Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = alkyd resin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2801 KiB  
Article
The Influence of Substrate Preparation on the Performance of Two Alkyd Coatings After 7 Years of Exposure in Outdoor Conditions
by Emanuela Carmen Beldean, Maria Cristina Timar and Emilia-Adela Salca Manea
Coatings 2025, 15(8), 918; https://doi.org/10.3390/coatings15080918 (registering DOI) - 6 Aug 2025
Abstract
Alkyd resins are among the most common coatings used for exterior wood joinery. In Romania, solvent-borne alkyd coatings are widely used to finish wood. The study aims to compare the performance after 7 years of outdoor exposure of two types of alkyd coatings, [...] Read more.
Alkyd resins are among the most common coatings used for exterior wood joinery. In Romania, solvent-borne alkyd coatings are widely used to finish wood. The study aims to compare the performance after 7 years of outdoor exposure of two types of alkyd coatings, a semi-transparent brown stain with micronized pigments (Alk1) and an opaque white enamel (Alk2), applied directly on wood or wood pre-treated with three types of resins: acryl-polyurethane (R1), epoxy (R2), and alkyd-polyurethane (R3). Fir (Abies alba) wood served as the substrate. Cracking, coating adhesion, and biological degradation were periodically assessed through visual inspection and microscopy. Additionally, a cross-cut test was performed, and the loss of coating on the directly exposed upper faces was measured using ImageJ. The results indicated that resin pretreatments somewhat reduced cracking but negatively affected coating adhesion after long-term exposure. All samples pretreated with resins and coated with Alk1 lost more than 50% (up to 78%) of the original finishing film by the end of the test. In comparison, coated control samples lost less than 50%. The Alk2 coating exhibited a film loss between 2% and 12%, compared to an average loss of 9% for the coated control. Overall, samples pretreated with alkyd-polyurethane resin (R3) and coated with alkyd enamel (Alk2) demonstrated the best performance in terms of cracking, adhesion, and discoloration. Full article
(This article belongs to the Collection Wood: Modifications, Coatings, Surfaces, and Interfaces)
Show Figures

Figure 1

23 pages, 10361 KiB  
Article
Analysis of the Material and Coating of the Nameplate of Vila D. Bosco in Macau
by Liang Zheng, Jianyi Zheng, Xiyue He and Yile Chen
Materials 2025, 18(10), 2190; https://doi.org/10.3390/ma18102190 - 9 May 2025
Viewed by 661
Abstract
This study focuses on the nameplate of Vila D. Bosco, a modern building in Macau from the time of Portuguese rule, and looks at the types of metal materials and surface coatings used, as well as how they corrode due to the tropical [...] Read more.
This study focuses on the nameplate of Vila D. Bosco, a modern building in Macau from the time of Portuguese rule, and looks at the types of metal materials and surface coatings used, as well as how they corrode due to the tropical marine climate affecting the building’s metal parts. The study uses different techniques, such as X-ray fluorescence spectroscopy (XRF), scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and cross-sectional microscopic analysis, to carefully look at the metal, corrosion products, and coating of the nameplate. The results show that (1) the nameplate matrix is a resulfurized steel with a high sulfur content (Fe up to 97.3% and S up to 1.98%), and the sulfur element is evenly distributed inside, which is one of the internal factors that induce corrosion. (2) Rust is composed of polycrystalline iron oxides such as goethite (α-FeOOH), hematite (α-Fe2O3), and magnetite (Fe3O4) and has typical characteristics of atmospheric oxidation. (3) The white and yellow-green coatings on the nameplate are oil-modified alkyd resin paints, and the color pigments are TiO2, PbCrO4, etc. The surface layer of the letters is protected by a polyvinyl alcohol layer. The paint application process leads to differences in the thickness of the paint in different regions, which directly affects the anti-rust performance. The study reveals the deterioration mechanism of resulfurized steel components in a subtropical polluted environment and puts forward repair suggestions that consider both material compatibility and reversibility, providing a reference for the protection practice of modern and contemporary architectural metal heritage in Macau and even in similar geographical environments. Full article
(This article belongs to the Special Issue Materials in Cultural Heritage: Analysis, Testing, and Preservation)
Show Figures

