Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,383)

Search Parameters:
Keywords = aluminum Al6061

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4963 KiB  
Article
Effect of Bias Voltage and Cr/Al Content on the Mechanical and Scratch Resistance Properties of CrAlN Coatings Deposited by DC Magnetron Sputtering
by Shahnawaz Alam, Zuhair M. Gasem, Nestor K. Ankah and Akbar Niaz
J. Manuf. Mater. Process. 2025, 9(8), 264; https://doi.org/10.3390/jmmp9080264 - 6 Aug 2025
Abstract
Chromium–aluminum nitride (CrAlN) coatings were deposited on polished H13 tool steel substrates using direct current (DC) magnetron sputtering. The Cr/Al composition in the target was varied by inserting either four or eight chromium (Cr) plugs into cavities machined into an aluminum (Al) plate [...] Read more.
Chromium–aluminum nitride (CrAlN) coatings were deposited on polished H13 tool steel substrates using direct current (DC) magnetron sputtering. The Cr/Al composition in the target was varied by inserting either four or eight chromium (Cr) plugs into cavities machined into an aluminum (Al) plate target. Nitrogen was introduced as a reactive gas to facilitate the formation of the nitride phase. Coatings were deposited at substrate bias voltages of −30 V, −50 V, and −60 V to study the combined effects of composition and ion energy on coating properties. Compositional analysis of coatings deposited at a −50 V bias revealed Cr/Al ratios of approximately 0.8 and 1.7 for the 4- and 8-plug configurations, respectively. This increase in the Cr/Al ratio led to a 2.6-fold improvement in coating hardness. Coatings produced using the eight-Cr-plug target exhibited a nearly linear increase in hardness with increasing substrate bias voltage. Cross-sectional scanning electron microscopy revealed a uniform bilayer structure consisting of an approximately 0.5 µm metal interlayer beneath a 2–3 µm CrAlN coating. Surface morphology analysis indicated the presence of coarse microdroplets in coatings with the lower Cr/Al ratio. These microdroplets were significantly suppressed in coatings with higher Cr/Al content, especially at increased bias voltages. This suppression is likely due to enhanced ion bombardment associated with the increased Cr content, attributed to Cr’s relatively higher atomic mass compared to Al. Coatings with lower hardness exhibited greater scratch resistance, likely due to the influence of residual compressive stresses. The findings highlight the critical role of both Cr/Al content and substrate bias in tailoring the tribo-mechanical performance of PVD CrAlN coatings for wear-resistant applications. Full article
Show Figures

Figure 1

14 pages, 2180 KiB  
Article
Study on Preparation of Nano-CeO2 Modified Aluminized Coating by Low Temperature Pack Aluminizing on γ-TiAl Intermetallic Compound
by Jiahui Song, Yunmei Long, Yifan He, Yichen Li, Dianqi Huang, Yan Gu, Xingyao Wang, Jinlong Wang and Minghui Chen
Coatings 2025, 15(8), 914; https://doi.org/10.3390/coatings15080914 (registering DOI) - 5 Aug 2025
Abstract
TiAl alloy offers advantages including low density, high specific strength and stiffness, and excellent high-temperature creep resistance. It is widely used in the aerospace, automotive, and chemical sectors, as well as in other fields. However, at temperatures of 800 °C and above, it [...] Read more.
TiAl alloy offers advantages including low density, high specific strength and stiffness, and excellent high-temperature creep resistance. It is widely used in the aerospace, automotive, and chemical sectors, as well as in other fields. However, at temperatures of 800 °C and above, it forms a porous oxide film predominantly composed of TiO2, which fails to provide adequate protection. Applying high-temperature protective coatings is therefore essential. Oxides demonstrating protective efficacy at elevated temperatures include Al2O3, Cr2O3, and SiO2. The Pilling–Bedworth Ratio (PBR)—defined as the ratio of the volume of the oxide formed to the volume of the metal consumed—serves as a critical criterion for assessing oxide film integrity. A PBR value greater than 1 but less than 2 indicates superior film integrity and enhanced oxidation resistance. Among common oxides, Al2O3 exhibits a PBR value within this optimal range (1−2), rendering aluminum-based compound coatings the most extensively utilized. Aluminum coatings can be applied via methods such as pack cementation, thermal spraying, and hot-dip aluminizing. Pack cementation, being the simplest to operate, is widely employed. In this study, a powder mixture with the composition Al:Al2O3:NH4Cl:CeO2 = 30:66:3:1 was used to aluminize γ-TiAl intermetallic compound specimens via pack cementation at 600 °C for 5 h. Subsequent isothermal oxidation at 900 °C for 20 h yielded an oxidation kinetic curve adhering to the parabolic rate law. This treatment significantly enhanced the high-temperature oxidation resistance of the γ-TiAl intermetallic compound, thereby broadening its potential application scenarios. Full article
(This article belongs to the Special Issue High-Temperature Protective Coatings)
Show Figures

