A Novel Alkyd-Based Composite Modification System for Achieving High-Performance Acrylic Coatings on Bamboo
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Materials
2.2. Preparation of Modified Acrylic Resin Emulsion
2.3. Sample Preparation and Characterization
2.4. Thermal and Chemical Analysis
2.5. Gel Content Test
2.6. X-Ray Diffraction (XRD)
3. Results and Discussion
3.1. Stability of Modified AA Emulsions
3.2. Physical and Mechanical Properties of Paint Film
3.3. Thermal Stability
3.4. Characterization of Modified Acrylic Resin Paint Films
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hoang, C.; Nguyen, T.; Stanley, D.; Persily, A.; Corsi, R.L. Effect of ozonation on fungal resistance of bamboo and oak flooring materials. Build. Environ. 2014, 81, 226–233. [Google Scholar] [CrossRef]
- Wang, Q.; Han, H.; Lou, Z.; Han, X.; Wang, X.; Li, Y. Surface property enhancement of bamboo by inorganic materials coating with extended functional applications. Compos. Part A Appl. Sci. Manuf. 2022, 155, 106848. [Google Scholar] [CrossRef]
- Ge, S.; Ma, N.L.; Jiang, S.; Ok, Y.S.; Lam, S.S.; Li, C.; Shi, S.Q.; Nie, X.; Qiu, Y.; Li, D.; et al. Processed bamboo as a novel formaldehyde-free high-performance furniture biocomposite. ACS Appl. Mater. Interfaces 2020, 12, 30824–30832. [Google Scholar] [CrossRef] [PubMed]
- Kelkar, B.U.; Shukla, S.R.; Yadav, S.M.; Bansal, R. Performance of laminated bamboo lumber and bamboo strand lumber coated with solvent and water-based polyurethane against accelerated UV and natural weathering. Ind. Crops Prod. 2023, 192, 116058. [Google Scholar] [CrossRef]
- Jiao, C.; Sun, L.; Shao, Q.; Song, J.; Hu, Q.; Naik, N.; Guo, Z. Advances in waterborne acrylic resins: Synthesis principle, modification strategies, and their applications. ACS Omega 2021, 6, 2443–2449. [Google Scholar] [CrossRef]
- Nollenberger, K.; Albers, J. Poly(meth)acrylate-based coatings. Int. J. Pharmaceut. 2013, 457, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Obande, W.; Ó Brádaigh, C.M.; Ray, D. Continuous fibre-reinforced thermoplastic acrylic-matrix composites prepared by liquid resin infusion—A review. Compos. Part B Eng. 2021, 215, 108771. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Huang, Y.-C.; Wu, C.-H.; Lin, H.-W.; Chiu, W.-Y.; Jeng, R.-J.; Tung, S.-H. Waterborne epoxy/acrylic resins stabilized through the neutralization of basic amine-modified epoxy and acidic acrylic copolymers. ACS Appl. Polym. Mater. 2024, 6, 828–836. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, J.; Li, J.; Gao, Y.; Zhang, Z. Preparation and characterization of the cross-linked fluoro-silicon polyacrylate–polyurethane hybrid emulsions for superior performance of waterborne coatings. ACS Appl. Polym. Mater. 2023, 5, 7854–7866. [Google Scholar] [CrossRef]
- Han, J.; Hong, J.; Choi, C.; Cha, C. Physicochemically tunable hyperbranched polyglycerol copolymerized with functional aziridine as a versatile, multivalent cross-linker for waterborne acrylic adhesives. ACS Appl. Polym. Mater. 2024, 6, 11167–11179. [Google Scholar] [CrossRef]
- Zhou, S.; Ma, J.; Yu, J.-W.; Gao, Z.; Li, F.; Zhang, F.; He, Y.-P. Preparation and properties of epoxy modified acrylic polymer. Polymers 2025, 17, 380. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Ge, S.; Wang, S.; Shao, Q.; Jiao, C.; Liu, M.; Das, R.; Dong, B.; Guo, Z. Effect of γ-aminopropyltriethoxysilane on the properties of cellulose acetate butyrate modified acrylic waterborne coatings. React. Funct. Polym. 2020, 154, 104657. [Google Scholar] [CrossRef]
- Liu, X.; Ma, X.; Zhu, L.; Zhu, L. Fabrication of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) biocomposite reinforced wood fiber modified with mixed coupling agents CS-201 and KH550. Ind. Crops Prod. 2021, 164, 113352. [Google Scholar] [CrossRef]
- Han, Y.; Yan, X. Effect of silane coupling agent modification on properties of brass powder-water-wased acrylic coating on tilia europaea. Polymers 2023, 15, 1396. [Google Scholar] [CrossRef]