Figure 1

28 pages, 10216 KiB  
Article
Stability and Degradation Issues of Manganese Violet Pigment in Polymeric Paints: Morphological and Chemical Changes Under SO2 and Humidity Exposure
by Laura Pagnin, Giulia Cardin, Valentina Pintus, Michele Back, Farkas Pintér, Katja Sterflinger and Francesca Caterina Izzo
Appl. Sci. 2025, 15(9), 4630; https://doi.org/10.3390/app15094630 - 22 Apr 2025
Viewed by 815
Abstract
This study focuses on investigating the stability of modern and contemporary paints based on manganese violet pigment PV16 (NH4MnP2O7) when exposed to atmospheric pollutants, specifically sulfur dioxide (SO2) in the presence of high relative humidity. [...] Read more.
This study focuses on investigating the stability of modern and contemporary paints based on manganese violet pigment PV16 (NH4MnP2O7) when exposed to atmospheric pollutants, specifically sulfur dioxide (SO2) in the presence of high relative humidity. In particular, this study aims to investigate the role of PV16 in increasing the degradation processes of various modern binders. Therefore, the objectives of this research can be divided into (i) evaluating the chemical modifications involving PV16, (ii) investigating the degradation processes that occur in different organic matrices (i.e., drying oil, alkyd resin, and acrylic and styrene–acrylic emulsions), and (iii) comparing the chemical stability of model and commercial paints. The paints were analyzed by 3D Optical Microscopy, Attenuated total Reflection–Fourier-Transform Infrared spectroscopy (ATR-FTIR) and μ-Raman Spectroscopy, Scanning Electron Microscope coupled with Energy Dispersive X-Ray spectroscopy (SEM-EDX), X-Ray Powder Diffraction (XRPD), Fiber Optic Reflectance Spectroscopy (FORS), Pyrolysis–Gas Chromatography–Mass Spectrometry (Py-GC/MS), and Thermally assisted Hydrolysis and Methylation (THM) of Py-GC/MS (THM-Py-GC/MS). The results show that when exposed to high relative humidity and SO2, PV16 presents a colorimetric change from violet to grey; several compounds crystallize on the surface; and, depending on the binder, various degradation reactions occur. This study highlights the susceptibility of manganese violet pigment PV16 under certain environmental conditions, which may be considered to define adequate conservation strategies for works of art containing this specific pigment. Additionally, the results obtained within this investigation point out the need to expand the chemical knowledge of this material for engineering, sensing, and industrial applications. Full article
Show Figures

Figure 1

17 pages, 5806 KiB  
Article
A Novel Alkyd-Based Composite Modification System for Achieving High-Performance Acrylic Coatings on Bamboo
by Xuening Gao, Jianfei Zhu, Yuan Zhu, Chengxin Xie, Xianzhang Wu, Xiangchao Pang and Wang Wang
Polymers 2025, 17(8), 1051; https://doi.org/10.3390/polym17081051 - 13 Apr 2025
Viewed by 560
Abstract
Acrylic resins are widely favored for bamboo protective coatings due to their superior weather resistance; however, their widespread application is limited by their inherent drawbacks, including brittleness, inadequate adhesion, and poor water resistance. In this study, an innovative composite modification strategy, pre-blending alkyd [...] Read more.
Acrylic resins are widely favored for bamboo protective coatings due to their superior weather resistance; however, their widespread application is limited by their inherent drawbacks, including brittleness, inadequate adhesion, and poor water resistance. In this study, an innovative composite modification strategy, pre-blending alkyd resin with selected modifiers, was developed to enhance the adhesion, water resistance, and toughness of acrylic resin paint films. Compared to unmodified acrylic resin, the optimal group exhibited enhanced adhesion strengths of 4.21 MPa on tinplate and 7.36 MPa on bamboo, representing improvements of 31.56% and 29.35%, respectively. This was accompanied by a 205 g increase in scratch resistance and a 44% decrease in water absorption, indicating a concurrent enhancement in toughness, strength, and water resistance within the composite system. As revealed by X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) analyses, this enhancement was attributed to the formation of a multidimensional network structure arising from synergistic interactions among the modifier, the alkyd resin, and the acrylic resin. This study provides a theoretical basis for developing high-performance coatings for bamboo protection. Full article
(This article belongs to the Special Issue Additive Agents for Polymer Functionalization Modification)
Show Figures

