Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (215)

Search Parameters:
Keywords = aluminum sheet forming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3316 KiB  
Article
Experimental Study on the Electromagnetic Forming Behavior of Pre-Painted Al 99.0 Sheet
by Dorin Luca, Vasile Șchiopu and Dorian D. Luca
J. Manuf. Mater. Process. 2025, 9(8), 259; https://doi.org/10.3390/jmmp9080259 - 3 Aug 2025
Viewed by 203
Abstract
Development of forming methods for surface-coated metals is a current concern due to their economic and environmental advantages. For a successful forming operation, it is necessary that both components, the substrate and the coating, are able to withstand stress without damage until the [...] Read more.
Development of forming methods for surface-coated metals is a current concern due to their economic and environmental advantages. For a successful forming operation, it is necessary that both components, the substrate and the coating, are able to withstand stress without damage until the final shape and dimensions are reached. This goal can be achieved through good knowledge of the elastic and plastic properties of the substrate and the coating, the compatibility between them, the appropriate surface treatment, and the rigorous control of technological forming parameters. Our study was carried out with flat specimens of pre-painted Al 99.0 sheet that were electromagnetically formed by bulging. Forming behavior was investigated as depending on the initial thickness of the substrate, on the aluminum sheet pretreatment, as well as on the plastic deformation path of the metal–paint structure. To verify the damage to the paint layer, tests with increasing strains were performed, and the interface between the metal and the coating layer was investigated by scanning electron microscopy. The obtained results indicate that electromagnetic forming of pre-painted sheets can be a feasible method for specific applications if the forming degree of the substrate is tightly correlated with the type of desired coating and with the pretreatment method used for the metal surface. Full article
Show Figures

Figure 1

14 pages, 7356 KiB  
Article
Study on Incremental Sheet Forming Performance of AA2024 Aluminum Alloy Based on Adaptive Fuzzy PID Temperature Control
by Zhengfang Li, Zhengyuan Gao, Kaiguo Qian, Lijia Liu, Jiangpeng Song, Shuang Wu, Li Liu and Xinhao Zhai
Metals 2025, 15(8), 852; https://doi.org/10.3390/met15080852 - 30 Jul 2025
Viewed by 288
Abstract
The development of technology has driven a rising need for high-accuracy and high-efficiency manufacturing of low-volume products. Incremental forming technology, characterized by die-free flexibility and low production costs, can effectively replace stamping processes for manufacturing customized small-batch products. However, high-performance aluminum alloys generally [...] Read more.
The development of technology has driven a rising need for high-accuracy and high-efficiency manufacturing of low-volume products. Incremental forming technology, characterized by die-free flexibility and low production costs, can effectively replace stamping processes for manufacturing customized small-batch products. However, high-performance aluminum alloys generally exhibit poor room-temperature plasticity but excellent high-temperature plasticity, necessitating the integration of thermal-assisted methods for manufacturing such products. However, the temperature of the forming region will excessively rise without temperature control, which will affect the forming performance of the material in hot incremental sheet forming of AA2024-T4 aluminum alloy. This study focuses on AA2024-T4 aluminum alloy and proposes a uniform temperature control method for the electric hot tube-assisted incremental sheet forming process, incorporating an adaptive fuzzy PID algorithm. The temperature difference of the forming region is lower than 6% under the various temperatures. On this basis, the forming limit angle and the microstructure state of the material are analyzed, and the grain feature of the material exhibits significantly refined grains and the uniform fine grain distribution under 180 °C with the temperature control of the adaptive fuzzy PID algorithm. Full article
(This article belongs to the Special Issue Advances in the Forming and Processing of Metallic Materials)
Show Figures