- Puyadena, M.; Etxeberria, I.; Martin, L.; Mugica, A.; Agirre, A.; Cobos, M.; Gonzalez, A.; Barrio, A.; Irusta, L. Polyurethane/acrylic hybrid dispersions containing phosphorus reactive flame retardants as transparent coatings for wood. Prog. Org. Coat. 2022, 170, 107005. [Google Scholar] [CrossRef]
- Peruzzo, P.J.; Anbinder, P.S.; Pardini, O.R.; Vega, J.; Costa, C.A.; Galembeck, F.; Amalvy, J.I. Waterborne polyurethane/acrylate: Comparison of hybrid and blend systems. Prog. Org. Coat. 2011, 72, 429–437. [Google Scholar] [CrossRef]
- Sorce, F.S.; Ngo, S.; Lowe, C.; Taylor, A.C. The effect of HMMM crosslinker content on the thermal-mechanical properties of polyester coil coatings. Prog. Org. Coat. 2019, 137, 105338. [Google Scholar] [CrossRef]
- Diakoumakos, C.D.; Jones, F.N. Studies on the chemical, physical and mechanical properties of high-solids clearcoats prepared from hydroxyl-terminated isophthalate-based oligoesters and a melamine resin. Surf. Coat. Technol. 2001, 140, 183–194. [Google Scholar] [CrossRef]
- Zou, Y.; Xia, Y.; Yan, X. Effect of melamine formaldehyde resin encapsulated UV acrylic resin primer microcapsules on the properties of UV primer coating. Polymers 2024, 16, 2308. [Google Scholar] [CrossRef]
- Dashtizadeh, A.; Abdouss, M.; Mahdavi, H.; Khorassani, M. Acrylic coatings exhibiting improved hardness, solvent resistance and glossiness by using silica nano-composites. Appl. Surf. Sci. 2011, 257, 2118–2125. [Google Scholar] [CrossRef]
- Xue, F.; Jia, D.; Li, Y.; Jing, X. Facile preparation of a mechanically robust superhydrophobic acrylic polyurethane coating. J. Mater. Chem. A 2015, 3, 13856–13863. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, Q.; Ye, C.; Nair, S.S.; Yan, N. Incorporation of ligno-cellulose nanofibrils and bark extractives in water-based coatings for improved wood protection. Prog. Org. Coat. 2020, 138, 105210. [Google Scholar] [CrossRef]
- Zhou, J.; Hao, X.; Zhou, H.; Ou, R.; Wang, Q. Simultaneously strengthening and toughening reprocessable basswood through reactive waterborne acrylic resin impregnation. Chem. Eng. J. 2024, 489, 151313. [Google Scholar] [CrossRef]
- Pathan, S.; Ahmad, S. Synergistic effects of linseed oil based waterborne alkyd and 3-Isocynatopropyl triethoxysilane: Highly transparent, mechanically robust, thermally stable, hydrophobic, anticorrosive coatings. ACS Sustain. Chem. Eng. 2016, 4, 3062–3075. [Google Scholar] [CrossRef]
- Hikku, G.S.; Jeyasubramanian, K.; Jacobjose, J.; Thiruramanathan, P.; Veluswamy, P.; Ikeda, H. Alkyd resin based hydrophilic self-cleaning surface with self-refreshing behaviour as single step durable coating. J. Colloid. Interf. Sci. 2018, 531, 628–641. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.J.; Rajput, C.V.; Patil, R.D.; Koli, A.B.; Joshi, S.; Sonawane, S.L.; Gite, V.V. Madhuca indica (Mahua) seed oil towards synthesis of alkyd-type polyurethane anticorrosive coatings. Ind. Crops Prod. 2024, 219, 119059. [Google Scholar] [CrossRef]
- Assanvo, E.F.; Gogoi, P.; Dolui, S.K.; Baruah, S.D. Synthesis, characterization, and performance characteristics of alkyd resins based on ricinodendron heudelotii oil and their blending with epoxy resins. Ind. Crops Prod. 2015, 65, 293–302. [Google Scholar] [CrossRef]
- Dmitruk, A.; Mayer, P.; Pach, J. Pull-off strength of thermoplastic fiber-reinforced composite coatings. J. Adhes. Sci. Technol. 2017, 32, 997–1006. [Google Scholar] [CrossRef]
- Anand, K.; Duguet, T.; Esvan, J.; Lacaze-Dufaure, C. Chemical interactions at the Al/poly-epoxy interface rationalized by DFT calculations and a comparative XPS analysis. ACS Appl. Mater. Interfaces. 2020, 12, 57649–57665. [Google Scholar] [CrossRef]
- Song, F.; Zheng, H.; Li, T.; Fu, X.; Feng, C.; Ma, C.; Jiang, S.; Wang, J.; Huang, Y.; Zhou, F. The influence of asphaltene and resin on the stability of crude oil emulsion and its demulsification mechanism. J. Mol. Liq. 2024, 413, 125924. [Google Scholar] [CrossRef]