Figure 1

18 pages, 2162 KiB  
Article
Antimicrobial Activity of Lignin-Based Alkyd Coatings Containing Soft Hop Resins and Thymol
by Idoia Etxeberria, Jaime Garcia, Ana Ibáñez, Antonio García-Moyano, Ana I. Paniagua-García, Yuleima Díaz, Rebeca Díez-Antolínez and Aitor Barrio
Coatings 2025, 15(4), 445; https://doi.org/10.3390/coatings15040445 - 8 Apr 2025
Cited by 1 | Viewed by 907
Abstract
The growing concern over the transmission of pathogens, particularly in high-risk environments such as healthcare facilities and public spaces, necessitates the development of effective and sustainable antimicrobial solutions. Traditional coatings often rely on metals, which despite their efficacy, pose significant environmental and economic [...] Read more.
The growing concern over the transmission of pathogens, particularly in high-risk environments such as healthcare facilities and public spaces, necessitates the development of effective and sustainable antimicrobial solutions. Traditional coatings often rely on metals, which despite their efficacy, pose significant environmental and economic challenges. This study explores the potential of bio-based alkyd resins, supplemented with natural antimicrobial bioadditives, as an eco-friendly alternative to traditional antibacterial and antiviral coatings. Specifically, alkyd formulations incorporating thymol and soft resins extracted from hops were evaluated for antimicrobial and antiviral efficacy, following ISO standards (ISO 22196:2007 and ISO 21702:2019, respectively). The coating formulations showed significant activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus), and Influenza A (H3N2) virus, proving their potential for mitigating pathogen spread. These bio-based coatings not only reduce reliance on harmful chemicals but also align with circular economy principles by repurposing industrial by-products. This innovative approach represents a significant step toward greener antimicrobial technologies, with broad applications in healthcare, public infrastructure, and beyond, especially considering the rising zoonotic disease outbreaks. Full article
(This article belongs to the Special Issue Advances in Functional Bio-Coatings)
Show Figures

Graphical abstract

12 pages, 901 KiB  
Article
Novel Bio-Based Formulations for Alkyd Wood Coatings: Effects on Biodegradation and Technical Performance
by Idoia Etxeberria, Ingemar Svensson, Ana Isabel Díaz and Leire Barruetabeña
Coatings 2025, 15(4), 400; https://doi.org/10.3390/coatings15040400 - 27 Mar 2025
Viewed by 901
Abstract
Alkyd resins are still one of the most important classes of binders for paint systems. They are outstanding in terms of their versatility of formulations and applications, cost-effectiveness, and durability. Traditionally, they are synthesized using phthalic anhydride, polyalcohols with three or four functional [...] Read more.
Alkyd resins are still one of the most important classes of binders for paint systems. They are outstanding in terms of their versatility of formulations and applications, cost-effectiveness, and durability. Traditionally, they are synthesized using phthalic anhydride, polyalcohols with three or four functional groups (pentaerythritol, glycerol, and trimethylolpropane), and fatty acids or oils. In this study, new bio-alkyd resins were synthesized with the objective of increasing the bio-based content by substituting phthalic anhydride, thereby also enhancing the biodegradability of coatings. The newly synthesized alkyd resins, formulated with azelaic acid, were used to develop coatings incorporating additives while avoiding cobalt-based driers. Additional agents such as leveling, wetting, and anti-skinning agents, were also included. Paints were applied to wood substrates and dried at room temperature. The resulting films were characterized by pendulum hardness, transparency, and color by colorimetry, cross-cut test, contact angle, and gloss. Thermal properties were analyzed by Differential Scanning Calorimetry (DSC), and Total Organic Carbon (TOC) content and aerobic biodegradation were also evaluated. The resulting coating films exhibited good mechanical performance, with hardness values ranging from 132 to 148 Persoz oscillations and strong adhesion to wood substrates (smooth cross-cut edges, Class 0). Significant biodegradability (70% in less than 90 days) was demonstrated under composting conditions, which was considerably higher than that of a commercial reference alkyd coating (34.7%) under the same conditions. These findings suggest that the developed bio-alkyd coatings formulated with azelaic acid and DCO-FA without cobalt-based driers represent a promising alternative to conventional phthalic acid-based alkyds. These novel coatings move closer to fully bio-based formulations and offer enhanced biodegradability, making them a more sustainable option for coating applications. Full article
(This article belongs to the Special Issue Bio-Based and Bio-Inspired Polymers and Composites)
Show Figures

