Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,532)

Search Parameters:
Keywords = alpinism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3366 KB  
Article
Observed Change in Precipitation and Extreme Precipitation Months in the High Mountain Regions of Bulgaria
by Nina Nikolova, Kalina Radeva, Simeon Matev and Martin Gera
Atmosphere 2026, 17(1), 93; https://doi.org/10.3390/atmos17010093 - 16 Jan 2026
Viewed by 45
Abstract
Precipitation in high mountain areas is of critical importance as these regions are major sources of freshwater, supporting river basins, ecosystems, and downstream communities. Changes in precipitation regimes in these regions can have cascading impacts on water availability, agriculture, hydropower, and biodiversity. The [...] Read more.
Precipitation in high mountain areas is of critical importance as these regions are major sources of freshwater, supporting river basins, ecosystems, and downstream communities. Changes in precipitation regimes in these regions can have cascading impacts on water availability, agriculture, hydropower, and biodiversity. The present study aims to give new information about precipitation variability in high mountain regions of Bulgaria (Musala, Botev Peak, and Cherni Vrah) and to assess the role of large-scale atmospheric circulation patterns for the occurrence of extreme precipitation months. The study period is 1937–2024, and the classification of extreme precipitation months is based on the 10th and 90th percentiles of precipitation distribution. The temporal distribution of extreme precipitation months was analyzed by comparison of two periods (1937–1980 and 1981–2024). The impact of atmospheric circulation was evaluated by correlation between the number of extreme precipitation months and indices for the North Atlantic Oscillation (NAO) and Western Mediterranean Oscillation (WeMO). Results show a statistically significant decrease in winter and spring precipitation at Musala and Cherni Vrah, and a persistent drying tendency at Cherni Vrah across all seasons. The frequency of extremely wet months in winter and autumn has sharply declined since 1981, whereas extremely dry months have become more common, particularly during the cold season. Precipitation erosivity also exhibits station-specific responses, with Musala and Cherni Vrah showing reduced monthly concentration, while Botev Peak retains pronounced warm-season erosive rainfall. Circulation analysis indicates that positive NAOI phases favor dry extremes, while positive WeMOI phases enhance wet extremes. These findings reveal a shift toward drier and more seasonally uneven conditions in Bulgaria’s alpine zone, increasing hydrological risks related to drought, water scarcity, and soil erosion. The identified shifts in precipitation seasonality and intensity offer essential guidance for forecasting hydrological risks and mitigating soil erosion in vulnerable mountain ecosystems. The study underscores the need for adaptive water-resource strategies and enhanced monitoring in high-mountain areas. Full article
Show Figures

Figure 1

35 pages, 3916 KB  
Article
A Study on Dynamic Gross Ecosystem Product (GEP) Accounting, Spatial Patterns, and Value Realization Pathways in Alpine Regions: A Case Study of Golog Tibetan Autonomous Prefecture, Qinghai Province, China
by Yongqing Guo and Yanmei Xu
Sustainability 2026, 18(2), 918; https://doi.org/10.3390/su18020918 - 16 Jan 2026
Viewed by 61
Abstract
Promoting the value realization of ecological products is a central issue in practicing the concept that “lucid waters and lush mountains are invaluable assets.” This is particularly urgent for alpine regions, which are vital ecological security barriers but face stringent developmental constraints. This [...] Read more.
Promoting the value realization of ecological products is a central issue in practicing the concept that “lucid waters and lush mountains are invaluable assets.” This is particularly urgent for alpine regions, which are vital ecological security barriers but face stringent developmental constraints. This study takes Golog Tibetan Autonomous Prefecture in Qinghai Province as a case study. It establishes a Gross Ecosystem Product (GEP) accounting framework tailored to the characteristics of alpine ecosystems and conducts continuous empirical accounting for the period 2020–2023. The findings reveal that: (i) The total GEP of Golog is immense (reaching 655.586 billion yuan in 2023) but exhibits significant dynamic non-stationarity driven by climatic fluctuations, with a coefficient of variation as high as 11.48%. (ii) The value structure of the GEP is highly unbalanced, with regulatory services contributing over 97.6%. Water conservation and biodiversity protection are the two pillars, highlighting its role as a supplier of public ecological products and the predicament of market failure. (iii) The spatial distribution of GEP is highly heterogeneous. Maduo County, comprising 34% of the prefecture’s land area, contributes 48% of its total GEP, with its value per unit area being 1.68 times that of Gande County, revealing the spatial agglomeration of key ecosystem services. To address the dynamic, structural, and spatial constraints identified by these quantitative features, this paper proposes synergistic realization pathways centered on “monetizing regulatory services,” “precision policy regulation,” and “capacity and institution building”. The aim is to overcome the systemic bottlenecks—“difficulties in measurement, trading, coarse compensation, and weak incentives”—in alpine ecological functional zones. This provides a systematic theoretical and practical solution for fostering a virtuous cycle between ecological conservation and regional sustainable development. Full article
(This article belongs to the Section Sustainable Products and Services)
Show Figures

