have been developed. In lettuce production, biostimulants make it possible to improve the growth and sustainable development of plants. This is due to their ability to activate physiological and biochemical processes in plants, resulting in an increase in the production of bioactive compounds such as vitamins, amino acids, and antioxidants. In addition, biostimulants contribute to improving the nutritional quality of lettuces, making them more resistant and adapted to different environmental conditions, resulting in a more sustainable development for the crop. This review aims to compile and discuss the available scientific evidence on the use of biostimulants in lettuce cultivation, addressing their mechanisms of action, the types of substances used, the results obtained in different cultivation systems, and their potential to promote more efficient and adaptable agriculture in the face of environmental changes. Full article
(This article belongs to the Special Issue Advances in Biostimulant Use on Horticultural Crops)
Show Figures

Figure 1

14 pages, 548 KiB  
Review
Carboxypeptidase A4: A Biomarker for Cancer Aggressiveness and Drug Resistance
by Adeoluwa A. Adeluola, Md. Sameer Hossain and A. R. M. Ruhul Amin
Cancers 2025, 17(15), 2566; https://doi.org/10.3390/cancers17152566 - 4 Aug 2025
Viewed by 310
Abstract
Carboxypeptidase A4 (CPA4) is an exopeptidase that cleaves peptide bonds at the C-terminal domain within peptides and proteins. It preferentially cleaves peptides with terminal aromatic or branched chain amino acid residues such as phenylalanine, tryptophan, or leucine. CPA4 was first discovered in prostate [...] Read more.
Carboxypeptidase A4 (CPA4) is an exopeptidase that cleaves peptide bonds at the C-terminal domain within peptides and proteins. It preferentially cleaves peptides with terminal aromatic or branched chain amino acid residues such as phenylalanine, tryptophan, or leucine. CPA4 was first discovered in prostate cancer cells, but it is now known to be expressed in various tissues throughout the body. Its physiologic expression is governed by latexin, a noncompetitive endogenous inhibitor of CPA4. Nevertheless, the overexpression of CPA4 has been associated with the progression and aggressiveness of many malignancies, including prostate, pancreatic, breast and lung cancer, to name a few. CPA4’s role in cancer has been attributed to its disruption of many cellular signaling pathways, e.g., PI3K-AKT-mTOR, STAT3-ERK, AKT-cMyc, GPCR, and estrogen signaling. The dysregulation of these pathways by CPA4 could be responsible for inducing epithelial--mesenchymal transition (EMT), tumor invasion and drug resistance. Although CPA4 has been found to regulate cancer aggressiveness and poor prognosis, no comprehensive review summarizing the role of CPA4 in cancer is available so far. In this review, we provide a brief description of peptidases, their classification, history of CPA4, mechanism of action of CPA4 as a peptidase, its expression in various tissues, including cancers, its role in various tumor types, the associated molecular pathways and cellular processes. We further discuss the limitations of current literature linking CPA4 to cancers and challenges that prevent using CPA4 as a biomarker for cancer aggressiveness and predicting drug response and highlight a number of future strategies that can help to overcome the limitations. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