Graphical abstract

27 pages, 9977 KiB  
Article
Bio-Based Alkyd–Polyesteramide–Polyurethane Coatings from Castor, Neem, and Karanja Oils with Inherent Antimicrobial Properties for Enhanced Hygiene
by Abhinav Sati, Omkar Nandiwdekar, Aditya Ratnaparkhi, Ranjeet B. Doke, Dipak V. Pinjari, Suraj N. Mali and Amit P. Pratap
Coatings 2025, 15(4), 370; https://doi.org/10.3390/coatings15040370 - 21 Mar 2025
Cited by 2 | Viewed by 844
Abstract
Background: One of the foremost causes of microbial infections and propagation is improper sanitation and hygiene maintained in public places. Accumulation of stains and microbes results in the spread of infections. Also, due to the extensive use of non-renewable materials like petrochemicals, etc., [...] Read more.
Background: One of the foremost causes of microbial infections and propagation is improper sanitation and hygiene maintained in public places. Accumulation of stains and microbes results in the spread of infections. Also, due to the extensive use of non-renewable materials like petrochemicals, etc., there is an increasing demand for sustainable growth in the coating industries. Currently, there is no such technology that tackles this problem. Methods: Our present work aims to find a prolonged solution for these problems for the first time by synthesizing and formulating bio-based coatings with inherent antimicrobial properties and durable surface properties with a fast air-curing system. A formulation of alkyd and polyesteramide resins from castor, neem, and karanja oils was crosslinked with isocyanates to form the surface coatings. An esterification reaction of castor oil monoglyceride and phthalic anhydride synthesized the castor oil alkyd resin. The corresponding neem and karanja oil polyesteramides were synthesized by amidation with diethanolamine, followed by an esterification reaction. Results: The coatings exhibit an antimicrobial efficacy of 74%–84% against both Gram-positive and Gram-negative bacteria and contain 76.5% bio-based content. Factors such as thermal stability, physicochemical properties, and chemical and solvent stability were studied. After 24 h of inoculation with 40% polyesteramide resin (AMRESN-4), E. coli and S. aureus CFU values decreased from 6 × 105 to 0.28 × 105 CFU/g and from 5.7 × 105 to 0.26 × 105 CFU/g, respectively. These bio-based coatings are particularly suited for environments requiring high durability and antimicrobial protection, such as food-processing facilities, healthcare settings, and public restrooms. Full article
(This article belongs to the Section Bioactive Coatings and Biointerfaces)
Show Figures