Figure 1

16 pages, 4328 KiB  
Article
High-Throughput Study on Nanoindentation Deformation of Al-Mg-Si Alloys
by Tong Shen, Guanglong Xu, Fuwen Chen, Shuaishuai Zhu and Yuwen Cui
Materials 2025, 18(15), 3663; https://doi.org/10.3390/ma18153663 - 4 Aug 2025
Abstract
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing [...] Read more.
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing and heat treatments. This study, inspired by the Materials Genome Initiative, employs high-throughput experimentation—specifically the kinetic diffusion multiple (KDM) method—to systematically investigate how the pop-in effect, indentation size effect (ISE), and creep behavior vary with the composition of Al-Mg-Si alloys at room temperature. To this end, a 6016/Al-3Si/Al-1.2Mg/Al KDM material was designed and fabricated. After diffusion annealing at 530 °C for 72 h, two junction areas were formed with compositional and microstructural gradients extending over more than one thousand micrometers. Subsequent solution treatment (530 °C for 30 min) and artificial aging (185 °C for 20 min) were applied to simulate industrial processing conditions. Comprehensive characterization using electron probe microanalysis (EPMA), nanoindentation with continuous stiffness measurement (CSM), and nanoindentation creep tests across these gradient regions revealed key insights. The results show that increasing Mg and Si content progressively suppresses the pop-in effect. When the alloy composition exceeds 1.0 wt.%, the pop-in events are nearly eliminated due to strong interactions between solute atoms and mobile dislocations. In addition, adjustments in the ISE enabled rapid evaluation of the strengthening contributions from Mg and Si in the microscale compositional array, demonstrating that the optimum strengthening occurs when the Mg-to-Si atomic ratio is approximately 1 under a fixed total alloy content. Furthermore, analysis of the creep stress exponent and activation volume indicated that dislocation motion is the dominant creep mechanism. Overall, this enhanced KDM method proves to be an effective conceptual tool for accelerating the study of composition–deformation relationships in Al-Mg-Si alloys. Full article
Show Figures

Graphical abstract

17 pages, 6137 KiB  
Article
Synergistic Optimization of High-Temperature Mechanical Properties and Thermal Conductivity in B4C/Al Composites Through Nano-Al2O3 Phase Transformation and Process Engineering
by Chunfa Huang, Lingmin Li and Qiulin Li
Metals 2025, 15(8), 874; https://doi.org/10.3390/met15080874 (registering DOI) - 4 Aug 2025
Abstract
To address the critical challenge of synergistically enhancing both high-temperature mechanical properties and thermal conductivity in neutron-absorbing materials for dry storage of spent nuclear fuel, this study proposes an innovative strategy. This approach involves the controlled distribution, size, and crystalline states of nano-Al [...] Read more.
To address the critical challenge of synergistically enhancing both high-temperature mechanical properties and thermal conductivity in neutron-absorbing materials for dry storage of spent nuclear fuel, this study proposes an innovative strategy. This approach involves the controlled distribution, size, and crystalline states of nano-Al2O3 within an aluminum matrix. By combining plastic deformation and heat treatment, we aim to achieve a structurally integrated functional design. A systematic investigation was conducted on the microstructural evolution of Al2O3/10 wt.% B4C/Al composites in their forged, extruded, and heat-treated states. We also examined how these states affect high-temperature mechanical properties and thermal conductivity. The results indicate that applying hot extrusion deformation along with optimized heat treatment parameters (500 °C for 24 h) allows for a lamellar dispersion of nano-Al2O3 and a crystallographic transition from amorphous to γ-phase. As a result, the composite demonstrates a tensile strength of 144 MPa and an enhanced thermal conductivity of 181 W/(m·K) at 350 °C. These findings provide theoretical insights and technical support for ensuring the high density and long-term safety of spent fuel storage materials. Full article
Show Figures