Figure 1

19 pages, 4790 KiB  
Article
A Comprehensive Investigation on Shell Hydroforming of AA5052 Through Numerical Modeling and Experimental Analysis
by Arun Achuthankutty, Karthik Narayanan, Ajith Ramesh and Ratna Kishore Velamati
Symmetry 2025, 17(7), 989; https://doi.org/10.3390/sym17070989 - 23 Jun 2025
Viewed by 276
Abstract
This study investigates the shell hydroforming of 1.2 mm-thick AA5052 aluminum alloy sheets to produce hemispherical domes which possess inherent spatial symmetry about their central axis. Shell hydroforming is widely used in fabricating lightweight, high-strength components for aerospace, automotive, and energy applications. The [...] Read more.
This study investigates the shell hydroforming of 1.2 mm-thick AA5052 aluminum alloy sheets to produce hemispherical domes which possess inherent spatial symmetry about their central axis. Shell hydroforming is widely used in fabricating lightweight, high-strength components for aerospace, automotive, and energy applications. The forming process was driven by a spatially symmetrical internal pressure distribution applied uniformly across the blank to maintain balanced deformation and minimize geometrical distortion. Experimental trials aimed at achieving a dome depth of 50 mm revealed wrinkle formation at the blank periphery caused by circumferential compressive stresses symmetrical in nature with respect to the dome’s central axis. To better understand the forming behavior, a validated 3D finite element (FE) model was developed, capturing key phenomena such as material flow, strain rate evolution, hydrostatic stress distribution, and wrinkle development under symmetric boundary conditions. The effects of the internal pressure (IP), blank holding force (BHF), coefficient of friction (CoF), and flange radius (FR) were systematically studied. A strain rate of 0.1 s−1 in the final stage improved material flow, while a symmetric tensile hydrostatic stress of 160 MPa facilitated dome expansion. Although tensile stresses can induce void growth, the elevated strain rate helped suppress it. An optimized parameter set of IP = 5.43 MPa, BHF = 140 kN, CoF = 0.04, and FR = 5.42 mm led to successful formation of the 50 mm dome with 19.38% thinning at the apex. Internal pressure was identified as the most critical factor influencing symmetric formability. A process window was established to predict symmetric failure modes such as wrinkling and bursting. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

12 pages, 3201 KiB  
Article
Experimental and Numerical Analysis of Friction Effects in the Forming of Thin EN AW 8006-O Aluminum Sheets
by Gianluca Parodo, Luca Sorrentino, Sandro Turchetta and Giuseppe Moffa
Metals 2025, 15(7), 695; https://doi.org/10.3390/met15070695 - 22 Jun 2025
Viewed by 405
Abstract
This work investigates the role of friction in the numerical prediction of formability for ultra-thin aluminum sheets made of the EN AW 8006-O alloy. Nakazima-type hemispherical punch stretching tests were conducted under lubricated conditions to assess the influence of interface tribology on thickness [...] Read more.
This work investigates the role of friction in the numerical prediction of formability for ultra-thin aluminum sheets made of the EN AW 8006-O alloy. Nakazima-type hemispherical punch stretching tests were conducted under lubricated conditions to assess the influence of interface tribology on thickness distribution and failure behavior. The experimental activity included tensile testing for material parameter identification and coefficient of friction (COF) measurements according to ASTM D1894 to characterize interface friction. These parameters were then implemented into a finite element model developed in PAM-STAMP. The simulation results were compared with experimental thickness profiles, and showed good agreement when calibrated friction coefficients were used. The analysis highlights the sensitivity of sheet deformation to frictional conditions, and demonstrates that accurate tribological input significantly improves predictive accuracy. The proposed workflow offers a reliable and efficient methodology for simulating forming processes involving ultra-thin aluminum foils, with potential applications in the food packaging industry. Full article
(This article belongs to the Special Issue Advances in Lightweight Alloys, 2nd Edition)
Show Figures

Figure 1

25 pages, 7210 KiB  
Article
Determination of Interface Fracture Parameters in Thermoplastic Fiber Metal Laminates Under Mixed-Mode I+II
by Michał Smolnicki and Szymon Duda
Polymers 2025, 17(11), 1462; https://doi.org/10.3390/polym17111462 - 24 May 2025
Viewed by 564
Abstract
Thermoplastic fiber metal laminates (FMLs) are hybrid material systems that consist of a thin aluminum alloy sheet bonded to plies of fiber-reinforced adhesive. They provide excellent properties like fatigue strength, damage-tolerant properties, and inherent resistance to corrosion. However, they are still challenging materials [...] Read more.
Thermoplastic fiber metal laminates (FMLs) are hybrid material systems that consist of a thin aluminum alloy sheet bonded to plies of fiber-reinforced adhesive. They provide excellent properties like fatigue strength, damage-tolerant properties, and inherent resistance to corrosion. However, they are still challenging materials in terms of the metal–composite interface, which is the weakest link in this material system. In this paper, an experimental–numerical method for the determination of the fracture stress and energy for metal–composite interlayer is presented and verified. The proposed method utilizes four different experimental tests: DCB test (interface opening—mode I), ENF test (interface shearing—mode II), MMB test (mixed-mode I+II—opening with the shearing of the interface) and three-point bending test (3PB). For each test, digital twin in the form of a numerical model is prepared. The established numerical models for DCB and ENF allowed us to determine fracture stress and energy for mode I and mode II, respectively. On the basis of the numerical and experimental (from the MMB test) data, the B-K exponent is determined. Finally, the developed material model is verified in a three-point bending test, which results in mixed-mode conditions. The research is conducted on the thermoplastic FML made of aluminum alloy sheet and glass fiber reinforced polyamide 6. The research presented is complemented by fundamental mechanical tests, image processing and Scanning Electron Microscopy (SEM) analysis. As an effect, for the tested material, fracture parameters are determined using the described method. Full article
(This article belongs to the Special Issue Advances in Fatigue and Fracture of Fiber-Reinforced Polymers)
Show Figures