Graphical abstract

15 pages, 5619 KiB  
Article
A Phosphate-Modified Aqueous Acrylic–Alkyd Resin for Protective Technology to Prevent Corrosion of Iron Substrates
by Chenglong Jiao, Wei He, Shixiong Sun, Wenhao Du and Benbo Zhao
Polymers 2025, 17(7), 847; https://doi.org/10.3390/polym17070847 - 21 Mar 2025
Viewed by 624
Abstract
Iron corrosion is very common in our daily life, and its effective protection can extend its service life. As a small molecule monomer, 2-hydroxyethyl methacrylate phosphate (HEMAP) has a phosphate group that can effectively chelate with iron ions to form a passivation layer [...] Read more.
Iron corrosion is very common in our daily life, and its effective protection can extend its service life. As a small molecule monomer, 2-hydroxyethyl methacrylate phosphate (HEMAP) has a phosphate group that can effectively chelate with iron ions to form a passivation layer (iron phosphate), thus slowing down the corrosion rate of iron. This study synthesized HEMAP-modified acrylic–alkyd resin copolymers with variable concentrations using free radical polymerization. The addition of HEMAP not only increases the cross-linking density of the resin, but it also further strengthens the adhesion between the resins and the iron substrate, which prevents corrosive substances from penetrating the resin. According to electrochemical studies, adding 2% mass fraction of HEMAP to the resin could greatly increase its resistance to corrosion. This study reveals HEMAP’s capacity to enhance the protection of coatings on iron substrates and lengthen the metal’s service life. Full article
(This article belongs to the Special Issue Eco-Friendly Polymeric Coatings and Adhesive Technology, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 15392 KiB  
Article
Material and Technique Analysis of Qing Dynasty Official Style Architectural Polychrome Paintings in Hangzhou, Zhejiang, China
by Ling Shen, Dan Hua, Baisu Nan, Yao Yao, Hong Duan and Jiakun Wang
Crystals 2025, 15(1), 92; https://doi.org/10.3390/cryst15010092 - 19 Jan 2025
Viewed by 1129
Abstract
Hangzhou was the political and economic center of the Southern Song Dynasty (1127–1279 AD) and also the southern end of the Beijing-Hangzhou Grand Canal during the Ming and Qing Dynasties (1368–1644 AD). This historical position allowed the city’s economy to develop rapidly and [...] Read more.
Hangzhou was the political and economic center of the Southern Song Dynasty (1127–1279 AD) and also the southern end of the Beijing-Hangzhou Grand Canal during the Ming and Qing Dynasties (1368–1644 AD). This historical position allowed the city’s economy to develop rapidly and influenced the form of its polychrome paintings with the imperial official style of the north China. However, due to the high temperature and rainy natural preservation conditions, southern polychrome paintings have always been a weak link in Chinese architectural polychrome painting craftsmanship. This study focuses on two well-preserved official-style architectural polychrome paintings in the grand halls from the late Qing period in Hangzhou. Through multi-techniques such as optical microscopy (OM), scanning electron microprobe with energy dispersive X-ray spectroscopy analysis (SEM-EDX), micro-Raman spectroscopy, micro-Fourier Transform Infrared spectroscopy (μ-FTIR), and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), it was found that there is a significant difference from the reported common non-ground architectural paintings in the south, typically having four-layer structures with a white base and ground plaster layer in preparation for painting. The appearance of pigments such as artificial ultramarine (Na6Al4Si6S4O20) and emerald green (Cu(C2H3O2)2·3Cu(AsO2)2) indicates that the paintings were made at least after the 1830s, and the use of malachite green dye and copper phthalocyanine blue (PB 15:X) suggests that unrecorded restorations were also performed after the 20th century. All samples are coated with a layer of alkyd resin, which may have been added during the repairs in the latter half of the 20th century, leading to the black discoloration of the present paintings, especially in areas where emerald green was used. This study provides an important case for the study of the official style of polychrome painting craftsmanship in the southern region of China and also offers important references for the future protection and restoration of traditional architectural polychrome painting. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