Figure 1

21 pages, 6684 KB  
Article
New Species and New Details of Lonchaeidae (Diptera) from the Australasia–Oceania and Indo-Malayan Realms
by Iain MacGowan
Taxonomy 2026, 6(1), 12; https://doi.org/10.3390/taxonomy6010012 - 16 Jan 2026
Viewed by 117
Abstract
Ten new species of Lonchaeidae in the genera Lonchaea Fallen and Silba Macquart are described, nine from the Australasia–Oceania realm—Papua New Guinea (7 species), Solomon Islands (1 species), and Sulawesi (1 species)—and one from Sumatra in the Indo-Malayan realm. The new species are [...] Read more.
Ten new species of Lonchaeidae in the genera Lonchaea Fallen and Silba Macquart are described, nine from the Australasia–Oceania realm—Papua New Guinea (7 species), Solomon Islands (1 species), and Sulawesi (1 species)—and one from Sumatra in the Indo-Malayan realm. The new species are Lonchaea bacchusi sp. nov., Lonchaea herzogi sp. nov., Lonchaea morobe sp. nov., Lonchaea spenceri sp. nov., Lonchaea sulawesi sp. nov., Silba guineai sp. nov., Silba honiara sp. nov., Silba ismayi sp. nov., Silba kokoda sp. nov., and Silba papua sp. nov. The male genitalia are illustrated, and the diagnostic features that distinguish these species are presented. The male genitalia of Lonchaea uniseta Malloch, 1930, from Samoa are described and illustrated for the first time, and the male genitalia of two species from Micronesia, Lonchaea belua McAlpine, 1964, and Lonchaea sabroski McAlpine, 1964, are illustrated for the first time. A checklist of the Lonchaeidae of Papua New Guinea is provided. Full article
Show Figures

Figure 1

23 pages, 27668 KB  
Article
Magmatic to Subsolidus Evolution of the Variscan Kastoria Pluton (NW Greece): Constraints from Mineral Chemistry and Textures
by Ioanna Gerontidou, Antonios Koroneos, Lambrini Papadopoulou, Alexandros Chatzipetros, Matteo Masotta and Stefanos Karampelas
Minerals 2026, 16(1), 83; https://doi.org/10.3390/min16010083 - 15 Jan 2026
Viewed by 75
Abstract
This study focuses on the mineralogy and mineral chemistry of the accessory minerals occurring in the Kastoria pluton situated in NW Greece, which intrudes the Pelagonian nappe having crystallized during the Late Paleozoic (~300 Ma). The pluton consists of porphyritic granite (GR) that [...] Read more.
This study focuses on the mineralogy and mineral chemistry of the accessory minerals occurring in the Kastoria pluton situated in NW Greece, which intrudes the Pelagonian nappe having crystallized during the Late Paleozoic (~300 Ma). The pluton consists of porphyritic granite (GR) that hosts mafic microgranular enclaves (MME) of monzonitic composition. Both lithologies contain quartz, microcline, plagioclase, biotite, secondary white mica, hornblende, and actinolite along with accessory minerals including titanite, epidote, allanite, apatite, zircon, and magnetite. Compared to the granite, the enclaves are richer in biotite, amphibole, and plagioclase but poorer in quartz and microcline. Mineral chemistry indicates a calc–alkaline affinity, consistent with the observed magmatic trends. Crystallization pressure, estimated at 3 kbar from Al in a hornblende barometer, suggests emplacement at mid-crustal levels. During the Alpine deformation, the pluton underwent low-grade greenschist to amphibolite-facies metamorphism, which partially overprinted the primary mineral assemblages. Magmatic titanite and allanite crystals are well preserved, showing only recrystallization features. Metamorphism produced tiny titanite needles and epidote replacing primary minerals (plagioclase, amphibole, and biotite). Later, hydrothermal alteration produced another generation of secondary epidote. Only a couple of epidote crystals preserve potential magmatic relict characteristics (euhedral habit, zircon inclusions, positive Eu anomaly, and sharp contact with primary minerals). These results provide insights into both the primary magmatic features and the subsequent metamorphic modification of the I-type Kastoria pluton within the Pelagonian domain. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