Graphical abstract

34 pages, 22149 KiB  
Article
Heat Transfer Intensification in a Heat Exchanger Tube with Continuous V-Rib Twisted Tapes Installed
by Yuexiang Du, Khwanchit Wongcharee, Varesa Chuwattanakul, Paisarn Naphon, Naoki Maruyama, Masafumi Hirota and Smith Eiamsa-ard
Appl. Sci. 2025, 15(10), 5612; https://doi.org/10.3390/app15105612 - 17 May 2025
Viewed by 470
Abstract
This article reports the effect of twisted tapes with continuous V-ribs on the thermal performance index characteristics of a heat exchanger tube. Numerical and experimental studies were conducted to investigate the influence of V-rib attack angles (β = 15°, 30°, and 45°) [...] Read more.
This article reports the effect of twisted tapes with continuous V-ribs on the thermal performance index characteristics of a heat exchanger tube. Numerical and experimental studies were conducted to investigate the influence of V-rib attack angles (β = 15°, 30°, and 45°) in forward and backward arrangements. This investigation employed 0.9 mm thick, continuous V-rib twisted tapes (CVRTs) made from aluminum sheets formed with a twist ratio of y/w = 4.0. The experimental results indicated that a continuous V-rib twisted tape (CVRT) was more effective in heat transfer improvement than a typical twisted tape (TT). This was due to swirl and longitudinal vortex flows that helped increase flow mixing and reduce boundary layer thickness. Decreased V-rib attack angles (β) led to greater heat transfer enhancement, pressure drop, and thermal performance index values due to the greater turbulent mixing of fluid. The numerical result revealed that a continuous V-rib twisted tape created strong longitudinal vortex flow, especially with higher attack angles. The Turbulent Kinetic Energy (TKE) and core fluid temperature increased with the insertion of CVRTs. Local Nusselt numbers also remained relatively high for heat exchanger tubes with CVRTs. The experimental study illustrated that a tube with a CVRT installed augmented heat transfer. In the experimentally studied cases, a backward arrangement had more heat transfer, a greater friction factor, and a better thermal performance index. Compared to a plain tube, a tube with CVRT installed, having β = 15°, 30°, and 45°, showed 76.8, 71.6, and 66.2% improved heat transfer, respectively. CVRTs with these three β-values, respectively, exhibited higher thermal performance than a TT. Among the investigated CVRTs, the backward-arranged tape with β = 15° offered the maximum thermal performance index, 1.13 at Re = 6000. The results are congruent with the simulation outcomes, hence supporting the CFD analysis. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

16 pages, 4904 KiB  
Article
Springback Behavior of AA 7075-T6 Alloy in V-Shaped Bending
by Çetin Karakaya and Seçil Ekşi
Appl. Sci. 2025, 15(10), 5509; https://doi.org/10.3390/app15105509 - 14 May 2025
Viewed by 454
Abstract
Springback is the most fundamental problem in all sheet metal-forming processes. Springback is affected by many process variables, and material properties are at the forefront of these variables. This study investigated the effects of the forming process at elevated temperature, bending radius, bending [...] Read more.
Springback is the most fundamental problem in all sheet metal-forming processes. Springback is affected by many process variables, and material properties are at the forefront of these variables. This study investigated the effects of the forming process at elevated temperature, bending radius, bending angle, and sheet metal thickness on the springback properties of AA 7075 aluminum alloy sheet metal with finite element analyses. The effects of process parameters on springback and maximum load are investigated using ANOVA analyses. The results show that the bending radius is the most effective on springback (45.2%). Metal thickness is the second critical parameter for springback (28.1%). The third most important factor is the process temperature (19.9%). Metal thickness (84.21%) is the most effective parameter on the maximum load. The bending angle is the second most important parameter (6.88%). Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