18 pages, 4915 KiB  
Article
Application of Pseudomonas cepacia CCT 6659 Biosurfactant as a Metal Corrosion Inhibitor in a Constructed Accelerated Corrosion Chamber (ACC)
by Rita de Cássia F. Soares da Silva, Alexandre Augusto P. Selva Filho, Yslla Emanuelly S. Faccioli, Yasmim K. Silva, Kaio W. Oliveira, Gleice Paula Araujo, Nathália Maria P. Rocha e Silva, Attilio Converti and Leonie A. Sarubbo
Fermentation 2024, 10(12), 602; https://doi.org/10.3390/fermentation10120602 - 25 Nov 2024
Cited by 2 | Viewed by 1289
Abstract
Corrosion is the deterioration of metals due to environmental exposure. Commercial inhibitors used to control corrosion often contain heavy metal salts, which are highly toxic to both the environment and human health. A biosurfactant produced by the bacterium Pseudomonas cepacia CCT 6659 was [...] Read more.
Corrosion is the deterioration of metals due to environmental exposure. Commercial inhibitors used to control corrosion often contain heavy metal salts, which are highly toxic to both the environment and human health. A biosurfactant produced by the bacterium Pseudomonas cepacia CCT 6659 was tested as a corrosion inhibitor on carbon steel and galvanized iron surfaces. Matrices based on plant ingredients with different compositions were tested in a laboratory-constructed accelerated corrosion chamber (ACC) simulating a critical maritime atmosphere in conditions of 40 °C, 5% NaCl, and 100% humidity. The most stable matrix was selected for biosurfactant incorporation in different concentrations, expressed as critical micellar concentration (CMC), and was applied to metal surfaces to evaluate its ability to inhibit corrosion. Additionally, to evaluate the potential of the biosurfactant as a low-toxicity corrosion inhibitor additive in paint systems, iron and carbon steel samples were coated with three biosurfactant-containing commercial paints and subjected to critical atmospheric conditions for testing coating effectiveness. The formulation containing vegetable resin as a plasticizer, oleic acid, ethanol, and CaCO3 was chosen to incorporate the biosurfactant. The addition of the biosurfactant at twice its CMC led to a reduction in carbon steel sample mass loss from 123.6 to 82.2 g/m2, while in the galvanized iron plates, the mass loss decreased from 285.9 to 226.7 g/m2 at the same biosurfactant concentration. When supplemented with the biosurfactant, the alkyd resin-based paint (A) ensured less mass loss in samples (46.0 g/m2) compared to the control without biosurfactant (58.0 g/m2). Using the paint formulated with oil-based resin (B), the mass loss decreased from 53.0 to 24.1 g/m2, while with that based on petroleum derivatives (C), it decreased from 82.2 to 27.6 g/m2. These results confirm the feasibility of using biosurfactants in biodegradable coatings, reducing the need for commercial corrosion inhibitors. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

12 pages, 1246 KiB  
Article
Stability Qualification of Resins/Metallic Oxide Composites for Surface Oxidative Protection
by Traian Zaharescu, Radu Mirea, Tunde Borbath and Istvan Borbath
Polymers 2024, 16(3), 333; https://doi.org/10.3390/polym16030333 - 25 Jan 2024
Cited by 1 | Viewed by 1579
Abstract
The accelerated degradation of alkyd resins via γ-irradiation is investigated using non-isothermal chemiluminescence. The stability qualification is possible through the comparison of emission intensities on a temperature range starting from 100 °C up to 250 °C under accelerated degradation caused by radiolysis scission. [...] Read more.
The accelerated degradation of alkyd resins via γ-irradiation is investigated using non-isothermal chemiluminescence. The stability qualification is possible through the comparison of emission intensities on a temperature range starting from 100 °C up to 250 °C under accelerated degradation caused by radiolysis scission. The measurements achieved in the samples of cured state resin modified by various inorganic oxides reveal the influence of metallic traces on the aging amplitude, when the thermal resistance increases as the irradiation dose is augmented. Even though the unirradiated samples present a prominent chemiluminescence intensity peak at 80 °C, the γ-processed specimens show less intense spectra under the pristine materials and the oxidation starts smoothly after 75 °C. The values of activation energies required for oxidative degradation of the sample subjected to 100 kGy are significantly higher in the composite states than in the neat resin. The degradation mechanism of polymerized resins is discussed taking into account the effects of fillers on the stability of studied epoxy resin at various temperatures when the degradation and crosslinking are in competition for the decay of free radical. Full article
Show Figures