Figure 1

19 pages, 4972 KiB  
Article
Dispersion of TiB2 Particles in Al–Ni–Sc–Zr System Under Rapid Solidification
by Xin Fang, Lei Hu, Peng Rong and Yang Li
Metals 2025, 15(8), 872; https://doi.org/10.3390/met15080872 (registering DOI) - 4 Aug 2025
Abstract
The dispersion behavior of ceramic particles in aluminum alloys during rapid solidification critically affects the resulting microstructure and mechanical performance. In this study, we investigated the nucleation and growth of Al3(Sc,Zr) on TiB2 surfaces in a 2TiB2/Al–8Ni–0.6Sc–0.1Zr alloy, [...] Read more.
The dispersion behavior of ceramic particles in aluminum alloys during rapid solidification critically affects the resulting microstructure and mechanical performance. In this study, we investigated the nucleation and growth of Al3(Sc,Zr) on TiB2 surfaces in a 2TiB2/Al–8Ni–0.6Sc–0.1Zr alloy, fabricated via wedge-shaped copper mold casting and laser surface remelting. Thermodynamic calculations were employed to optimize alloy composition, ensuring sufficient nucleation driving force under rapid solidification conditions. The results show that the formation of Al3(Sc,Zr)/TiB2 composite interfaces is highly dependent on cooling rate and plays a pivotal role in promoting uniform TiB2 dispersion. At an optimal cooling rate (~1200 °C/s), Al3(Sc,Zr) nucleates heterogeneously on TiB2, forming core–shell structures and enhancing particle engulfment into the α-Al matrix. Orientation relationship analysis reveals a preferred (111)α-Al//(0001)TiB2 alignment in Sc/Zr-containing samples. A classical nucleation model quantitatively explains the observed trends and reveals the critical cooling-rate window for composite interface formation. This work provides a mechanistic foundation for designing high-performance aluminum-based composites with uniformly dispersed reinforcements for additive manufacturing applications. Full article
Show Figures

Figure 1

19 pages, 2474 KiB  
Article
Unraveling the Role of Aluminum in Boosting Lithium-Ionic Conductivity of LLZO
by Md Mozammal Raju, Yi Ding and Qifeng Zhang
Electrochem 2025, 6(3), 29; https://doi.org/10.3390/electrochem6030029 - 4 Aug 2025
Abstract
The development of high-performance solid electrolytes is critical to advancing solid-state lithium-ion batteries (SSBs), with lithium lanthanum zirconium oxide (LLZO) emerging as a leading candidate due to its chemical stability and wide electrochemical window. In this study, we systematically investigated the effects of [...] Read more.
The development of high-performance solid electrolytes is critical to advancing solid-state lithium-ion batteries (SSBs), with lithium lanthanum zirconium oxide (LLZO) emerging as a leading candidate due to its chemical stability and wide electrochemical window. In this study, we systematically investigated the effects of cation dopants, including aluminum (Al3+), tantalum (Ta5+), gallium (Ga3+), and rubidium (Rb+), on the structural, electronic, and ionic transport properties of LLZO using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. It appeared that, among all simulated results, Al-LLZO exhibits the highest ionic conductivity of 1.439 × 10−2 S/cm with reduced activation energy of 0.138 eV, driven by enhanced lithium vacancy concentrations and preserved cubic-phase stability. Ta-LLZO follows, with a conductivity of 7.12 × 10−3 S/cm, while Ga-LLZO and Rb-LLZO provide moderate conductivity of 3.73 × 10−3 S/cm and 3.32 × 10−3 S/cm, respectively. Charge density analysis reveals that Al and Ta dopants facilitate smoother lithium-ion migration by minimizing electrostatic barriers. Furthermore, Al-LLZO demonstrates low electronic conductivity (1.72 × 10−8 S/cm) and favorable binding energy, mitigating dendrite formation risks. Comparative evaluations of radial distribution functions (RDFs) and XRD patterns confirm the structural integrity of doped systems. Overall, Al emerges as the most effective and economically viable dopant, optimizing LLZO for scalable, durable, and high-conductivity solid-state batteries. Full article
Show Figures