19 pages, 3631 KiB  
Article
Genome-Wide Analyses of the XTH Gene Family in Brachypodium distachyon and Functional Analyses of the Role of BdXTH27 in Root Elongation
by Hongyan Shen, Qiuping Tan, Wenzhe Zhao, Mengdan Zhang, Cunhao Qin, Zhaobing Liu, Xinsheng Wang, Sendi An, Hailong An and Hongyu Wu
Int. J. Mol. Sci. 2025, 26(15), 7457; https://doi.org/10.3390/ijms26157457 - 1 Aug 2025
Viewed by 191
Abstract
Xyloglucan endotransglucosylase/hydrolases (XTHs) are a class of cell wall-associated enzymes involved in the construction and remodeling of cellulose/xyloglucan crosslinks. However, knowledge of this gene family in the model monocot Brachypodium distachyon is limited. A total of 29 BdXTH genes were identified from the [...] Read more.
Xyloglucan endotransglucosylase/hydrolases (XTHs) are a class of cell wall-associated enzymes involved in the construction and remodeling of cellulose/xyloglucan crosslinks. However, knowledge of this gene family in the model monocot Brachypodium distachyon is limited. A total of 29 BdXTH genes were identified from the whole genome, and these were further divided into three subgroups (Group I/II, Group III, and the Ancestral Group) through evolutionary analysis. Gene structure and protein motif analyses indicate that closely clustered BdXTH genes are relatively conserved within each group. A highly conserved amino acid domain (DEIDFEFLG) responsible for catalytic activity was identified in all BdXTH proteins. We detected three pairs of segmentally duplicated BdXTH genes and five groups of tandemly duplicated BdXTH genes, which played vital roles in the expansion of the BdXTH gene family. Cis-elements related to hormones, growth, and abiotic stress responses were identified in the promoters of each BdXTH gene, and when roots were treated with two abiotic stresses (salinity and drought) and four plant hormones (IAA, auxin; GA3, gibberellin; ABA, abscisic acid; and BR, brassinolide), the expression levels of many BdXTH genes changed significantly. Transcriptional analyses of the BdXTH genes in 38 tissue samples from the publicly available RNA-seq data indicated that most BdXTH genes have distinct expression patterns in different tissues and at different growth stages. Overexpressing the BdXTH27 gene in Brachypodium led to reduced root length in transgenic plants, which exhibited higher cellulose levels but lower hemicellulose levels compared to wild-type plants. Our results provide valuable information for further elucidation of the biological functions of BdXTH genes in the model grass B. distachyon. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 31608 KiB  
Article
Primary Metabolic Variations in Maize Plants Affected by Different Levels of Nitrogen Supply
by The Ngoc Phuong Nguyen, Rose Nimoh Serwaa and Jwakyung Sung
Metabolites 2025, 15(8), 519; https://doi.org/10.3390/metabo15080519 - 1 Aug 2025
Viewed by 302
Abstract
Background/Objectives: Nitrogen (N) is an essential macronutrient that strongly influences maize growth and metabolism. While many studies have focused on nitrogen responses during later developmental stages, early-stage physiological and metabolic responses remain less explored. This study investigated the effect of different nitrogen-deficient [...] Read more.
Background/Objectives: Nitrogen (N) is an essential macronutrient that strongly influences maize growth and metabolism. While many studies have focused on nitrogen responses during later developmental stages, early-stage physiological and metabolic responses remain less explored. This study investigated the effect of different nitrogen-deficient levels on maize seedling growth and primary metabolite profiles. Methods: Seedlings were treated with N-modified nutrient solution, which contained 0% to 120% of the standard nitrogen level (8.5 mM). Results: Nitrogen starvation (N0) significantly reduced plant height (by 11–14%), shoot fresh weight (over 30%) compared to the optimal N supply (N100). Total leaf nitrogen content under N0–N20 was less than half of that in N100, whereas moderate N deficiency resulted in moderate reductions in growth and nitrogen content. Metabolite analysis revealed that N deficiency induced the accumulation of soluble sugars and organic acids (up to threefold), while sufficient N promoted the synthesis of amino acids related to nitrogen assimilation and protein biosynthesis. Statistical analyses (PCA and ANOVA) showed that both genotypes (MB and TYC) and tissue type (upper vs. lower leaves) influenced the metabolic response to nitrogen, with MB displaying more consistent shifts and TYC exhibiting greater variability under moderate stress. Conclusions: These findings highlight the sensitivity of maize seedlings to early nitrogen deficiency, with severity influenced by nitrogen level, tissue-specific position, and genotype; thus underscore the close coordination between physiological growth and primary metabolic pathways in response to nitrogen availability. These findings expand current knowledge of nitrogen response mechanisms and offer practical insights for improving nitrogen use efficiency in maize cultivation. Full article
Show Figures

Figure 1

14 pages, 1132 KiB  
Article
Phylogenetic Reclassification of Metarhizium granulomatis and Metarhizium viride Species Complex
by Johanna Würf and Volker Schmidt
Pathogens 2025, 14(8), 745; https://doi.org/10.3390/pathogens14080745 - 29 Jul 2025
Viewed by 320
Abstract
Metarhizium (M.) granulomatis and M. viride have previously been described as pathogens causing hyalohyphomycosis in various species of captive chameleons and bearded dragons (Pogona vitticeps). Previous studies yielded different genotypes of M. granulomatis and M. viride based on sequencing of the [...] Read more.
Metarhizium (M.) granulomatis and M. viride have previously been described as pathogens causing hyalohyphomycosis in various species of captive chameleons and bearded dragons (Pogona vitticeps). Previous studies yielded different genotypes of M. granulomatis and M. viride based on sequencing of the internal transcribed spacer 1-5.8S rDNA (ITS-1-5.8S) and a fragment of the large subunit of the 28S rDNA (LSU). The aim of this study was to clarify the relationships between these genotypes and obtain a more accurate phylogenetic classification by sequencing two different loci of the RNA polymerase II second largest subunit (NRPB2), referred to as RPB1 and RPB2, and the translation elongation factor 1 alpha (EF1α). A total of 23 frozen isolates from 21 lizards, including the first isolates of M. granulomatis and M. viride from Parson’s chameleons (Calumma parsonii), were available for phylogenetic analysis. A total of 13 isolates belonged to the M. granulomatis complex and 10 isolates belonged to the M. viride complex. Following the amplification and sequencing of the protein-coding genes, the resulting nucleotide sequences were analyzed, trimmed and assembled. These were further analyzed with regard to differences in single-nucleotide polymorphisms (SNPs) and amino acid structure. In consideration of the results of the present analyses, a phylogenetic reclassification is recommended. Three different genotypes of M. granulomatis can be distinguished, which can be phylogenetically addressed as subspecies. Six subspecies can be distinguished regarding M. viride. Full article
(This article belongs to the Special Issue Filamentous Fungal Pathogens: 2nd Edition)
Show Figures