Figure 1

18 pages, 4059 KiB  
Article
Corrosion Behavior of Alkyd-Resin-Coated Carbon Steel under Cathodic Polarization in Both Static and Flowing Seawater
by Hui Guo, Kun Zhou, Zhenliang Feng, Chengjie Li, Jie Xie, Jiyuan Ma, Xinyue Zhang, Xiaohui Wang, Kunshan Xu, Chuanpeng Li and Jie Liu
Coatings 2023, 13(7), 1296; https://doi.org/10.3390/coatings13071296 - 24 Jul 2023
Cited by 5 | Viewed by 1847
Abstract
The effect of cathodic polarization on the corrosion behavior of alkyd-resin-coated carbon steel with an artificial coating defect was researched using a wire beam electrode (WBE) and electrochemical impedance spectroscopy (EIS) in both static and flowing simulated solutions. The microscopic morphology and chemical [...] Read more.
The effect of cathodic polarization on the corrosion behavior of alkyd-resin-coated carbon steel with an artificial coating defect was researched using a wire beam electrode (WBE) and electrochemical impedance spectroscopy (EIS) in both static and flowing simulated solutions. The microscopic morphology and chemical structure of the organic coating were characterized by scanning electron microscopy (SEM) and infrared spectroscopy (FT-IR) to reveal the degradation mechanisms of organic coatings under different polarization potentials. The study found that the failure process of the alkyd coating could be accelerated by cathodic polarization. After 312 h of immersion, the impedance under −1100 mV was one order of magnitude lower than that under the open-circuit potential (OCP). The coating delamination became serious with the negative shifting of polarization potential, and the delamination area ratio under −1100 mV in both static and flowing seawater rose to 23% and 14%, respectively. Interestingly, the flowing condition of the immersion solution that combined with cathodic polarization exhibited a synergistic effect, which could accelerate (in the earlier stage) and then alleviate the delamination of the coating. Furthermore, the results showed that both the diffusion of the corrosion particles and the anodic dissolution reaction of the metal could be significantly affected by cathodic polarization and the flowing condition of the solution, which provides a possible approach to gain insight into the delamination of organic coating. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Graphical abstract

14 pages, 6066 KiB  
Article
NMR and GPC Analysis of Alkyd Resins: Influence of Synthesis Method, Vegetable Oil and Polyol Content
by Antonella Hadzich, Santiago Flores, Ashley E. Masucci, Enrique D. Gomez and G. Alexander Groß
Polymers 2023, 15(9), 1993; https://doi.org/10.3390/polym15091993 - 23 Apr 2023
Cited by 8 | Viewed by 4330
Abstract
Alkyd resins are oil-based polymers that have been widely used for generations in the surface coating industry and beyond. Characterization of these resins is of high importance to understand the influence of its components on its behavior, compatibility with other resins, and final [...] Read more.
Alkyd resins are oil-based polymers that have been widely used for generations in the surface coating industry and beyond. Characterization of these resins is of high importance to understand the influence of its components on its behavior, compatibility with other resins, and final quality to ensure high durability. Here, NMR spectroscopy and GPC were used for characterizing differences in the chemical structure, molecular distribution, and dispersity between oil-based and fatty acid-based alkyd polymers made from sacha inchi and linseed oils. Sancha inchi (Plukentia volubilis L.) is a fruit-bearing plant native to South America and the Caribbean, and has a rich unsaturated fatty acid content. The effect of vegetable oil and polyol selection on the synthesis of alkyd resins for coating applications was analyzed. The influence of two different synthesis methods, monoglyceride and fatty acid processes, was also compared. Important structural differences were observed using NMR: one-dimensional spectra revealed the degree of unsaturated fatty acid chains along the polyester backbone, whereas, 2D NMR experiments facilitated chemical shift assignments of all signals. GPC analysis suggested that alkyd resins with homogeneous and high molecular weights can be obtained with the fatty acid process, and that resins containing pentaerythritol may have uniform chain lengths. Full article
(This article belongs to the Special Issue Resin-Based Polymer Materials and Related Applications)
Show Figures