Graphical abstract

20 pages, 23283 KiB  
Article
Titanium–Aluminum–Vanadium Surfaces Generated Using Sequential Nanosecond and Femtosecond Laser Etching Provide Osteogenic Nanotopography on Additively Manufactured Implants
by Jonathan T. Dillon, David J. Cohen, Scott McLean, Haibo Fan, Barbara D. Boyan and Zvi Schwartz
Biomimetics 2025, 10(8), 507; https://doi.org/10.3390/biomimetics10080507 - 4 Aug 2025
Viewed by 41
Abstract
Titanium–aluminum–vanadium (Ti6Al4V) is a material chosen for spine, orthopedic, and dental implants due to its combination of desirable mechanical and biological properties. Lasers have been used to modify metal surfaces, enabling the generation of a surface on Ti6Al4V with distinct micro- and nano-scale [...] Read more.
Titanium–aluminum–vanadium (Ti6Al4V) is a material chosen for spine, orthopedic, and dental implants due to its combination of desirable mechanical and biological properties. Lasers have been used to modify metal surfaces, enabling the generation of a surface on Ti6Al4V with distinct micro- and nano-scale structures. Studies indicate that topography with micro/nano features of osteoclast resorption pits causes bone marrow stromal cells (MSCs) and osteoprogenitor cells to favor differentiation into an osteoblastic phenotype. This study examined whether the biological response of human MSCs to Ti6Al4V surfaces is sensitive to laser treatment-controlled micro/nano-topography. First, 15 mm diameter Ti6Al4V discs (Spine Wave Inc., Shelton, CT, USA) were either machined (M) or additively manufactured (AM). Surface treatments included no laser treatment (NT), nanosecond laser (Ns), femtosecond laser (Fs), or nanosecond followed by femtosecond laser (Ns+Fs). Surface wettability, roughness, and surface chemistry were determined using sessile drop contact angle, laser confocal microscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Human MSCs were cultured in growth media on tissue culture polystyrene (TCPS) or test surfaces. On day 7, the levels of osteocalcin (OCN), osteopontin (OPN), osteoprotegerin (OPG), and vascular endothelial growth factor 165 (VEGF) in the conditioned media were measured. M NT, Fs, and Ns+Fs surfaces were hydrophilic; Ns was hydrophobic. AM NT and Fs surfaces were hydrophilic; AM Ns and Ns+Fs were hydrophobic. Roughness (Sa and Sz) increased after Ns and Ns+Fs treatment for both M and AM disks. All surfaces primarily consisted of oxygen, titanium, and carbon; Fs had increased levels of aluminum for both M and AM. SEM images showed that M NT discs had a smooth surface, whereas AM surfaces appeared rough at a higher magnification. Fs surfaces had a similar morphology to their respective NT disc at low magnification, but higher magnification revealed nano-scale bumps not seen on NT surfaces. AM Fs surfaces also had regular interval ridges that were not seen on non-femto laser-ablated surfaces. Surface roughness was increased on M and AM Ns and Ns+Fs disks compared to NT and Fs disks. OCN was enhanced, and DNA was reduced on Ns and Ns+Fs, with no difference between them. OPN, OPG, and VEGF levels for laser-treated M surfaces were unchanged compared to NT, apart from an increase in OPG on Fs. MSCs grown on AM Ns and Ns+Fs surfaces had increased levels of OCN per DNA. These results indicate that MSCs cultured on AM Ns and AM Ns+Fs surfaces, which exhibited unique roughness at the microscale and nanoscale, had enhanced differentiation to an osteoblastic phenotype. The laser treatments of the surface mediated this enhancement of MSC differentiation and warrant further clinical investigation. Full article
Show Figures