13 pages, 258 KB  
Article
Lower Extremity Injuries in Elite Snowsport Athletes: A Retrospective Survey
by Buket Sevindik Aktas, Esedullah Akaras, E. Whitney G. Moore, Ersagun Kepir, Anthony Kulas and Gokhan Yagiz
J. Clin. Med. 2026, 15(2), 695; https://doi.org/10.3390/jcm15020695 - 15 Jan 2026
Viewed by 74
Abstract
Background/Objectives: Lower extremity injuries represent a major health concern in elite snowsport disciplines, where high mechanical loads, complex movement patterns, and demanding environmental conditions substantially increase injury risk. Understanding injury incidence and burden in this population is essential for developing sport- and [...] Read more.
Background/Objectives: Lower extremity injuries represent a major health concern in elite snowsport disciplines, where high mechanical loads, complex movement patterns, and demanding environmental conditions substantially increase injury risk. Understanding injury incidence and burden in this population is essential for developing sport- and sex-specific prevention strategies. This retrospective study determined lower extremity injury incidence and burden among elite snowsport athletes. Methods: Ninety-nine Turkish National Snowsport Teams Training Camp athletes (34 females; 65 males) consented to a review of their medical records for injury incidence. Overall, sex- and sport-specific injury incidence (number/10,000 h) and burden (weeks missing/10,000 h) were calculated. Results: Overall, medial tibial stress syndrome (MTSS) was the highest burden (9.5 ± 38.7), and ankle sprain (1.7 ± 0.4) was the highest-incident injury. However, injury incidence and burden patterns differed by sex and sport. Notably, medial tibial stress syndrome (MTSS) showed comparable incidence in female and male athletes but resulted in a substantial injury burden in both sexes, reflecting prolonged time-loss from training and competition and indicating a meaningful negative impact on athletic performance. Specifically, the highest-burden injury for women was anterior cruciate ligament (ACL) rupture (16.2 ± 64.5), and for men the most common injury was MTSS (9.7 ± 40.7). For cross-country skiers, MTSS had the highest burden and incidence. For all other sports, and across sexes, ankle sprain was the highest incidence injury—women (1.3 ± 3.0), men (2.0 ± 4.5), biathletes (2.3 ± 5.7), Alpine skiers (2.8 ± 4.5), ski jumpers (1.6 ± 3.1), and snowboarders (3.2 ± 4.7)—plus the highest-burden injury for biathletes (6.9 ± 14.3) and ski jumpers (6.0 ± 14.0). The highest burden injury for Alpine skiers was ACL damage (34.3 ± 87.2), and for snowboarders it was knee collateral ligament injury (27.8 ± 78.6). Moreover, patellar tendinitis, hamstring strains, calf strains, Achilles ruptures, anterior tibial pain, meniscus tears, and hip injuries were frequently observed in injury patterns. Conclusions: Ankle sprains were the most frequent lower extremity injury in elite snowsport athletes, whereas medial tibial stress syndrome (MTSS) and anterior cruciate ligament (ACL) injuries accounted for the greatest injury burden. Injury incidence and burden differed by sex and snowsport discipline. Full article
(This article belongs to the Section Sports Medicine)
19 pages, 4272 KB  
Article
Garnet-Free Mineral Assemblage at Eclogite-Facies Conditions in the Riffelberg–Garten Unit, Italian Western Alps
by Gisella Rebay, Thomas Gusmeo, Maria Iole Spalla and Davide Zanoni
Minerals 2026, 16(1), 79; https://doi.org/10.3390/min16010079 - 14 Jan 2026
Viewed by 148
Abstract
The peculiar high-pressure mineral assemblage omphacite, epidote, quartz, calcite, titanite, and opaque minerals, ±phengite, has been observed in the Riffelberg–Garten Unit (RGU), a heterogeneous metasedimentary rock assemblage of the Zermatt–Saas Zone. Microstructural analysis, mineral chemistry, and petrologic modelling allowed to refine the syn-D2 [...] Read more.
The peculiar high-pressure mineral assemblage omphacite, epidote, quartz, calcite, titanite, and opaque minerals, ±phengite, has been observed in the Riffelberg–Garten Unit (RGU), a heterogeneous metasedimentary rock assemblage of the Zermatt–Saas Zone. Microstructural analysis, mineral chemistry, and petrologic modelling allowed to refine the syn-D2 P-T peak conditions for the Alpine tectono-metamorphic evolution. In the upper Valtournenche, S2 foliation is the dominant fabric at the regional scale of the Zermatt–Saas Zone. Petrologic modelling of the syn-D2 mineral assemblage indicates climax conditions of P = 1.85–2.0 GPa and T = 500–525 °C. These estimates are in good agreement with those inferred in the RGU metasedimentary matrix and enclosed eclogite and metagabbro elements. During exhumation, RGU rocks re-equilibrated texturally and mineralogically under blueschist–/epidote–amphibolite (P = 0.4–1.3 GPa and T = 350–500 °C during D3) and greenschist (P ≤ 0.25 GPa and T ≤ 400 °C during) facies conditions. This study highlights the potential of petrologic modelling for constraining the environmental conditions of metamorphism even in anomalous mineral assemblages where conventional thermobarometry is not applicable. Full article
Show Figures