- Wang, S.; Jia, Y.; Li, Z.; Zhou, Z.; Gao, Y.; Huang, X.; Wei, H.; Guan, S. Evaluating the effect of aging on adhesion for hot-poured road sealants through a modified adhesion test. Constr. Build. Mater. 2022, 347, 128576. [Google Scholar] [CrossRef]
- Lu, P.; Li, X.; Xu, J.; Fan, Y.; Sun, J.; Liang, Y.; Tian, L.; Ming, W.; Ren, L.; Zhao, J. Bio-Inspired interlocking structures for enhancing flexible coatings adhesion. Small 2024, 20, 2312037. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Dobryden, I.; Pan, J.; Ahniyaz, A.; Deltin, T.; Corkery, R.W.; Claesson, P.M. Nano-scale mechanical and wear properties of a waterborne hydroxyacrylic-melamine anti-corrosion coating. Appl. Surf. Sci. 2018, 457, 548–558. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, S.; Zhang, J. Influence of substrate and interfacial adhesion on the scratch resistance of poly(methylmethacrylate). Mater. Design. 2020, 195, 108984. [Google Scholar] [CrossRef]
- Liu, M.; Mao, X.; Zhu, H.; Lin, A.; Wang, D. Water and corrosion resistance of epoxy–acrylic–amine waterborne coatings: Effects of resin molecular weight, polar group and hydrophobic segment. Corros. Sci. 2013, 75, 106–113. [Google Scholar] [CrossRef]
- Jiao, C.; Shao, Q.; Wu, M.; Zheng, B.; Guo, Z.; Yi, J.; Zhang, J.; Lin, J.; Wu, S.; Dong, M.; et al. 2-(3,4-Epoxy) ethyltriethoxysilane-modified waterborne acrylic resin: Preparation and property analysis. Polymer 2020, 190, 122196. [Google Scholar] [CrossRef]
- Hazarika, D.; Karak, N. Waterborne sustainable tough hyperbranched aliphatic polyester thermosets. ACS Sustain. Chem. Eng. 2015, 3, 2458–2468. [Google Scholar] [CrossRef]
- Dou, G.; Peng, G.; Hu, Y.; Sun, Y.; Jiang, H.; Zhang, T. Effects of interface bonding on the macro-mechanical properties of microcapsule/epoxy resin composites. Surf. Interfaces 2022, 34, 102310. [Google Scholar] [CrossRef]
Sample | Acrylic Resin (%) | Alkyd Resin (%) | Modifiers (%) (KH550/HMMM/Nano-Silica/PU) | DPNB (%) |
---|---|---|---|---|
AA | 85 | 0 | 0 | 2 |
AA-HM | 85 | 0 | 4 | 2 |
AA-KH | 85 | 0 | 4 | 2 |
AA-PU | 85 | 0 | 4 | 2 |
AA-SiO2 | 85 | 0 | 0.5 | 2 |
AA-AC | 85 | 2 | 0 | 2 |
AA-AC-HM | 85 | 2 | 4 | 2 |
AA-AC-KH | 85 | 2 | 4 | 2 |
AA-AC-PU | 85 | 2 | 4 | 2 |
AA-AC-SiO2 | 85 | 2 | 0.5 | 2 |
Sample | Tonset (°C) | Tmax (°C) | Tend (°C) | T0.5 (°C) | Tg (°C) | Residual Mass at 600 °C (%) |
---|---|---|---|---|---|---|
AA | 368.79 | 389.82 | 412.36 | 390.37 | 11.93 | 4.11 |
AA-AC | 370.38 | 392.81 | 412.68 | 391.46 | 9.3 | 4.07 |
AA-HM | 376.77 | 400.77 | 421.3 | 391.42 | 14.14 | 4.38 |
AA-AC-HM | 369.74 | 395.59 | 422.41 | 398.32 | 13.24 | 5.88 |
AA-KH | 370.54 | 394.18 | 417.46 | 395.86 | 15.29 | 4.68 |
AA-AC-KH | 368.83 | 391.81 | 414.59 | 395.07 | 13.4 | 7.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Zhu, J.; Zhu, Y.; Xie, C.; Wu, X.; Pang, X.; Wang, W. A Novel Alkyd-Based Composite Modification System for Achieving High-Performance Acrylic Coatings on Bamboo. Polymers 2025, 17, 1051. https://doi.org/10.3390/polym17081051
Gao X, Zhu J, Zhu Y, Xie C, Wu X, Pang X, Wang W. A Novel Alkyd-Based Composite Modification System for Achieving High-Performance Acrylic Coatings on Bamboo. Polymers. 2025; 17(8):1051. https://doi.org/10.3390/polym17081051
Chicago/Turabian StyleGao, Xuening, Jianfei Zhu, Yuan Zhu, Chengxin Xie, Xianzhang Wu, Xiangchao Pang, and Wang Wang. 2025. "A Novel Alkyd-Based Composite Modification System for Achieving High-Performance Acrylic Coatings on Bamboo" Polymers 17, no. 8: 1051. https://doi.org/10.3390/polym17081051
APA StyleGao, X., Zhu, J., Zhu, Y., Xie, C., Wu, X., Pang, X., & Wang, W. (2025). A Novel Alkyd-Based Composite Modification System for Achieving High-Performance Acrylic Coatings on Bamboo. Polymers, 17(8), 1051. https://doi.org/10.3390/polym17081051