Graphical abstract

20 pages, 51475 KiB  
Article
Mechanism-Driven Strength–Conductivity Synergy in Hypereutectic Al-Si Alloys Reinforced with Interface-Engineered Ni-Coated CNTs
by Xuexuan Yang, Yulong Ren, Peng Tang and Jun Tan
Materials 2025, 18(15), 3647; https://doi.org/10.3390/ma18153647 - 3 Aug 2025
Viewed by 198
Abstract
Secondary hypereutectic Al-Si alloys are attractive for sustainable manufacturing, yet their application is often limited by low strength and electrical conductivity due to impurity-induced microstructural defects. Achieving a balance between mechanical and conductive performance remains a significant challenge. In this work, nickel-coated carbon [...] Read more.
Secondary hypereutectic Al-Si alloys are attractive for sustainable manufacturing, yet their application is often limited by low strength and electrical conductivity due to impurity-induced microstructural defects. Achieving a balance between mechanical and conductive performance remains a significant challenge. In this work, nickel-coated carbon nanotubes (Ni-CNTs) were introduced into secondary Al-20Si alloys to tailor the microstructure and enhance properties through interfacial engineering. Composites containing 0 to 0.4 wt.% Ni-CNTs were fabricated by conventional casting and systematically characterized. The addition of 0.1 wt.% Ni-CNTs resulted in the best combination of properties, with a tensile strength of 170.13 MPa and electrical conductivity of 27.60% IACS. These improvements stem from refined α-Al dendrites, uniform eutectic Si distribution, and strong interfacial bonding. Strengthening was achieved through grain refinement, Orowan looping, dislocation generation from thermal mismatch, and the formation of reinforcing interfacial phases such as AlNi3C0.9 and Al4SiC4. At higher Ni-CNT contents, property degradation occurred due to agglomeration and phase coarsening. This study presents an effective and scalable strategy for achieving strength–conductivity synergy in secondary aluminum alloys via nanoscale interfacial design, offering guidance for the development of multifunctional lightweight materials. Full article
Show Figures

Graphical abstract

16 pages, 3316 KiB  
Article
Experimental Study on the Electromagnetic Forming Behavior of Pre-Painted Al 99.0 Sheet
by Dorin Luca, Vasile Șchiopu and Dorian D. Luca
J. Manuf. Mater. Process. 2025, 9(8), 259; https://doi.org/10.3390/jmmp9080259 - 3 Aug 2025
Viewed by 181
Abstract
Development of forming methods for surface-coated metals is a current concern due to their economic and environmental advantages. For a successful forming operation, it is necessary that both components, the substrate and the coating, are able to withstand stress without damage until the [...] Read more.
Development of forming methods for surface-coated metals is a current concern due to their economic and environmental advantages. For a successful forming operation, it is necessary that both components, the substrate and the coating, are able to withstand stress without damage until the final shape and dimensions are reached. This goal can be achieved through good knowledge of the elastic and plastic properties of the substrate and the coating, the compatibility between them, the appropriate surface treatment, and the rigorous control of technological forming parameters. Our study was carried out with flat specimens of pre-painted Al 99.0 sheet that were electromagnetically formed by bulging. Forming behavior was investigated as depending on the initial thickness of the substrate, on the aluminum sheet pretreatment, as well as on the plastic deformation path of the metal–paint structure. To verify the damage to the paint layer, tests with increasing strains were performed, and the interface between the metal and the coating layer was investigated by scanning electron microscopy. The obtained results indicate that electromagnetic forming of pre-painted sheets can be a feasible method for specific applications if the forming degree of the substrate is tightly correlated with the type of desired coating and with the pretreatment method used for the metal surface. Full article
Show Figures

Figure 1

16 pages, 24404 KiB  
Article
Oxidation of HfB2-HfO2-SiC Ceramics Modified with Ti2AlC Under Subsonic Dissociated Airflow
by Elizaveta P. Simonenko, Aleksey V. Chaplygin, Nikolay P. Simonenko, Ilya V. Lukomskii, Semen S. Galkin, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, Tatiana L. Simonenko, Anatoly F. Kolesnikov and Nikolay T. Kuznetsov
Corros. Mater. Degrad. 2025, 6(3), 35; https://doi.org/10.3390/cmd6030035 - 1 Aug 2025
Viewed by 168
Abstract
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using [...] Read more.
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using them as an electrode material for energy storage devices with increased oxidation resistance. This study investigates the behavior of ceramic composites based on the HfB2-HfO2-SiC system, obtained using 15 vol% Ti2AlC MAX-phase as a sintering component, under the influence of subsonic flow of dissociated air. It was determined that incorporating the modifying component (Ti2AlC) altered the composition of the silicate melt formed on the surface during ceramic oxidation. This modification led to the observation of a protective antioxidant function. Consequently, liquation was observed in the silicate melt layer, resulting in the formation of spherical phase inhomogeneities in its volume with increased content of titanium, aluminum, and hafnium. It is hypothesized that the increase in the high-temperature viscosity of this melt prevents it from being carried away in the form of drops, even at a surface temperature of ~1900–2000 °C. Despite the established temperature, there is no sharp increase in its values above 2400–2500 °C. This is due to the evaporation of silicate melt from the surface. In addition, the electrochemical behavior of the obtained material in a liquid electrolyte medium (KOH, 3 mol/L) was examined, and it was shown that according to the value of electrical conductivity and specific capacitance, it is a promising electrode material for supercapacitors. Full article
Show Figures