Figure 1

14 pages, 1255 KB  
Article
Age-Specific Composition and Predicted Function of Gut Microbiota in Plateau Pikas (Ochotona curzoniae)
by Hui Han, Yongbing Yang, Xiaojia Zhu, Migmar Wangdwei and Le Yang
Biology 2026, 15(2), 144; https://doi.org/10.3390/biology15020144 - 14 Jan 2026
Viewed by 91
Abstract
Gut microbes play a crucial role in regulating physiological processes such as host energy metabolism, nutrient absorption, and environmental adaptation. The predicted functions of gut microbes can be influenced by many factors, both extrinsic and intrinsic to the hosts. The plateau pika is [...] Read more.
Gut microbes play a crucial role in regulating physiological processes such as host energy metabolism, nutrient absorption, and environmental adaptation. The predicted functions of gut microbes can be influenced by many factors, both extrinsic and intrinsic to the hosts. The plateau pika is a key species in the alpine ecosystem of the Qinghai–Tibet Plateau. Previous research on the plateau pika primarily examined how extrinsic factors affected its gut microbiota. However, studies on intrinsic factors are scarce. Here, we used live-trapping to capture plateau pikas and collect cecum contents. Using metagenomic sequencing of cecum content samples, we characterized and compared the gut microbial composition and predicted function of plateau pika in adult (n = 9) and juvenile (n = 9) populations. The results indicated that Bacillota and Bacteroidete were the major bacterial phyla. The core gut microbial genera were the same, but the relative abundance of Oscillospira in juveniles was significantly lower than that in adults. The changes in the proportion of cellulose-degradation-related bacterial communities in juveniles suggest that they tend to choose low-fiber diets. In this study, we found no significant differences in the gut microbial composition and diversity, KEGG level 1 metabolic pathways, or CAZy class level between adult and juvenile plateau pikas. In total, the composition and predicted functions of cecal microorganisms in juvenile and adult male plateau pikas were not different. Regarding KEGG level 2 metabolic pathways, the juvenile group had a higher relative abundance of metabolic pathways for cofactors and vitamins, terpenoids, and polyketides, whereas the adult group had a higher relative abundance of energy metabolism. However, the resulting differences remain unclear. Therefore, future research should validate the above findings on a broader spatio-temporal scale and conduct cross-species comparisons to construct a microbial ecological framework for the health management of plateau wild animals. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