15 pages, 4813 KiB  
Article
Double-Flush Riveting for Hybrid Busbar Assembly
by Rui F. V. Sampaio, João P. M. Pragana, Miguel P. Figueiredo, Ivo M. F. Bragança, Carlos M. A. Silva and Paulo A. F. Martins
Metals 2025, 15(5), 521; https://doi.org/10.3390/met15050521 - 5 May 2025
Viewed by 435
Abstract
This paper explores a novel double-flush riveting process for assembling hybrid busbars made from aluminum and copper sheets. The process involves drilling and forging countersunk holes with controlled geometry in both materials followed by compression of cylindrical rivets into the holes to create [...] Read more.
This paper explores a novel double-flush riveting process for assembling hybrid busbars made from aluminum and copper sheets. The process involves drilling and forging countersunk holes with controlled geometry in both materials followed by compression of cylindrical rivets into the holes to create strong, form- and force-closed mechanical joints. Experimental and numerical analyses are combined to examine material flow, quantify the required forces, and assess the structural integrity of the joints through destructive testing. Additionally, the electrical resistance of these novel joints is evaluated and compared with that of ideal and conventional fastened hybrid busbar joints in order to assess their performance and reliability in real-world electrical service conditions. The results indicate that the novel double-flush riveting process is a viable alternative to other conventional joining processes, such as fastening, delivering good structural integrity and enhanced electrical conductivity for hybrid busbar applications. Full article
(This article belongs to the Special Issue Numerical Modelling of Metal-Forming Processes)
Show Figures

Figure 1

18 pages, 4725 KiB  
Article
Tissue-Adhesive and Biocompatible Zein-Polyaniline-Based Hydrogels for Mechanoresponsive Energy-Harvesting Applications
by Maduru Suneetha, Seainn Bang, Sarah A. Alshehri and Sung Soo Han
Gels 2025, 11(5), 307; https://doi.org/10.3390/gels11050307 - 22 Apr 2025
Viewed by 545
Abstract
Flexible, biocompatible, and adhesive materials are vital for wearable strain sensors in bioelectronics. This study presents zein-polyaniline (ZPANI) hydrogels with mechanoresponsive energy-harvesting properties. SEM revealed a sheet-like fibrous morphology, enhancing adhesion. Incorporating 0.5 wt% polyaniline (PANI) introduced nanostructured aggregates, while higher PANI concentrations [...] Read more.
Flexible, biocompatible, and adhesive materials are vital for wearable strain sensors in bioelectronics. This study presents zein-polyaniline (ZPANI) hydrogels with mechanoresponsive energy-harvesting properties. SEM revealed a sheet-like fibrous morphology, enhancing adhesion. Incorporating 0.5 wt% polyaniline (PANI) introduced nanostructured aggregates, while higher PANI concentrations (3–5 wt%) formed intertwined fibrous networks, improving the mechanical integrity, surface area, and conductivity. PANI enhanced electrical conductivity, and the hydrogels displayed excellent swelling behavior, ensuring flexibility and strong tissue adhesion. Biocompatibility was validated through fibroblast cell culture assays, and the adhesive properties were tested on substrates, such as porcine skin, steel, and aluminum, demonstrating versatile adhesion. The adhesion strength of hydrogels to porcine skin was greatly enhanced with an increasing amount of PANI. The maximum adhesion strength was found to be 30.1 ± 2.1 kPa for ZPANI-5.0. Mechanical testing showed a trade-off between strength and conductivity. The tensile strength decreased from 13.4 kPa (ZPANI-0) to 7.1 kPa (ZPANI-5.0), and the compressive strength declined from 18.5 kPa to 1.6 kPa, indicating increased brittleness. A rheological analysis revealed enhanced strain tolerance (>500% strain) with an increasing PANI content. The storage modulus (G′) remained stable up to 100% strain in PANI-free hydrogels but collapsed beyond 450% strain, while PANI-containing hydrogels exhibited improved viscoelasticity. Mechanical testing showed robust voltage output signals under compression within a 20 s response time. Despite the reduced mechanical strength, energy-harvesting tests showed a surface power density of 0.12 nW cm−2, charge storage of 0.71 nJ, and a surface energy density of 1.4 pWh cm−2. The synergy of the piezoelectric response, bioadhesion, and tunable viscoelasticity establishes ZPANI hydrogels as promising candidates for wearable sensors and energy-harvesting applications. Optimizing the PANI content is crucial for balancing mechanical stability, adhesion, and electrical performance, ensuring long-term bioelectronic functionality. Full article
(This article belongs to the Special Issue Towards Smart Gel Material for Flexible and Wearable Electronics)
Show Figures