Figure 1

32 pages, 2851 KiB  
Article
Characterization of Tellurite Toxicity to Escherichia coli Under Aerobic and Anaerobic Conditions
by Roberto Luraschi, Claudia Muñoz-Villagrán, Fabián A. Cornejo, Benoit Pugin, Fernanda Contreras Tobar, Juan Marcelo Sandoval, Jaime Andrés Rivas-Pardo, Carlos Vera and Felipe Arenas
Int. J. Mol. Sci. 2025, 26(15), 7287; https://doi.org/10.3390/ijms26157287 - 28 Jul 2025
Viewed by 316
Abstract
Tellurite (TeO32−) is a highly soluble and toxic oxyanion that inhibits the growth of Escherichia coli at concentrations as low as ~1 µg/mL. This toxicity has been primarily attributed to the generation of reactive oxygen species (ROS) during its intracellular [...] Read more.
Tellurite (TeO32−) is a highly soluble and toxic oxyanion that inhibits the growth of Escherichia coli at concentrations as low as ~1 µg/mL. This toxicity has been primarily attributed to the generation of reactive oxygen species (ROS) during its intracellular reduction by thiol-containing molecules and NAD(P)H-dependent enzymes. However, under anaerobic conditions, E. coli exhibits significantly increased tellurite tolerance—up to 100-fold in minimal media—suggesting the involvement of additional, ROS-independent mechanisms. In this study, we combined chemical-genomic screening, untargeted metabolomics, and targeted biochemical assays to investigate the effects of tellurite under both aerobic and anaerobic conditions. Our findings reveal that tellurite perturbs amino acid and nucleotide metabolism, leading to intracellular imbalances that impair protein synthesis. Additionally, tellurite induces notable changes in membrane lipid composition, particularly in phosphatidylethanolamine derivatives, which may influence biophysical properties of the membrane, such as fluidity or curvature. This membrane remodeling could contribute to the increased resistance observed under anaerobic conditions, although direct evidence of altered membrane fluidity remains to be established. Overall, these results demonstrate that tellurite toxicity extends beyond oxidative stress, impacting central metabolic pathways and membrane-associated functions regardless of oxygen availability. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

22 pages, 2743 KiB  
Article
Effects of the Application of Different Types of Vermicompost Produced from Wine Industry Waste on the Vegetative and Productive Development of Grapevine in Two Irrigation Conditions
by Fernando Sánchez-Suárez, María del Valle Palenzuela, Cristina Campos-Vazquez, Inés M. Santos-Dueñas, Víctor Manuel Ramos-Muñoz, Antonio Rosal and Rafael Andrés Peinado
Agriculture 2025, 15(15), 1604; https://doi.org/10.3390/agriculture15151604 - 25 Jul 2025
Viewed by 381
Abstract
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving [...] Read more.
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving initial thermophilic pre-composting, followed by vermicomposting using Eisenia fetida for 90 days. The conditions were optimized to ensure aerobic decomposition and maintain proper moisture levels (70–85%) and temperature control. This resulted in end products that met the legal standards required for agricultural use. However, population dynamics revealed significantly higher worm reproduction and biomass in the WIR treatment, suggesting superior substrate quality. When applied to grapevines, WIR vermicompost increased soil organic matter, nitrogen availability, and overall fertility. Under rainfed conditions, it improved vegetative growth, yield, and must quality, with increases in yeast assimilable nitrogen (YAN), sugar content, and amino acid levels comparable to those achieved using chemical fertilizers, as opposed to the no-fertilizer trial. Foliar analyses at veraison revealed stronger nutrient uptake, particularly of nitrogen and potassium, which was correlated with improved oenological parameters compared to the no-fertilizer trial. In contrast, WIR + SS compost was less favorable due to lower worm activity and elevated trace elements, despite remaining within legal limits. These results support the use of vermicompost derived solely from wine residues as a sustainable alternative to chemical fertilizers, in line with the goals of the circular economy in viticulture. Full article
(This article belongs to the Special Issue Vermicompost in Sustainable Crop Production—2nd Edition)
Show Figures