21 pages, 87393 KB  
Article
Divergent Responses of Leaf Area Index to Abiotic Drivers Across Abies Forest Types in China
by Zichun Gao, Huayong Zhang, Xi Luo, Yiwen Zhang and Yunxiang Han
Forests 2026, 17(1), 103; https://doi.org/10.3390/f17010103 - 12 Jan 2026
Viewed by 103
Abstract
The Leaf Area Index (LAI) is a fundamental biophysical parameter quantifying forest canopy structure and regulating water–energy exchange. While Abies Mill. forests constitute a vital component of China’s alpine ecosystems, the spatial heterogeneity of their LAI and its sensitivity to environmental filtering remain [...] Read more.
The Leaf Area Index (LAI) is a fundamental biophysical parameter quantifying forest canopy structure and regulating water–energy exchange. While Abies Mill. forests constitute a vital component of China’s alpine ecosystems, the spatial heterogeneity of their LAI and its sensitivity to environmental filtering remain underexplored. This study employed Random Forest (RF) and Structural Equation Modeling (SEM) to disentangle the direct and interactive effects of climate, soil, topography, and human footprint (HFP) on LAI across 17 distinct Abies forest types. The results revealed that temperature was the dominant positive driver for the overall Abies forests (Total effect = 2.197), whereas Elevation (DEM) exerted the strongest negative regulation (Total effect = −0.335). However, driver dominance varied substantially among forest types: climatic water availability was the primary constraint for Abies georgei var. smithii (Viguié & Gaussen) W.C.Cheng & L.K.Fu forest (Type 55), while DEM determined LAI in Abies fargesii Franch. forest (Type 49). Notably, we found that HFP could exert positive effects on LAI in specific communities (e.g., Abies densa Griff. forest, Type 58), likely due to understory compensation under moderate disturbance. These findings highlight the necessity of type-specific management strategies and provide a theoretical basis for predicting alpine forest dynamics under changing environments. Full article
Show Figures

Figure 1

18 pages, 3907 KB  
Article
Climate Change and Ecological Restoration Synergies Shape Ecosystem Services on the Southeastern Tibetan Plateau
by Xiaofeng Chen, Qian Hong, Dongyan Pang, Qinying Zou, Yanbing Wang, Chao Liu, Xiaohu Sun, Shu Zhu, Yixuan Zong, Xiao Zhang and Jianjun Zhang
Forests 2026, 17(1), 102; https://doi.org/10.3390/f17010102 - 12 Jan 2026
Viewed by 179
Abstract
Global environmental changes significantly alter ecosystem services (ESs), particularly in fragile regions like the Tibetan Plateau. While methodological advances have improved spatial assessment capabilities, understanding of how multiple drivers interact to shape ecosystem service heterogeneity remains limited to regional scales, especially across complex [...] Read more.
Global environmental changes significantly alter ecosystem services (ESs), particularly in fragile regions like the Tibetan Plateau. While methodological advances have improved spatial assessment capabilities, understanding of how multiple drivers interact to shape ecosystem service heterogeneity remains limited to regional scales, especially across complex alpine landscapes. This study aims to clarify whether multi-factor interactions produce nonlinear enhancements in ES explanatory power and how these driver–response relationships vary across heterogeneous terrains. We quantified spatiotemporal patterns of four key ecosystem services—water yield (WY), soil conservation (SC), carbon sequestration (CS), and habitat quality (HQ)—across the southeastern Tibetan Plateau from 2000 to 2020 using multi-source remote sensing data and spatial econometric modeling. Our analysis reveals that SC increased by 0.43 t·hm−2·yr−1, CS rose by 1.67 g·m−2·yr−1, and HQ improved by 0.09 over this period, while WY decreased by 3.70 mm·yr−1. ES variations are predominantly shaped by potent synergies, where interactive explanatory power consistently surpasses individual drivers. Hydrothermal coupling (precipitation ∩ potential evapotranspiration) reached 0.52 for WY and SC, while climate–vegetation synergy (precipitation ∩ normalized difference vegetation index) achieved 0.76 for CS. Such climate–restoration synergies now fundamentally shape the region’s ESs. Geographically weighted regression (GWR) further revealed distinct spatial dependencies, with southeastern regions experiencing strong negative effects of land use type and elevation on WY, while northwestern areas showed a positive elevation associated with WY but negative effects on SC and HQ. These findings highlight the critical importance of accounting for spatial non-stationarity in driver–ecosystem service relationships when designing conservation strategies for vulnerable alpine ecosystems. Full article
Show Figures