Figure 1

49 pages, 29672 KiB  
Review
Aluminum Alloy Hot Stamping and Forming Technology: A Review
by Ruolin Wu, Wei Dai, Jiake Luo, Mengxin Li, Yuan Liu and Huanhuan Li
Materials 2025, 18(8), 1694; https://doi.org/10.3390/ma18081694 - 8 Apr 2025
Cited by 1 | Viewed by 1409
Abstract
Aluminum alloy hot stamping technology has quickly become a research hotspot for many scholars due to its ability to solve key challenges such as poor formability, large rebound, and low dimensional accuracy of aluminum alloy sheets at room temperature. This work systematically reviews [...] Read more.
Aluminum alloy hot stamping technology has quickly become a research hotspot for many scholars due to its ability to solve key challenges such as poor formability, large rebound, and low dimensional accuracy of aluminum alloy sheets at room temperature. This work systematically reviews the progress of Hot-Forming-Quenching (HFQ®) technology and its optimization processes. The effects of key forming parameters are summarized, including temperature, forming rate, friction, and crimping force on the forming properties of aluminum alloys. Additionally, an ontological model of thermal deformation behavior and damage evolution during hot forming is analyzed. A multifactorial strength prediction model, integrating grain size and reinforcement mechanisms, is highlighted for its ability to accurately predict post-forming yield strength. To address the limitations of HFQ®, optimization methods for solid solution and aging heat-treatment stages are categorized and evaluated, along with their advantages and disadvantages. Furthermore, the latest advancements in two innovative hot stamping processes (Low-Temperature Hot Form and Quench (LT-HFQ®) and pre-hardened hot forming (PHF)) are reviewed. LT-HFQ® improves formability by pre-cooling the sheet while maintaining solution treatment, while PHF utilizes pre-hardened aluminum alloys, enabling brief heating, forming, and quenching to significantly reduce cycle time while ensuring component strength. Finally, by summarizing current technological progress and challenges, future directions for aluminum alloy hot stamping are outlined, including advancements in forming processes, material modeling, and optimization through multidisciplinary collaboration and artificial intelligence to drive further innovation. Full article
Show Figures

Figure 1

13 pages, 3043 KiB  
Article
Prediction of Grain Structure and Texture in Twin-Roll Cast Aluminum Alloys Using Cellular Automaton–Finite Element Method
by Han-Gyoung Cho, Young Do Kim and Min-Seok Kim
Materials 2025, 18(5), 1075; https://doi.org/10.3390/ma18051075 - 27 Feb 2025
Cited by 1 | Viewed by 809
Abstract
The twin-roll casting (TRC) process has gained significant attention for aluminum sheet production due to its cost-effectiveness and high processing efficiency. However, controlling the initial grain structure of TRC strips remains challenging due to the absence of a hot rolling stage, necessitating an [...] Read more.
The twin-roll casting (TRC) process has gained significant attention for aluminum sheet production due to its cost-effectiveness and high processing efficiency. However, controlling the initial grain structure of TRC strips remains challenging due to the absence of a hot rolling stage, necessitating an advanced predictive modeling approach. In this study, a cellular automaton–finite element (CA-FE) model was developed to predict the grain structure and texture of aluminum strips fabricated via TRC. Both pure Al and AA7075 alloys were cast under identical conditions using a pilot-scale horizontal twin-roll caster, and their microstructures were characterized experimentally. The developed model incorporated a Gaussian nucleation distribution function and an equivalent binary approach to account for the solidification behavior of multicomponent alloys. The CA-FE simulation results successfully reproduced the key aspects of solidification, grain structure, and texture evolution of TRC strips. The predicted temperature distribution and solid fraction evolution showed distinct differences between the alloys, with pure Al forming columnar grains and AA7075 developing a fully equiaxed structure, which closely matched the experimental findings. Additionally, texture analysis using inverse pole figures (IPFs) and pole figures (PFs) revealed a clear <001> orientation in pure Al, whereas AA7075 exhibited a random texture, both of which were well captured by the CA-FE model. The findings indicate that the developed model offers a reliable prediction of the solidification microstructure and texture evolution in TRC strips, making it a valuable tool for optimizing continuous casting processes. Full article
Show Figures