Figure 1

12 pages, 4246 KiB  
Article
Theoretical Modeling of Pathways of Transformation of Fructose and Xylose to Levulinic and Formic Acids over Single Na Site in BEA Zeolite
by Izabela Czekaj and Weronika Grzesik
Catalysts 2025, 15(8), 735; https://doi.org/10.3390/catal15080735 - 1 Aug 2025
Viewed by 206
Abstract
The aim of our work is to theoretically model the conversion of C6 and C5 carbohydrates derived from lignocellulosic biomass waste into C1–C5 carboxylic acids such as levulinic, oxalic, lactic, and formic acids. Understanding the mechanism of these processes will provide the necessary [...] Read more.
The aim of our work is to theoretically model the conversion of C6 and C5 carbohydrates derived from lignocellulosic biomass waste into C1–C5 carboxylic acids such as levulinic, oxalic, lactic, and formic acids. Understanding the mechanism of these processes will provide the necessary knowledge to better plan the structure of zeolite. In this article, we focus on the theoretical modeling of two carbohydrates, representing C5 and C6, namely xylose and fructose, into levulinic acid (LE) and formic acid (FA). The modeling was carried out with the participation of Na-BEA zeolite in a hierarchical form, due to the large size of the carbohydrates. The density functional theory (DFT) method (StoBe program) was used, employing non-local generalized gradient-corrected functions according to Perdew, Burke, and Ernzerhof (RPBE) to account for electron exchange and correlation and using the nudged elastic band (NEB) method to determine the structure and energy of the transition state. The modeling was performed using cluster representations of hierarchical Na-Al2Si12O39H23 and ideal Al2Si22O64H34 beta zeolite. However, to accommodate the size of the carbohydrate molecules in reaction paths, only hierarchical Na-Al2Si12O39H23 was used. Sodium ions were positioned above the aluminum centers within the zeolite framework. Full article
(This article belongs to the Special Issue State of the Art and Future Challenges in Zeolite Catalysts)
Show Figures

Graphical abstract

21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 - 1 Aug 2025
Viewed by 246
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

17 pages, 2582 KiB  
Article
Transcriptional Regulatory Mechanisms of Blueberry Endophytes in Enhancing Aluminum (Al) Tolerance in Pumpkins
by Qiang Chen, Xinqi Guo, Hongbo Pang, Ying Zhang, Haiyan Lv and Chong Zhang
Horticulturae 2025, 11(8), 887; https://doi.org/10.3390/horticulturae11080887 (registering DOI) - 1 Aug 2025
Viewed by 199
Abstract
Aluminum (Al) stress is an important factor that inhibits crop growth in acidic soils and poses a threat to pumpkin (Cucurbita moschata) production. In this study, we investigated the effect of endophyte (endophyte) strain J01 of blueberry (Vaccinium uliginosum) [...] Read more.
Aluminum (Al) stress is an important factor that inhibits crop growth in acidic soils and poses a threat to pumpkin (Cucurbita moschata) production. In this study, we investigated the effect of endophyte (endophyte) strain J01 of blueberry (Vaccinium uliginosum) on the growth, development, and transcriptional regulatory mechanisms of pumpkin under aluminum stress. The results showed that the blueberry endophyte strain J01 significantly increased the root length of pumpkin under aluminum stress, promoted the growth of lateral roots, and increased root vigor; strain J01 reduced the content of MDA and the relative conductivity in the root system; strain J01 enhanced the activities of superoxide dismutase and catalase in the root system but inhibited ascorbate peroxidase activity. Transcriptome analysis further revealed that strain J01 significantly regulated the expression of key genes associated with aluminum tolerance, including the upregulation of transporter protein genes (aluminum-activated malate transporter and aquaporin), affecting the gene expression levels of genes encoding antioxidant enzymes (ascorbate peroxidase and glutathione S-transferase) and cell wall modification genes (xyloglucan endotransglucosylase/hydrolase and pectin methylesterase). This study provides a theoretical basis and practical guidance for using microbial resources to improve aluminum tolerance in cucurbit crops. Full article
Show Figures