Figure 1

21 pages, 7848 KB  
Article
Multidimensional Validation of FVC Products over Qinghai–Tibetan Plateau Alpine Grasslands: Integrating Spatial Representativeness Metrics with Machine Learning Optimization
by Junji Li, Jianjun Chen, Xue Cheng, Jiayuan Yin, Qingmin Cheng, Haotian You, Xiaowen Han and Xinhong Li
Remote Sens. 2026, 18(2), 228; https://doi.org/10.3390/rs18020228 - 10 Jan 2026
Viewed by 194
Abstract
Fractional Vegetation Cover (FVC) dynamics on the Qinghai–Tibetan Plateau (QTP) are critical indicators for assessing ecosystem condition. However, uncertainties persist in the accuracy of existing FVC products over the QTP due to retrieval differences, scale effects, and limited validation data. This study utilized [...] Read more.
Fractional Vegetation Cover (FVC) dynamics on the Qinghai–Tibetan Plateau (QTP) are critical indicators for assessing ecosystem condition. However, uncertainties persist in the accuracy of existing FVC products over the QTP due to retrieval differences, scale effects, and limited validation data. This study utilized the Google Earth Engine platform to integrate unmanned aerial vehicle (UAV) observations, Sentinel-2, MODIS, climate, and topography datasets, and proposed a comprehensive framework incorporating dual-index screening, machine learning optimization, and multidimensional validation to systematically assess the accuracy of GEOV3, GLASS, and MuSyQ FVC products in the alpine grasslands. The dual-index screening reduced validation uncertainty by improving the spatial representativeness of ground data. To build a high-precision evaluation dataset with limited inter-class coverage, recursive feature elimination and grid search were applied to optimize five ML models, and CatBoost achieved the superior performance (R2 = 0.880, RMSE = 0.122), followed by XGBoost, GBM, LightGBM, and RF models. Four validation scenarios were implemented, including direct validation using 250 m UAV plot FVC and multi-scale validation using a 10 m FVC reference aggregated to product grids. Results show that GEOV3 (R2 = 0.909–0.925, RMSE = 0.082–0.103) outperformed GLASS (R2 = 0.742–0.771, RMSE = 0.138–0.175) and MuSyQ (R2 = 0.739–0.746, RMSE = 0.138–0.181), both of which exhibited systematic underestimation. This framework significantly enhances FVC product validation reliability, providing a robust solution for remote sensing product validation in alpine grassland ecosystems. Full article
Show Figures

Graphical abstract

18 pages, 2853 KB  
Article
Environmental Heterogeneity Drives Distinct Spatial Distribution Patterns of Microbial Co-Occurring Species Across Different Grassland Types
by Wenjing Liu, Kai Xue, Biao Zhang, Shutong Zhou, Weiwei Cao, Kui Wang, Yanbin Hao, Xiaoyong Cui and Yanfen Wang
Microorganisms 2026, 14(1), 156; https://doi.org/10.3390/microorganisms14010156 - 10 Jan 2026
Viewed by 145
Abstract
Grasslands, as dominant terrestrial ecosystems, significantly influence soil microbial communities through alterations in soil properties. However, their effects on spatial patterns of soil microbial communities are still under-investigated. To address this, we quantified taxa–area (TAR) and node–area (NAR) relationships for prokaryotic and fungal [...] Read more.
Grasslands, as dominant terrestrial ecosystems, significantly influence soil microbial communities through alterations in soil properties. However, their effects on spatial patterns of soil microbial communities are still under-investigated. To address this, we quantified taxa–area (TAR) and node–area (NAR) relationships for prokaryotic and fungal communities across temperate steppe (TS), alpine steppe (AS), and alpine meadow (AM). Our findings indicated that the spatial turnover of both prokaryotic and fungal communities were higher in alpine steppe and alpine meadow than in temperate steppe, mirroring the gradient of soil environmental heterogeneity. Notably, overall species richness increased logarithmically with sampling area in all grasslands; in striking contrast, co-occurring richness exhibited an increasing and then decreasing trend in AS and AM, but declined monotonically in TS, indicating that microbial interaction networks collapse once a critical spatial threshold is exceeded regulated by ecosystem type and environmental heterogeneity. In growing season, the stochastic dominance in prokaryotic assembly (Normalized stochasticity ratio = 0.71–0.89) and deterministic dominance in fungal assembly (Normalized stochasticity ratio = 0.23–0.37) can be explained by their differences in niche breadth and migration rate. These scale-dependent biogeographic patterns demonstrate that grassland type impacts distinct interactions and spatial patterns of microbial communities. These findings provide novel insights into a comprehensive understanding of how grassland type mediates soil microbial community. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