Figure 1

15 pages, 4151 KiB  
Article
Experimental Study on Deep-Drawing Dies Made of Pre-Stressed UHPC
by Katja Holzer, Yuqi Zhang, Lukas Martinitz, Julika Hoyer and Wolfram Volk
Materials 2025, 18(2), 277; https://doi.org/10.3390/ma18020277 - 9 Jan 2025
Viewed by 723
Abstract
Deep drawing is a cost-efficient way of producing sheet metal parts in high production volumes. Prototypes and very small series are expensive due to the cost of steel-forming tools. Ultra-high-performance concrete (UHPC) tools offer a cheap and fast alternative to conventional steel-forming tools. [...] Read more.
Deep drawing is a cost-efficient way of producing sheet metal parts in high production volumes. Prototypes and very small series are expensive due to the cost of steel-forming tools. Ultra-high-performance concrete (UHPC) tools offer a cheap and fast alternative to conventional steel-forming tools. However, the flexural and tensile strength of UHPC limits its use in complex loading situations occurring in the forming die during deep drawing. To overcome this challenge, we propose pre-stressing UHPC by using expansive UHPC in a mechanically restrained condition. An aluminum powder-based expansive agent can be used to induce a free volume increase in UHPC specimens. With push-out test specimens, the increase in strength was tested when restraining the free volume increase with a steel reinforcement. After 3 and 12 months, no notable pre-straining effect could be measured when restraining the expansion of UHPC. Nonetheless, in deep-drawing experiments, the die made of expansive UHPC in a restrained condition withstood a maximal load during deep drawing of 110 kN. Compared to the die made from UHPC only, the failure mode changed from complete fracture to surface degradation of the drawing radius after 15 strokes. Full article
Show Figures

Graphical abstract

27 pages, 9867 KiB  
Article
Numerical Simulation and Experimental Study on Construction Forming of Cable-Stayed Tensioned Metal Thin Sheet Structure
by Jie Qin, Shuo Xiao, Guojun Sun, Dehai Feng and Jinzhi Wu
Buildings 2024, 14(12), 4059; https://doi.org/10.3390/buildings14124059 - 20 Dec 2024
Viewed by 1022
Abstract
This study investigates the construction methodology of large-span cable-stayed tensioned metal thin-sheet structures, introducing the “integrated enclosure and load-bearing” design concept. By applying in-plane prestress, the out-of-plane stiffness of the metal thin sheet is effectively enhanced, enabling it to simultaneously serve as an [...] Read more.
This study investigates the construction methodology of large-span cable-stayed tensioned metal thin-sheet structures, introducing the “integrated enclosure and load-bearing” design concept. By applying in-plane prestress, the out-of-plane stiffness of the metal thin sheet is effectively enhanced, enabling it to simultaneously serve as an enclosure and a load-bearing component. Through experimental studies and finite element analysis, the study systematically examines the effects of various construction methods on internal forces and displacements. The tensioning of back cables is identified as the safest and most efficient construction method. Subsequently, through simulations of a three-span structure and tensioning forming tests, the research examines displacement, stress, and cable force distribution patterns, demonstrating that increases in the tensioning level result in corresponding increases in sheet surface stress, cable forces, and displacements. The structure exhibits a concave middle section, upward curvatures at both ends, and outward-leaning end columns. Structural members with lower cable forces show minimal impact on displacement and are therefore identified as suitable targets for design optimization. This study offers a theoretical foundation and practical engineering insights to guide the optimization of design and construction for cable-stayed tensioned metal thin-sheet structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