Figure 1

16 pages, 4426 KiB  
Article
Analysis of Dynamic Properties and Johnson–Cook Constitutive Relationship Concerning Polytetrafluoroethylene/Aluminum Granular Composite
by Fengyue Xu, Jiabo Li, Denghong Yang and Shaomin Luo
Materials 2025, 18(15), 3615; https://doi.org/10.3390/ma18153615 - 31 Jul 2025
Viewed by 189
Abstract
The polytetrafluoroethylene/aluminum (PTFE/Al) granular composite, a common formulation in impact-initiated energetic materials, undergoes mechanochemical coupling reactions under sufficiently strong dynamic loading. This investigation discusses the dynamic properties and the constitutive relationship of the PTFE/Al granular composite to provide a preliminary guide for the [...] Read more.
The polytetrafluoroethylene/aluminum (PTFE/Al) granular composite, a common formulation in impact-initiated energetic materials, undergoes mechanochemical coupling reactions under sufficiently strong dynamic loading. This investigation discusses the dynamic properties and the constitutive relationship of the PTFE/Al granular composite to provide a preliminary guide for the research on mechanical properties of a series of composite materials based on PTFE/Al as the matrix. Firstly, the 26.5Al-73.5PTFE (wt.%) composite specimens are prepared by preprocessing, mixing, molding, high-temperature sintering, and cooling. Then, the quasi-static compression and Hopkinson bar tests are performed to explore the mechanical properties of the PTFE/Al composite. Influences of the strain rate of loading on the yield stress, the ultimate strength, and the limited strain are also analyzed. Lastly, based on the experimental results, the material parameters in the Johnson–Cook constitutive model are obtained by the method of piecewise fitting to describe the stress–strain relation of the PTFE/Al composite. Combining the experimental details and the obtained material parameters, the numerical simulation of the dynamic compression of the PTFE/Al composite specimen is carried out by using the ANSYS/LS-DYNA platform. The results show that the computed stress–strain curves present a reasonable agreement with the experimental data. It should be declared that this research does not involve the energy release behavior of the 26.5Al-73.5PTFE (wt.%) reactive material because the material is not initiated within the strain rate range of the dynamic test in this paper. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

16 pages, 3072 KiB  
Article
Process Development to Repair Aluminum Components, Using EHLA and Laser-Powder DED Techniques
by Adrienn Matis, Min-Uh Ko, Richard Kraft and Nicolae Balc
J. Manuf. Mater. Process. 2025, 9(8), 255; https://doi.org/10.3390/jmmp9080255 - 31 Jul 2025
Viewed by 224
Abstract
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. [...] Read more.
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. To optimize the process parameters, single-track depositions were analyzed for both laser-powder DED (feed rate of 2 m/min) and EHLA (feed rate 20 m/min) for AlSi10Mg and Al6061 powders. The cross-sections of single tracks revealed the bonding characteristics and provided laser-powder DED, a suitable parameter selection for the repair. Three damage types were identified on the Al component to define the specification of the repair process and to highlight the capabilities of laser-powder DED and EHLA in repairing intricate surface scratches and dents. Our research is based on variation of the powder mass flow and beam power, studying the influence of these parameters on the weld bead geometry and bonding quality. The evaluation criteria include bonding defects, crack formation, porosity, and dilution zone depth. The bidirectional path planning strategy was applied with a fly-in and fly-out path for the hatching adjustment and acceleration distance. Samples were etched for a qualitative microstructure analysis, and the HV hardness was tested. The novelty of the paper is the new process parameters for laser-powder DED and EHLA deposition strategies to repair large Al components (6061 T6), using AlSi10Mg and Al6061 powder. Our experimental research tested the defect-free deposition and the compatibility of AlSi10Mg on the Al6061 substrate. The readers could replicate the method presented in this article to repair by laser-powder DED/EHLA large Al parts and avoid the replacement of Al components with new ones. Full article
Show Figures

Figure 1

Back to TopTop