21 pages, 4755 KB  
Article
Divergent Successional Patterns of phoC- and phoD-Phosphate-Solubilizing Microbes During Plateau Mammal (Ochotona curzoniae) Carcass Decomposition
by Jie Bi, Xianxian Mu, Shunqin Shi, Xueqian Hu, Petr Heděnec, Maoping Li and Huan Li
Microorganisms 2026, 14(1), 153; https://doi.org/10.3390/microorganisms14010153 - 9 Jan 2026
Viewed by 222
Abstract
Microbial communities associated with animal cadaver decomposition play a crucial role in biogeochemical cycles in both aquatic and terrestrial ecosystems. However, it remains unclear regarding the diversity, succession, and assembly of phosphate-solubilizing microbes during animal cadaver decay. In this study, plateau pikas ( [...] Read more.
Microbial communities associated with animal cadaver decomposition play a crucial role in biogeochemical cycles in both aquatic and terrestrial ecosystems. However, it remains unclear regarding the diversity, succession, and assembly of phosphate-solubilizing microbes during animal cadaver decay. In this study, plateau pikas (Ochotona curzoniae) as mammal degradation models were placed on alpine meadow soils to study diversity, succession and assembly of phosphate-solubilizing microbes using amplicon sequencing of phoC- and phoD-genes during 94 days of incubation. The total phosphorus concentration in the corpse group increased by 8.53% on average. Alpha diversity of both phoC- and phoD-harboring microbes decreased in the experimental group compared to the control group, and the community structure differed between control and experimental groups. Phosphate-solubilizing microbial community turnover time rate (TDR) of the experimental group was higher than that of the control group, indicating corpse decay accelerates the succession of phoC- and phoD-harboring microbial community. Null model revealed that deterministic process dominated phoC microbial community in corpse group, while the stochastic process dominated phoD microbial community. The microbial network in experimental group was more complicated than that in control group of phoC microbial community, while phoD microbial community showed opposite trend. Partial least squares path modeling (PLS-PM) showed that phoC-harboring microbial community was mainly influenced by pH, Total carbon (TC) and Total phosphorus (TP), while the phoD microbial community was only regulated by TP. These findings elucidate the ecological mechanism of phosphorus-solubilizing microbial community changes during animal corpse degradation. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 2882 KB  
Article
Soil Environmental Factors Dominate over Nitrifier and Denitrifier Abundances in Regulating Nitrous Oxide Emissions Following Nutrient Additions in Alpine Grassland
by Mingyuan Yin, Xiaopeng Gao, Yufeng Wu, Yanyan Li, Wennong Kuang, Lei Li and Fanjiang Zeng
Agronomy 2026, 16(2), 168; https://doi.org/10.3390/agronomy16020168 - 9 Jan 2026
Viewed by 167
Abstract
Nutrient additions including nitrogen (N) and phosphorus (P) are widely considered as an important strategy for enhancing grassland productivity. However, the effects of these nutrients additions on soil nitrous oxide (N2O) emissions and the underlying mechanisms remain debated. We conducted a [...] Read more.
Nutrient additions including nitrogen (N) and phosphorus (P) are widely considered as an important strategy for enhancing grassland productivity. However, the effects of these nutrients additions on soil nitrous oxide (N2O) emissions and the underlying mechanisms remain debated. We conducted a two-year field experiment in an alpine grassland on Kunlun Mountain in northwestern China to assess the effects of N and P additions on N2O emissions, in relation with nitrifying enzyme activity (NEA), denitrifying enzyme activity (DEA), and key functional genes abundance responsible for nitrification (amoA and Nitrobacter-like nxrA) and denitrification (narG, nirS, nirK and nosZ). Compared to the Control without nutrient addition (CK), N addition alone substantially increased cumulative N2O emission (ƩN2O) by 2.0 times. In contrast, P addition or combined N and P (N+P) addition did not significantly affect ƩN2O, though both treatments significantly increased plant aboveground biomass. Such results indicate that P addition may mitigate N-induced N2O emission, likely by reducing soil N availability through enhanced plant and microbial N uptake. Compared to CK, N or N+P addition significantly elevated NEA but did not affect DEA. Structural equation modeling (SEM) indicated that NEA was directly influenced by the gene abundances of ammonia-oxidizing bacteria (AOB) and Nitrobacter-like nxrA but not by ammonia-oxidizing archaea (AOA). However, SEM also revealed that soil environmental variables including soil temperature, pH, and water-filled pore space (WFPS) had a stronger direct influence on N2O emissions than the abundances of nitrifiers. These results demonstrate that soil environmental conditions play a more significant role than functional gene abundances in regulating N2O emissions following N and P additions in semi-arid alpine grasslands. This study highlights that the N+P application can potentially decrease N2O emissions than N addition alone, while increasing productivity in the alpine grassland ecosystems. Full article
Show Figures