Figure 1

19 pages, 2173 KiB  
Article
The Effect of Slow-Release Fertilizer on the Growth of Garlic Sprouts and the Soil Environment
by Chunxiao Han, Zhizhi Zhang, Renlong Liu, Changyuan Tao and Xing Fan
Appl. Sci. 2025, 15(15), 8216; https://doi.org/10.3390/app15158216 - 24 Jul 2025
Viewed by 438
Abstract
To address the issue of excessive chemical fertilizer use in agricultural production, this study conducted a pot experiment with four treatments: CK (no fertilization), T1 (the application of potassium magnesium sulfate fertilizer), T2 (the application of slow-release fertilizer equal to T1), and T3 [...] Read more.
To address the issue of excessive chemical fertilizer use in agricultural production, this study conducted a pot experiment with four treatments: CK (no fertilization), T1 (the application of potassium magnesium sulfate fertilizer), T2 (the application of slow-release fertilizer equal to T1), and T3 (the application of slow-release fertilizer with the same fertility as T1). The effects of these treatments on garlic seedling yield, growth quality, chlorophyll content, photosynthetic characteristics, and the soil environment were investigated to evaluate the feasibility of replacing conventional fertilizers with slow-release formulations. The results showed that compared with CK, all three fertilized treatments (T1, T2, and T3) significantly increased the plant heights and stem diameters of the garlic sprouts (p < 0.05). Plant height increased by 14.85%, 17.81%, and 27.75%, while stem diameter increased by 9.36%, 8.83%, and 13.96%, respectively. Additionally, the chlorophyll content increased by 4.34%, 7.22%, and 8.05% across T1, T2, and T3, respectively. Among the treatments, T3 exhibited the best overall growth performance. Compared with those in the CK group, the contents of soluble sugars, soluble proteins, free amino acids, vitamin C, and allicin increased by 64.74%, 112.17%, 126.82%, 36.15%, and 45.43%, respectively. Furthermore, soil organic matter, available potassium, magnesium, and phosphorus increased by 109.02%, 886.25%, 91.65%, and 103.14%, respectively. The principal component analysis indicated that soil pH and exchangeable magnesium were representative indicators reflecting the differences in the soil’s chemical properties under different fertilization treatments. Compared with the CK group, the metal contents in the T1 group slightly increased, while those in T2 and T3 generally decreased, suggesting that the application of slow-release fertilizer exerts a certain remediation effect on soils contaminated with heavy metals. This may be attributed to the chemical precipitation and ion exchange capacities of phosphogypsum, as well as the high adsorption and cation exchange capacity of bentonite, which help reduce the leaching of soil metal ions. In summary, slow-release fertilizers not only promote garlic sprout growth but also enhance soil quality by regulating its chemical properties. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

12 pages, 1562 KiB  
Article
Intra-Host Evolution During Relapsing Parvovirus B19 Infection in Immunocompromised Patients
by Anne Russcher, Yassene Mohammed, Margriet E. M. Kraakman, Xavier Chow, Stijn T. Kok, Eric C. J. Claas, Manfred Wuhrer, Ann C. T. M. Vossen, Aloys C. M. Kroes and Jutte J. C. de Vries
Viruses 2025, 17(8), 1034; https://doi.org/10.3390/v17081034 - 23 Jul 2025
Viewed by 390
Abstract
Background: Parvovirus B19 (B19V) can cause severe relapsing episodes of pure red cell aplasia in immunocompromised individuals, which are commonly treated with intravenous immunoglobulins (IVIGs). Few data are available on B19V intra-host evolution and the role of humoral immune selection. Here, we report [...] Read more.
Background: Parvovirus B19 (B19V) can cause severe relapsing episodes of pure red cell aplasia in immunocompromised individuals, which are commonly treated with intravenous immunoglobulins (IVIGs). Few data are available on B19V intra-host evolution and the role of humoral immune selection. Here, we report the dynamics of genomic mutations and subsequent protein changes during relapsing infection. Methods: Longitudinal plasma samples from immunocompromised patients with relapsing B19V infection in the period 2011–2019 were analyzed using whole-genome sequencing to evaluate intra-host evolution. The impact of mutations on the 3D viral protein structure was predicted by deep neural network modeling. Results: Of the three immunocompromised patients with relapsing infections for 3 to 9 months, one patient developed two consecutive nonsynonymous mutations in the VP1/2 region: T372S/T145S and Q422L/Q195L. The first mutation was detected in multiple B19V IgG-seropositive follow-up samples and resolved after IgG seroreversion. Computational prediction of the VP1 3D structure of this mutant showed a conformational change in the proximity of the antibody binding domain. No conformational changes were predicted for the other mutations detected. Discussion: Analysis of relapsing B19V infections showed mutational changes occurring over time. Resulting amino acid changes were predicted to lead to a conformational capsid protein change in an IgG-seropositive patient. The impact of humoral response and IVIG treatment on B19V infections should be further investigated to understand viral evolution and potential immune escape. Full article
(This article belongs to the Collection Parvoviridae)
Show Figures

Figure 1

Back to TopTop