10 pages, 1352 KiB  
Article
A New Approach to Characterize Superplastic Materials from Free-Forming Test and Inverse Analysis
by Gillo Giuliano and Wilma Polini
Appl. Sci. 2024, 14(23), 11113; https://doi.org/10.3390/app142311113 - 28 Nov 2024
Cited by 1 | Viewed by 815
Abstract
For about 60 years, the aerospace industry has been strongly interested in superplastic forming processes to produce extremely light and complex-shaped components. Superplastic characteristics are found in lightweight metallic materials such as titanium-based, aluminum-based, and, more recently, magnesium-based alloys. Since the high ductility [...] Read more.
For about 60 years, the aerospace industry has been strongly interested in superplastic forming processes to produce extremely light and complex-shaped components. Superplastic characteristics are found in lightweight metallic materials such as titanium-based, aluminum-based, and, more recently, magnesium-based alloys. Since the high ductility exhibited by superplastic materials is two orders of magnitude higher than that of conventional materials, complex-shaped components can be obtained. If made with conventional materials, they require expensive assembly operations. The behaviour of superplastic materials is summarized by a constitutive equation commonly obtained via tensile testing that subjects the tested material to a one-dimensional stress state. On the contrary, free-forming tests allows us to test the material by subjecting it to a stress state similar to that determined during a real superplastic-forming process. The aim of this work is to define the characteristic parameters of superplastic materials by free-forming tests. The behaviour of superplastic materials is commonly modelled using a power law which puts the material into a stress-to-strain-rate relationship. This law needs to identify two parameters characterizing superplastic materials: the strain rate sensitivity index and the strength coefficient. In this work, a new procedure is presented that implies the two material parameters vary with strain. It allows for a reduction in the number of constants needed to determine the material constitutive equation, thus requiring low simulation time compared to models that adopt the multiple-objective optimization based on genetic algorithms (GAs). It is more suitable to be used in the industrial field. Furthermore, the proposed procedure is compared with a conventional procedure which is also based on the inverse analysis carried out through the use of a finite element analysis. The results of the conventional procedure, based on the inverse analysis, which is conducted through the use of a finite element analysis, are used to calculate the material constants, and are compared with those coming from the procedure proposed in this work. The proposed procedure appears equally simple and gives more accurate results compared to the conventional procedure. In fact, the maximum percentage error, regarding the prediction of the forming times of a free-forming process, was reduced from 20% to 8%. The development of the proposed procedure, as well as the comparison of the results with a conventional procedure, required the development of an experimental activity. This activity consists of free-forming tests conducted at a constant pressure (the pressures employed vary from 0.2 to 0.4 MPa), at a temperature of 753 K, and on circular sheets (thickness 1.0 mm and radius 40 mm) in superplastic magnesium alloy AZ31. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

21 pages, 4894 KiB  
Article
An Analytical Model for the Plastic Bending of Anisotropic Sheet Materials, Incorporating the Strain-Hardening Effect
by Yaroslav Erisov, Alexander Kuzin and Andry Sedelnikov
Technologies 2024, 12(12), 236; https://doi.org/10.3390/technologies12120236 - 21 Nov 2024
Cited by 1 | Viewed by 2098
Abstract
This study develops an analytical model for the plastic bending of anisotropic sheet materials, incorporating strain-hardening effects. The model, experimentally validated with aluminum alloy samples and digital image correlation, accurately predicts stress–strain distributions, bending moments, and thinning behavior in the bending processes. The [...] Read more.
This study develops an analytical model for the plastic bending of anisotropic sheet materials, incorporating strain-hardening effects. The model, experimentally validated with aluminum alloy samples and digital image correlation, accurately predicts stress–strain distributions, bending moments, and thinning behavior in the bending processes. The results reveal that while plastic anisotropy significantly increases the strain intensity, enhancing it by up to 15% on the inner surface relative to the outer under identical bending radius, it does not affect the position of the neutral layer. Strain hardening, on the other hand, raises the bending moment by approximately 12% and contributes to material thinning, which can reach 3% at smaller bend radii. Furthermore, quantitative analysis shows that decreasing the bend radius intensifies the strain, impacting the final geometry of the workpiece. These findings provide valuable insights for optimizing die design and material selection in forming processes involving anisotropic materials, enabling engineers to more precisely control the force requirements and product dimensions in applications where accurate bending characteristics are critical. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Figure 1

Back to TopTop