Figure 1

21 pages, 12613 KB  
Article
The Evolution and Impact of Glacier and Ice-Rock Avalanches in the Tibetan Plateau with Sentinel-2 Time-Series Images
by Duo Chu, Linshan Liu and Zhaofeng Wang
GeoHazards 2026, 7(1), 10; https://doi.org/10.3390/geohazards7010010 - 9 Jan 2026
Viewed by 264
Abstract
Catastrophic mass flows originating from the high mountain cryosphere often cause cascading hazards. With increasing human activities in the alpine region and the sensitivity of the cryosphere to climate warming, cryospheric hazards are becoming more frequent in the mountain regions. Monitoring the evolution [...] Read more.
Catastrophic mass flows originating from the high mountain cryosphere often cause cascading hazards. With increasing human activities in the alpine region and the sensitivity of the cryosphere to climate warming, cryospheric hazards are becoming more frequent in the mountain regions. Monitoring the evolution and impact of the glaciers and ice-rock avalanches and hazard consequences in the mountain regions is crucial to understand nature and drivers of mass flow process in order to prevent and mitigate potential hazard risks. In this study, the glacier and ice-rock avalanches that occurred in the Tibetan Plateau (TP) were investigated based on the Sentinel-2 satellite data and in situ observations, and the main driving forces and impacts on the regional environment, landscape, and geomorphological conditions were also analyzed. The results showed that the avalanche deposit of Arutso glacier No. 53 completely melted away in 2 years, while the deposit of Arutso glacier No. 50 melted in 7 years. Four large-scale ice-rock avalanches in the Sedongpu basin not only had significant impacts on the river flow, landscape, and geomorphologic shape in the basin, but also caused serious disasters in the region and beyond. These glacier and ice-rock avalanches were caused by temperature anomaly, heavy precipitation, climate warming, and seismic activity, etc., which act on the specific glacier properties in the high mountain regions. The study highlights scientific advances should support and benefit the remote and vulnerable mountain communities to make mountain regions safer. Full article
Show Figures

Figure 1

15 pages, 2681 KB  
Article
Strategic Vertical Port Placement and Routing of Unmanned Aerial Vehicles for Automated Defibrillator Delivery in Mountainous Areas
by Abraham Mejia-Aguilar, Giacomo Strapazzon, Eliezer Fajardo-Figueroa and Michiel J. van Veelen
Drones 2026, 10(1), 38; https://doi.org/10.3390/drones10010038 - 7 Jan 2026
Viewed by 281
Abstract
Out-of-hospital cardiac arrest (OHCA) is a major cause of death during mountain activities in the Alpine regions. Due to the time-critical nature of these emergencies and the logistical challenges of remote terrain, emergency medical services (EMS) are investigating the use of unmanned aerial [...] Read more.
Out-of-hospital cardiac arrest (OHCA) is a major cause of death during mountain activities in the Alpine regions. Due to the time-critical nature of these emergencies and the logistical challenges of remote terrain, emergency medical services (EMS) are investigating the use of unmanned aerial vehicles (UAVs) to deliver automated external defibrillators (AEDs). This study presents a geospatial strategy for optimising AED delivery by UAVs in mountainous environments, using the Province of South Tyrol, Italy, as a model region. A Geographic Information System (GIS) framework was developed to identify suitable sites for vertical drone ports based on terrain, infrastructure, and regulatory constraints. A Low-Altitude-Flight Elevation Model (LAFEM) was implemented to generate obstacle-avoiding, regulation-compliant 3D flight paths using least-cost path analysis. The results identified 542 potential vertical-port locations, covering approximately 49% of South Tyrol within ten minutes of flight, and demonstrated significant time savings for AED delivery in field tests compared with manual and Euclidean routing. These findings show that integrating GIS-based vertical-port placement and terrain-adaptive UAV routing can substantially improve AED accessibility and response times in mountainous regions. The LAFEM model aligns with U-space airspace regulations and supports safe, automated AED deployment for improved outcomes in OHCA emergencies. Full article
Show Figures

Figure 1

Back to TopTop