Graphical abstract

17 pages, 2780 KiB  
Article
Triple Benefits of Cardanol as Chain Stopper, Flame Retardant and Reactive Diluent for Greener Alkyd Coating
by Maxinne Denis, Cédric Totée, Damien Le Borgne, Rodolphe Sonnier, Sylvain Caillol and Claire Negrell
Organics 2023, 4(1), 109-125; https://doi.org/10.3390/org4010009 - 15 Mar 2023
Cited by 5 | Viewed by 2844
Abstract
Cardanol, a waste from the food industry and widely produced (1 Mt/y), has been used as a chain stopper during the polycondensation of short oil alkyd resins in order to replace benzoic acid. Then, phosphorylated cardanol has been added in order to both [...] Read more.
Cardanol, a waste from the food industry and widely produced (1 Mt/y), has been used as a chain stopper during the polycondensation of short oil alkyd resins in order to replace benzoic acid. Then, phosphorylated cardanol has been added in order to both reduce solvent content and bring flame-retardant (FR) properties to the alkyd resins. The renewable carbon content of the formulations has been increased up to 23%. The impact of the introduction of phosphorylated cardanol molecules on the drying time and flexibility has been studied as well as the thermal and flame-retardant properties by differential scanning calorimeter, thermogravimetric analysis and pyrolysis-combustion flow calorimeter. The most effective flame-retardant coating that was associated with excellent FR properties and excellent coating properties has been obtained with phosphate-cardanol added at 2%wt of P. Indeed, the film properties were closed to the classical alkyd resin, the solvent content was reduced by 50% and the pHRR decreased by 42% compared to the reference alkyd resin. Full article
Show Figures

Graphical abstract

15 pages, 2896 KiB  
Article
Preparation of Crystal Violet Lactone Complex and Its Effect on Discoloration of Metal Surface Coating
by Wenbo Li, Xiaoxing Yan and Wenting Zhao
Polymers 2022, 14(20), 4443; https://doi.org/10.3390/polym14204443 - 20 Oct 2022
Cited by 26 | Viewed by 3389
Abstract
In this paper, a thermochromic complex was prepared from crystal violet lactone (CVL), bisphenol A (BPA) and tetradecanol. The color-changing temperature of the color-changing compound was found to be 25 °C by orthogonal experiment. Microcapsules coated with a thermochromic compound were added into [...] Read more.
In this paper, a thermochromic complex was prepared from crystal violet lactone (CVL), bisphenol A (BPA) and tetradecanol. The color-changing temperature of the color-changing compound was found to be 25 °C by orthogonal experiment. Microcapsules coated with a thermochromic compound were added into alkyd resin at different mass concentrations. With the increase in temperature and mass fraction of microcapsules in the coating, the color difference of the coating showed an upward trend. The highest variation in the coating’s color difference occurs when there were 10% microcapsules. When the mass fraction of microcapsules was 15.0~25.0%, there was little change to the gloss of the coating. With the increase in the mass fraction of the coating microcapsules, the hardness of the coating gradually increased. The hardness was at its best when the microcapsule concentration was 25%. When the microcapsule concentration was 20%, the impact resistance of the coating was at its best. The coating had good cold-liquid resistance to acetic acid, ethanol, and NaCl solutions, and there was basically no mark on the coating surface before and after the cold-liquid-resistance test. The addition of microcapsules did not change the chemical composition of the coating, and it improved the performance of the coating. When the microcapsule concentration was 10%, the overall performance of the coating was at its best, which laid the technical foundation for thermochromic coating on the metal surface. Full article
(This article belongs to the Special Issue Polymers and Nanotechnology for Industry 4.0)
Show Figures

Figure 1

Back to TopTop